## Isolation and Structural Characterization of Specific Bacterial $\beta$ -Glucuronidase Inhibitors from Noni (*Morinda citrifolia*) Fruits

Fei Yang, Wenjun Zhu, Shi Sun, Qing Ai, Paba Edirisuriya, and Kequan Zhou\* Department of Nutrition and Food Science, Wayne State University, Detroit, Michigan 48202, United States

Corresponding Author

\*Tel: +1 313-577-3444. Fax: +1 313-577-8616. E-mail: kzhou@wayne.edu

## **Table of Contents:**

Figure S1. HRESIMS spectrum of (7S,8S,7'R,8'R)-isoamericanol B (1)

Figure S2. HRESIMS spectrum of americanol B (2)

Figure S3. HRESIMS spectrum of moricitrin A (3)

Figure S4. HRESIMS spectrum of moricitrin B (4)

Figure S5. Experimental (solid lines) and calculated (dashed lines) UV spectra of compounds 1-4 and their model structures

Figure S6. Distances between protons of steric centers for compounds 1-4 (energy minimized by MM2 force field)

Figure S7. <sup>1</sup>H NMR (500 MHz, CD<sub>3</sub>OD) spectrum of (7S,8S,7'R,8'R)-isoamericanol B (1)

Figure S8. <sup>13</sup>C NMR (125 MHz, CD<sub>3</sub>OD) spectrum of (7S,8S,7'R,8'R)-isoamericanol B (1)

Figure S9. COSY (CD<sub>3</sub>OD) spectrum of (7S,8S,7'R,8'R)-isoamericanol B (1)

Figure S10. HSQC (CD<sub>3</sub>OD) spectrum of (7S,8S,7'R,8'R)-isoamericanol B (1)

Figure S11. HMBC (CD<sub>3</sub>OD) spectrum of (7S,8S,7'R,8'R)-isoamericanol B (1)

Figure S12. HMBC (600 MHz, CD3OD, coupling constant = 3 Hz) spectrum of (7S,8S,7'R,8'R)-isoamericanol B (1)

Figure S13. ROESY (CD<sub>3</sub>OD) spectrum of (7S,8S,7'R,8'R)-isoamericanol B (1)

Figure S14. <sup>1</sup>H NMR (500 MHz, CD<sub>3</sub>OD) spectrum of americanol B (2)

Figure S15. <sup>13</sup>C NMR (125 MHz, CD<sub>3</sub>OD) spectrum of americanol B (2)

Figure S16. COSY (CD<sub>3</sub>OD) spectrum of americanol B (2)

Figure S17. HSQC (CD<sub>3</sub>OD) spectrum of americanol B (2)

Figure S18. HMBC (CD<sub>3</sub>OD) spectrum of americanol B (2)

Figure S19. HMBC (600 MHz, CD3OD, coupling constant = 3 Hz) spectrum of americanol B (2)

Figure S20. ROESY (CD<sub>3</sub>OD) spectrum of americanol B (2)

Figure S21. <sup>1</sup>H NMR (500 MHz, CD<sub>3</sub>OD) spectrum of moricitrin A (**3**)

Figure S22. <sup>13</sup>C NMR (125 MHz, CD<sub>3</sub>OD) spectrum of moricitrin A (**3**)

Figure S23. COSY (CD<sub>3</sub>OD) spectrum of moricitrin A (**3**)

Figure S24. HSQC (CD<sub>3</sub>OD) spectrum of moricitrin A (**3**)

Figure S25. HMBC (CD<sub>3</sub>OD) spectrum of moricitrin A (**3**)

Figure S26. HMBC (600 MHz, CD<sub>3</sub>OD, coupling constant = 3 Hz) spectrum of moricitrin A (3)

Figure S27. ROESY (CD3OD) spectrum of moricitrin A (3)

Figure S28. <sup>1</sup>H NMR (500 MHz, CD<sub>3</sub>OD) spectrum of moricitrin B (4)

Figure S29. <sup>13</sup>C NMR (125 MHz, CD<sub>3</sub>OD) spectrum of moricitrin B (4)

Figure S30. COSY (CD<sub>3</sub>OD) spectrum of moricitrin B (4)

Figure S31. HSQC (CD<sub>3</sub>OD) spectrum of moricitrin B (4)

Figure S32. HMBC (CD<sub>3</sub>OD) spectrum of moricitrin B (4)

Figure S33. HMBC (600 MHz,  $CD_3OD$ , coupling constant = 3 Hz) spectrum of moricitrin B (4)

Figure S34. ROESY (CD<sub>3</sub>OD) spectrum of moricitrin B (4)



Figure S1. HRESIMS spectrum of (7S,8S,7'R,8'R)-isoamericanol B (1)



Figure S2. HRESIMS spectrum of americanol B (2)



