Supporting Information

Surface Activity of Alkoxy Ethoxyethyl β -D-Glucopyranosides

Yulin Fan, Fang Fu, Langqiu Chen,*, Jiping Li, Jing Zhang

Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, People's Republic of China

Contents

1.	Synthesis routine of alkoxy ethoxyethyl β -D-glucopyranosides	S2
2.	General methods	S2
3.	Synthesis of alkoxy ethoxyethyl β -D-glucopyranosides	S2
4.	Characterization of hexoxy ethoxyethyl 2,3,4,6- O -acetyl- β -D-glucopyra	noside
	(3a)	S3
5.	Characterization of alkoxy ethoxyethyl β -D-glucopyranosides	(4a ~
	4h)	S4

^{*} E-mail: chengood2003@263.net

1. Synthesis routine of alkoxy ethoxyethyl β -D-glucopyranosides

Figure S1. Synthesis of alkoxy ethoxyethyl β -D-glucopyranosides

2. General methods

The purity of all raw materials and reagents was analytical pure or chemical pure. All reaction processes were monitored by thin-layer chromatography (TLC). The TCL was performed on silica gel HF₂₅₄ with detection by charring with a mixture of 30% (v/v) sulfuric acid and methanol.

¹H NMR and HH COSY were determined with Bruker AVANCE III HD 400 MHz NMR Spectrometer with D₂O, DMSO- d_6 , DMSO- d_6 /D₂O, or chloroform-d (CDCl₃) as the solvents and tetramethylsilane (TMS) as the internal standard. Optical rotations were obtained on a Perkin–Elmer model 341–MC automatic polarimeter for solutions in a 1–dm, jacketed cell. High resolution mass spectrum (HRMS) was determined with Thermo Scientific LTQ Orbitrap Xlwith ESI as ion resource.

3. Synthesis of alkoxy ethoxyethyl β-D-glucopyranosides

Diethylene glycol monohexyl ether (15.66 mL, 76.92 mmol) was added to a stirred solution of 1,2,3,4,6-penta-*O*-acetyl- β -D-glucopyranose (**2**) (20.00 g, 51.23 mmol) from D-glucose (**1**) which was dissolved in methylene chloride (CH₂Cl₂, 150 mL) dried by 4Å molecular sieves. This mixture was stirred in an ice water bath for 10 min, then the boron trifluoride etherate (BF₃·Et₂O) (16.18 mL, 128.20 mmol) was added dropwise. The mixture was kept stirring for 5 min, the ice water was removed and the reaction mixture continued to react for 9 h at the room temperature. The reaction progress was monitored by the TLC method (petroleum ether : ethyl acetate =

2:1) until the reaction completed. This reaction was quenched with saturated sodium carbonate aqueous solution and then extracted with CH₂Cl₂. The organic phase was dried over anhydrous sodium sulfate and then was filtered, the filtrate was concentrated under reduced pressure. The concentrate was purified by silica gel column chromatography (petroleum ether : ethyl acetate = 8:1) to obtain hexoxy ethoxyethyl 2,3,4,6-tetra-*O*-acetyl- β -D-glucopyranoside **3a** as a colorless transparent syrup (9.21g, yield, 34.5%).

Compound **3a** (10.00 g, 19.21 mmol) was dissolved in methanol solution (65 mL), the reaction solution was adjusted to pH = 10 with 10% sodium methoxide solution in methanol, the mixture was stirred at room temperature for 2h, the reaction progress was monitored by the TLC method (ethyl acetate : methanol = 10:1) until the reaction completed and subsequently neutralized to pH = 7.0 with acetic acid. The mixture was concentrated under reduced pressure, the concentrate was purified by silica gel column chromatography (ethyl acetate : methanol = 50:1) to afford hexoxy ethoxyethyl β -D-glucopyranoside **4a** (5.71 g, yield 84.4%).

Other alkyloxy ethoxyethyl β -D-glucopyranosides (**4b**, **4c**, **4d**, **4e**, **4f**, **4g**, **4h**) were also synthesized in the same way.

