1 SUPPORTING INFORMATION

Association of enzymatically and non-enzymatically functionalized caseins analyzed by size-exclusion chromatography and light scattering techniques

- 5 Mariella Hann^{β†}, Raffaele Andrea Abbate[‡], Eva Mitzenheim[†], Mahmoud Alkhalaf[‡], Wendelin
- 6 Böhm[†], Albena Lederer[‡] and Thomas Henle[†]*
- 7 [†]Chair of Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
- 8 [‡]Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany and
- 9 School of Science, Technische Universität Dresden, 01062 Dresden, Germany

10

11 Quantitation of Maillard Reaction Products by High-Pressure Liquid Chromatography with 12 Tandem Mass Spectrometric Detection (HPLC-MS/MS). Protein-bound Maillard reaction 13 products were quantitated in enzymatic hydrolyzed casein samples by HPLC-MS/MS with 14 standard addition. Enzymatic hydrolysis and HPLC-MS/MS were performed according to Hellwig 15 et al.¹ All samples were filtrated (0.45 μ m, regenerated cellulose) before injection. The added 16 standard solutions contained the target analytes in the following concentrations: 1.0 17 μg/mL N-ε-

carboxyethyllysine (CEL), 2.0 μg/mL formyline, 0.5 μg/mL methylglyoxal-derived
hydroimidazolone 1 (MG-H1), and 2.0 μg/mL pyrraline 2.0 μg/mL for control and glycated
samples and 19.9 μg/mL CEL, 0.4 μg/mL formyline, 5.0 μg/mL MG-H1, and 2.0 μg/mL pyrraline
for MGO-modified sample, respectively. N-ε-carboxymethyllysine (CML) was quantified after
acid hydrolysis and reduction by HPLC-MS/MS with external calibration and an internal standard
(D₂-CML) according to Moeckel et al.²

24

25 Lipid Extraction and Identification by Thin-layer Chromatography (TLC).

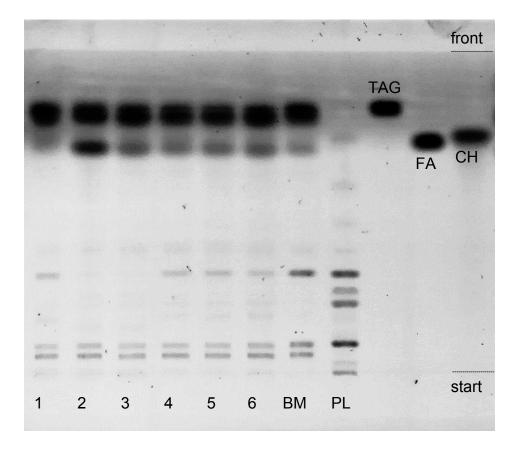
26 Lipids were extracted from casein lyophilizates using the Folch method^{3,4} and separated by TLC 27 according to Helmerich & Koehler⁵. Therefore, 500 µL ice-cold methanol followed by 1000 µL 28 ice-cold chloroform were added to 10 mg casein, vortex-homogenized for 30 s and incubated for 29 20 min at -20 °C. After centrifugation at 2.000×g for 20 min, the supernatant was filtrated 30 $(0.45 \,\mu\text{m}, \text{regenerated cellulose})$ and an aliquot of 1000 μL was evaporated under nitrogen stream. 31 The dried lipid extracts were resolubilized in 200 μ L n-hexane:2-propanol (4:1, v/v). 10 mg of a 32 freeze-dried sample of commercial butter milk was extracted analogously and solubilized in 500 33 μ L n-hexane:2-propanol (4:1, v/v). Soy lecithin, sunflower oil, oleic acid, and cholesterol dissolved to 0.5 mg/mL in n-hexane:2-propanol (4:1, v/v), respectively, were used as standards for TLC. 12 μ L of sample extracts and 6 μ L of standards were applied band-wise (5 mm) onto a HPTLC plate (silica G 60, 200×100×0.25 mm, Merck) using a glass capillary (2 μ L) and developed with methyl acetate/chloroform/1-propanol/methanol/0.25% aqueous potassium chloride (25:25:25:10:9, v/v/v/v). Plate was dipped into an 3.3% (w/v) copper sulfate solution containing 14% (w/v) phosphoric acid, heated at 180 °C for 10 min and visualized afterward under

40 white light.

