Supporting information

Compression and Stretching of Single DNA Molecules under Channel Confinement

Tomáš Bleha and Peter Cifra

Polymer Institute, Slovak Academy of Sciences, 84541 Bratislava, Slovakia

Figure S1. Plots of the reduced tensile force fP/kT (full symbols) and of the reduced channel width D/P (empty symbols) against the displacement variables R_{II}/L , $\langle x \rangle/L$, and S/L for a single DNA molecule.

Figure S2. Comparison of the reduced external force fP/kT with the confinement force f_DP/kT computed from the data in ref.³

Figure S3. Enlargement of Figure 4 in the main text in the range of weak forces fP/kT plotted as a function of R_{II}/L for the channel-confined DNA.

Figure S4. The fit of the tensile functions f(R) in Figure 4 in the main text by eq 2 using the respective stress-free displacements R_{IIo} at a given channel size.

Figure S5. The plot of the tensile functions f(R) in Figure 4 in the main text following an approach of ref¹⁷ where the persistence length *P* is replaced by the segmental correlation length *P*_{II} in eq 2. The variation of the axial and transverse terms *P*_{II} and *P*_{\perp} with the channel size³¹ is shown in the inset.

Figure S6. The radial distribution function P(S) of a DNA molecule confined in a narrow channel of D/P = 0.52 under action of the compressive force of fP/kT = 0, -0.6, and -1.4.

Figure S7. Compressibility $\chi = -(1/S)(dS/d|f|)$ of a DNA molecule at piston deformation in a cylinder defined in an analogy with the conventional isothermal compressibility.

Figure S8. The representation of the elastic curves *f*-*R* in tensile region of confined DNA in Figure 4 in the main text after the elimination of the pre-stretching term $\Delta R_D = R_{II} - R_{IIo}$ in a given channel.