4. Characterization of hexoxy ethoxyethyl 2,3,4,6-O-acetyl-β-D-glucopyranoside (3a)

Yield, 34.5%; $[\alpha]_D^{20} -17.1^\circ$ (c 1.0, CH₃OH). ¹H NMR (CDCl₃): δ 5.21 (dd, 1H, $J_{2,3} = J_{3,4} = 9.5$ Hz, H-3), 5.09 (dd, 1H, $J_{4,5} = 9.7$ Hz, H-4), 5.00 (dd, 1H, H-2), 4.62 (d, 1H, $J_{1,2} = 8.0$ Hz, H-1), 4.26 (dd, 1H, $J_{5,6} = 4.7$ Hz, $J_{6,6} = 12.3$ Hz, H-6), 4.14 (dd, 1H, $J_{5,6} = 2.3$ Hz, H-6'), $3.92 \sim 3.97$ (m, 1H, CH₂CH₂O(CH₂)₂OC₆H₁₃), $3.72 \sim 3.79$ (m, 1H, CH₂CH₂O(CH₂)₂OC₆H₁₃), $3.68 \sim 3.72$ (m, 1H, H-5), $3.63 \sim 3.67$ (m, 2H, CH₂O(CH₂)₂OC₆H₁₃), $3.60 \sim 3.62$ (m, 2H, CH₂CH₂OC₆H₁₃), $3.54 \sim 3.57$ (m, 2H, CH₂OC₆H₁₃), 3.45 (t, 2H, J = 6.8 Hz, OCH₂C₅H₁₁), 2.09 (s, 3H, Ac), 2.05 (s, 3H, Ac), 2.03 (s, 3H, Ac), 2.01 (s, 3H, Ac), $1.54 \sim 1.60$ (m, 2H, OCH₂CH₂(CH₂)₃CH₃), $1.26 \sim 1.35$ (m, 6H, O(CH₂)₂(CH₂)₃CH₃), 0.89 (t, 3H, J = 6.8 Hz, O(CH₂)₅CH₃). HRMS(ESI)

m/z: calculated for C₂₄H₄₀O₁₂Na⁺[M+Na]⁺, 543.24120; found 543.24182.

5. Characterization of alkoxy ethoxyethyl β -D-glucopyranosides (4a ~4h) 5.1. Hexoxy ethoxyethyl β -D-glucopyranoside (4a)

Yield, 84.4%; $[\alpha]_D^{20}$ -15.9° (c 1.0, CH₃OH); ¹H NMR (D₂O): δ 4.47 (d, 1H, $J_{1,2} =$ 7.9 Hz, H-1), 4.02 ~ 4.07 (m, 1H, CH₂CH₂O(CH₂)₂OC₆H₁₃), 3.90 (dd, 1H, $J_{5,6} =$ 2.1 Hz, $J_{6,6'} =$ 12.3 Hz, H-6), 3.79 ~ 3.84 (m, 1H, CH₂CH₂O(CH₂)₂OC₆H₁₃), 3.72 ~ 3.74 (m, 2H, CH₂O(CH₂)₂OC₆H₁₃), 3.63 ~ 3.70 (m, 5H, H-6', OCH₂CH₂OC₆H₁₃), 3.53 (t, 2H, J = 6.8 Hz, OCH₂(CH₂)₄CH₃), 3.47 (dd, 1H, $J_{2,3} = J_{3,4} =$ 9.1 Hz, H-3), 3.41 ~ 3.46 (m, 1H, H-5), 3.36 (dd, 1H, $J_{4,5} =$ 9.3 Hz, H-4), 3.27 (dd, 1H, H-2), 1.53 ~ 1.60 (m, 2H, OCH₂CH₂(CH₂)₃CH₃), 1.25 ~ 1.33 (m, 6H, O(CH₂)₂(CH₂)₃CH₃), 0.85 (t, 3H, J = 6.8 Hz, O(CH₂)₅CH₃). HRMS(ESI) m/z: calculated for C₁₆H₃₂O₈Na⁺[M+Na]⁺, 375.19894; found 375.19928.

5.2. Heptoxy ethoxyethyl β -D-glucopyranoside (4b)

Yield, 87.7%; $[\alpha]_D^{20}$ -15.7° (c 1.0, CH₃OH); ¹H NMR (D₂O): δ 4.50 (d, 1H, $J_{1,2} =$ 7.9 Hz, H-1), 4.05 ~ 4.10 (m, 1H, CH₂CH₂O(CH₂)₂OC₇H₁₅), 3.93 (dd, 1H, $J_{5,6} =$ 1.5 Hz, $J_{6,6'} =$ 12.1 Hz, H-6), 3.83 ~ 3.88 (m, 1H, CH₂CH₂O(CH₂)₂OC₇H₁₅), 3.74 ~ 3.78 (m, 2H, CH₂O(CH₂)₂OC₇H₁₅), 3.66 ~ 3.74 (m, 5H, H-6', OCH₂CH₂OC₇H₁₅), 3.56 (t, 2H, J = 6.8 Hz, OCH₂(CH₂)₅CH₃), 3.51 (dd, 1H, $J_{2,3} = J_{3,4} =$ 9.1 Hz, H-3), 3.45 ~ 3.48 (m, 1H, H-5), 3.40 (dd, 1H, $J_{4,5} =$ 9.3 Hz, H-4), 3.30 (dd, 1H, H-2), 1.56 ~ 1.63 (m, 2H, OCH₂CH₂(CH₂)₄CH₃), 1.25 ~ 1.38 (m, 8H, O(CH₂)₂(CH₂)₄CH₃), 0.88 (t, 3H, J = 6.6 Hz, O(CH₂)₆CH₃). HRMS(ESI) m/z: calculated for C₁₇H₃₄O₈Na⁺ [M+Na]⁺, 389.21459; found 389.21466.