41 Table S1. Concentrations of individual Maillard reaction products given in µmol/g protein

42 (corresponding percentage of lysine/arginine modification in parentheses) of untreated casein

- 43 (control), after glycation with lactose for 36 h (Lac-36) and 48 h (Lac-48) and upon modification
- 44 with MGO as well as performance parameters of the LC MS/MS analysis. Values expressed as


Analyt	control	Lac-36	Lac-48	MGO	LOD ^a	LOQ ^a
Amadori	9.1 ± 0.2	241.8 ± 1.3	245.6 ± 15.5	-	-	-
products ^b	(2.0)	(40.8)	(42.2)			
CML	0.7 ± 0.0	41.0 ± 1.5	47.5 ± 1.2	-	0.07	0.20
	(0.1)	(7.5)	(8.7)			
pyrraline	tr	3.3 ± 0.3	3.5 ± 0.1	tr	0.04	0.13
		(0.6)	(0.6)			
CEL	n.d.	0.31 ± 0.03	0.35 ± 0.07	24.8 ± 0.7	0.08	0.25
		(< 0.1)	(< 0.1)	(4.4)		
formyline	n.d.	0.19 ± 0.01	0.18 ± 0.03	n.d.	0.02	0.06
		(< 0.1)	(< 0.1)			
MG-H1	n.d.	tr	0.17 ± 0.03	27.3 ± 3.0	0.05	0.14
			(< 0.1)	(11.6)		

45 mean \pm standard deviation (n=2).

46 n.d., not detected (below LOD); tr, trace amounts (between LOD and LOQ)

^a LOD and LOQ based on an amount of 3 mg protein per enzymatic hydrolysis

48 ^b data from Hannß et al.⁶

50 Figure S1. Separation of lipid components by TLC after FOLCH-extraction, developed with 51 methyl acetate/chloroform/1-propanol/methanol/0.25% potassium chloride (25:25:25:10:9, 52 v/v/v/v) and detected with 3.3% (w/v) copper sulfate in 14% (w/v) phosphoric acid; applied 53 case in samples: 1 = control, 2 = glycated with lactose (36 h), 3 = glycated with lactose (48 h), 54 4 = cross-linked with MGO, 5 = cross-linked with mTG, 6 = cross-linked with GTA, applied 55 standards: BM = lipids extracted from butter milk; PL = phospholipids from soy lecithin; 56 TAG = triacylglycerides from sunflower oil; FA = free fatty acids (oleic acid); CH = cholesterol; 57 Applied sample volume for 1-6: 12 μ L, standards: 6 μ L.

58 **REFERENCES**

- 59 (1) Hellwig, M.; Rückriemen, J.; Sandner, D.; Henle, T. Unique Pattern of Protein-Bound
- 60 Maillard Reaction Products in Manuka (Leptospermum Scoparium) Honey. J. Agric.
- 61 *Food Chem.* **2017**, 65 (17), 3532–3540. https://doi.org/10.1021/acs.jafc.7b00797.
- 62 (2) Moeckel, U.; Duerasch, A.; Weiz, A.; Ruck, M.; Henle, T. Glycation Reactions of Casein
- 63 Micelles. J. Agric. Food Chem. 2016, 64 (14), 2953–2961.
 64 https://doi.org/10.1021/acs.jafc.6b00472.
- 65 (3) Folch, J.; Lees, M.; Stanley, G. H. S. A Simple Method for the Isolation and Purification
 66 of Total Lipides from Animal Tissues. J. Biol. Chem. 1957, 226 (1), 497–509.
- 67 (4) Reis, A.; Rudnitskaya, A.; Blackburn, G. J.; Fauzi, N. M.; Pitt, A. R.; Spickett, C. M. A 68 Comparison of Five Lipid Extraction Solvent Systems for Lipidomic Studies of 69 LDL. Journal Lipid Research 2013, 54 (7), 1812-1824. Human of 70 https://doi.org/10.1194/jlr.M034330.
- Helmerich, G.; Koehler, P. Comparison of Methods for the Quantitative
 Determination of Phospholipids in Lecithins and Flour Improvers. *J. Agric. Food Chem.* 2003, *51* (23), 6645–6651. https://doi.org/10.1021/jf0345088.
- 74 Hannß, M.; Hubbe, N.; Henle, T. Acid-Induced Gelation of Caseins Glycated with (6) 75 Lactose: Impact of Maillard Reaction-Based Glycoconjugation and Protein Cross-76 Linking. J. Agric. Food Chem. 2018, 66 (43), 11477-11485. 77 https://doi.org/10.1021/acs.jafc.8b04176.

6