Figure S3. HRESIMS spectrum of moricitrin A (3)



Figure S4. HRESIMS spectrum of moricitrin B (4)



Figure S5. Experimental (solid lines) and calculated (dashed lines) UV spectra of compounds 1-4 and their model structures



| proton      | distance |
|-------------|----------|
| H-7 to H-7' | 7.7 Å    |
| H-7 to H-8' | 6.7 Å    |
| H-8 to H-7' | 8.0 Å    |
| H-8 to H-8' | 7.8 Å    |



2

| distance |
|----------|
| 6.4 Å    |
| 7.2 Å    |
| 6.5 Å    |
| 7.6 Å    |
|          |



| proton      | distance |
|-------------|----------|
| H-7 to H-7" | 6.2 Å    |
| H-7 to H-8" | 6.7 Å    |
| H-8 to H-7" | 7.1 Å    |
| H-8 to H-8" | 6.3 Å    |



| proton      | distance |
|-------------|----------|
| H-7 to H-7" | 7.7 Å    |
| H-7 to H-8" | 6.8 Å    |
| H-8 to H-7" | 7.6 Å    |
| H-8 to H-8" | 7.3 Å    |

Figure S6. Distances between protons of steric centers for compounds **1-4** (energy minimized by MM2 force field)



Figure S7. <sup>1</sup>H NMR (500 MHz, CD<sub>3</sub>OD) spectrum of (7S,8S,7'R,8'R)-isoamericanol B (1)



Figure S8. <sup>13</sup>C NMR (125 MHz, CD<sub>3</sub>OD) spectrum of (7S,8S,7'R,8'R)-isoamericanol B (1)



Figure S9. COSY (CD<sub>3</sub>OD) spectrum of (7S,8S,7'R,8'R)-isoamericanol B (1)



Figure S10. HSQC (CD<sub>3</sub>OD) spectrum of (7S,8S,7'R,8'R)-isoamericanol B (1)



Figure S6. HMBC (CD<sub>3</sub>OD) spectrum of (7S,8S,7'R,8'R)-isoamericanol B (1)



Figure S7. HMBC (600 MHz, CD3OD, coupling constant = 3 Hz) spectrum of (7S,8S,7'R,8'R)-isoamericanol B (1)



Figure S8. ROESY (CD<sub>3</sub>OD) spectrum of (7S,8S,7'R,8'R)-isoamericanol B (1)



Figure S9. <sup>1</sup>H NMR (500 MHz, CD<sub>3</sub>OD) spectrum of americanol B (2)



Figure S10. <sup>13</sup>C NMR (125 MHz, CD<sub>3</sub>OD) spectrum of americanol B (2)



Figure S11. COSY (CD<sub>3</sub>OD) spectrum of americanol B (2)



Figure S12. HSQC (CD<sub>3</sub>OD) spectrum of americanol B (2)



Figure S13. HMBC (CD<sub>3</sub>OD) spectrum of americanol B (2)



Figure S14. HMBC (600 MHz, CD3OD, coupling constant = 3 Hz) spectrum of americanol B (**2**)



Figure S20. ROESY (CD<sub>3</sub>OD) spectrum of americanol B (2)



Figure S21. <sup>1</sup>H NMR (500 MHz, CD<sub>3</sub>OD) spectrum of moricitrin A (**3**)



Figure S22. <sup>13</sup>C NMR (125 MHz, CD<sub>3</sub>OD) spectrum of moricitrin A (**3**)



515 f2 (ppm)

Figure S16. HSQC (CD<sub>3</sub>OD) spectrum of moricitrin A (3)



Figure S17. HMBC (CD<sub>3</sub>OD) spectrum of moricitrin A (3)



Figure S18. HMBC (600 MHz, CD<sub>3</sub>OD, coupling constant = 3 Hz) spectrum of moricitrin A ( $\mathbf{3}$ )



Figure S19. ROESY (CD3OD) spectrum of moricitrin A (3)



Figure S20. <sup>1</sup>H NMR (500 MHz, CD<sub>3</sub>OD) spectrum of moricitrin B (4)



Figure S21. <sup>13</sup>C NMR (125 MHz, CD<sub>3</sub>OD) spectrum of moricitrin B (4)



Figure S30. COSY (CD<sub>3</sub>OD) spectrum of moricitrin B (4)



Figure S31. HSQC (CD<sub>3</sub>OD) spectrum of moricitrin B (4)



Figure S32. HMBC (CD<sub>3</sub>OD) spectrum of moricitrin B (4)



Figure S33. HMBC (600 MHz, CD<sub>3</sub>OD, coupling constant = 3 Hz) spectrum of moricitrin B (4)



Figure S34. ROESY (CD<sub>3</sub>OD) spectrum of moricitrin B (4)