5.3. Octoxyethoxy ethyl β -D-glucopyranoside (4c)

Yield, 87.0%; $[\alpha]_D^{20}$ -16.0° (c 1.0, CH₃OH); ¹H NMR (D₂O): δ 4.49 (d, 1H, $J_{1,2}$ = 7.9 Hz, H-1), 4.05 ~ 4.10 (m, 1H, CH₂CH₂O(CH₂)₂OC₈H₁₇), 3.92 (d, 1H, $J_{6,6^{\circ}}$ = 12.2 Hz, H-6), 3.82 ~ 3.87 (m, 1H, CH₂CH₂O(CH₂)₂O(CH₂)₇CH₃), 3.75 ~ 3.79 (m, 2H, CH₂O(CH₂)₂OC₈H₁₇), 3.65 ~ 3.75 (m, 5H, H-6', OCH₂CH₂OC₈H₁₇), 3.54 (t, 2H, J = 6.8 Hz, OCH₂(CH₂)₆CH₃), 3.51 (dd, 1H, $J_{2,3} = J_{3,4} = 9.1$ Hz, H-3), 3.43 ~ 3.47 (m, 1H,

H-5), 3.41 (dd, 1H, $J_{4,5} = 9.1$ Hz, H-4)), 3.31 (dd, 1H, H-2), 1.54 ~ 1.65 (m, 2H, OCH₂CH₂(CH₂)₅CH₃), 1.24 ~ 1.40 (m, 10H, O(CH₂)₂(CH₂)₅CH₃), 0.89 (t, 3H, J = 6.3 Hz, O(CH₂)₇CH₃). HRMS(ESI) m/z: calculated for C₁₈H₃₆O₈Na⁺[M+Na]⁺, 403.23024; found 403.23068.

5.4. Nonoxy ethoxyethyl β -D-glucopyranoside (4d)

Yield, 88.1%; $[\alpha]_D^{20}$ -15.9° (c 1.0, CH₃OH); ¹H NMR (D₂O): δ 4.47 (d, 1H, $J_{1,2} =$ 7.8 Hz, H-1), 4.05 ~ 4.09 (m, 1H, CH₂CH₂O(CH₂)₂OC₉H₁₉), 3.91 (d, 1H, $J_{6,6} =$ 11.9 Hz, H-6), 3.81 ~ 3.86 (m, 1H, CH₂CH₂O(CH₂)₂OC₉H₁₉), 3.69 ~ 3.76 (m, 5H, CH₂OCH₂CH₂OC₉H₁₉, H-6'), 3.62 ~ 3.66 (m, 2H, CH₂OC₉H₁₉), 3.51 (t, J = 6.7 Hz, OCH₂(CH₂)₇CH₃), 3.43 ~ 3.51 (m, 2H, H-3, H-5), 3.41 (dd, 1H, $J_{3,4} = J_{4,5} = 8.7$ Hz, H-4), 3.31 (dd, 1H, $J_{2,3} = 8.6$ Hz, H-2), 1.55 ~ 1.65 (m, 2H, OCH₂CH₂CH₂O(CH₂)₆CH₃), 1.24 ~ 1.38 (m, 12H, O(CH₂)₂(CH₂)₆CH₃), 0.89 (t, 3H, J = 6.1 Hz, O(CH₂)₈CH₃). HRMS(ESI) m/z: calculated for C₁₉H₃₈O₈Na⁺[M+Na]⁺, 417.24589; found 417.24612.

5.5. Decoxy ethoxyethyl β -D-glucopyranoside (4e)

Yield, 88.6%; $[\alpha]_D^{20}$ -14.4° (c 1.0, CH₃OH); ¹H NMR (D₂O): δ 4.47 (d, 1H, $J_{1,2} =$ 7.8 Hz, H-1), 4.04 ~ 4.10 (m, 1H, CH₂CH₂O(CH₂)₂OC₁₀H₂₁), 3.91 (d, 1H, $J_{6,6'} =$ 11.9 Hz, H-6), 3.81 ~ 3.86 (m, 1H, CH₂CH₂O(CH₂)₂OC₁₀H₂₁), 3.69 ~ 3.77 (m, 5H, CH₂OCH₂CH₂OC₁₀H₂₁, H-6'), 3.62 ~ 3.66 (m, 2H, CH₂OC₁₀H₂₁), 3.48 ~ 3.53 (m, 3H, OCH₂(CH₂)₈CH₃, H-5), 3.42 ~ 3.45 (m, 2H, H-3, H-4), 3.32 (dd, 1H, $J_{2,3} =$ 8.5 Hz, H-2), 1.56 ~ 1.63 (m, 2H, OCH₂CH₂(CH₂)₇CH₃), 1.25 ~ 1.36 (m, 14H, O(CH₂)₂(CH₂)₇CH₃), 0.90 (t, 3H, J = 6.1 Hz, O(CH₂)₈CH₃). HRMS(ESI) m/z: calculated for C₂₀H₄₀O₈Na⁺[M+Na]⁺, 431.26154; found 431.26181.

5.6. Dodecoxy ethoxyethyl β -D-glucopyranoside (4f)

Yield, 87.5%; $[\alpha]_D^{20}$ -14.1° (c 1.0, CH₃OH); ¹H NMR (DMSO-d6/D₂O): δ 4.15 (d, 1H, $J_{1,2} = 7.8$ Hz, H-1), 3.80 ~ 3.86 (m, 1H, CH₂CH₂O(CH₂)₂OC₁₂H₂₅), 3.63 ~ 3.66 (d, 1H, $J_{6,6^{\circ}} = 11.7$ Hz, H-6), 3.50 ~ 3.59 (m, 3H, CH₂CH₂OCH₂CH₂OC₁₂H₂₅), 3.46 ~ 3.50 (m, 2H, CH₂CH₂OC₁₂H₂₅), 3.39 ~ 3.45 (m, 3H, H-6', CH₂OC₁₂H₂₅), 3.32 (t, J =6.6 Hz, 2H, OCH₂(CH₂)₁₀CH₃), 3.15 (dd, 1H, $J_{2,3} = J_{3,4} = 9.0$ Hz, H-3), 3.08 ~ 3.13 (m, 1H, H-5), 3.03 (dd, 1H, $J_{4,5} = 9.1$ Hz, H-4), 2.96 (dd, 1H, H-2), 1.37 ~ 1.46 (m, 2H, OCH₂CH₂(CH₂)₉CH₃), 1.13 ~ 1.25 (m, 18H, O(CH₂)₂(CH₂)₉CH₃), 0.80 (t, 3H, J = 6.2 Hz, O(CH₂)₁₁CH₃). HRMS(ESI) m/z: calculated for C₂₂H₄₄O₈Na⁺[M+Na]⁺, 459.29284; found 459.29327.

5.7. Tetradecoxy ethoxyethyl β -D-glucopyranoside (4g)

Yield, 89.4%; $[\alpha]_D^{20}$ -12.0° (c 1.0, CH₃OH); ¹H NMR (DMSO-d6/D₂O): δ 4.13 (d, 1H, $J_{1,2} = 7.8$ Hz, H-1), 3.80 ~ 3.86 (m, 1H, CH₂CH₂O(CH₂)₂OC₁₄H₂₉), 3.64 (dd, 1H, $J_{5,6} = 1.7$ Hz, $J_{6,6} = 11.8$ Hz,H-6), 3.51 ~ 3.58 (m, 3H, CH₂CH₂OCH₂CH₂OC₁₄H₂₉), 3.48 ~ 3.50 (m, 2H, CH₂CH₂OC₁₄H₂₉), 3.41 ~ 3.44 (m, 2H, CH₂OC₁₄H₂₉), 3.41 (dd, 1H, $J_{5,6} = 5.9$ Hz, H-6'), 3.33 (t, J = 6.6 Hz, 2H, OCH₂(CH₂)₁₂CH₃), 3.13 (dd, 1H, $J_{2,3} = J_{3,4} = 8.8$ Hz, H-3), 3.05 ~ 3.09 (m, 1H, H-5), 3.01 (dd, 1H, $J_{4,5} = 9.1$ Hz, H-4), 2.94 (dd, 1H, H-2), 1.41 ~ 1.47 (m, 2H, OCH₂CH₂(CH₂)₁₁CH₃), 1.17 ~ 1.26 (m, 22H, O(CH₂)₂(CH₂)₁₁CH₃), 0.82 (t, 3H, J = 6.8 Hz, O(CH₂)₁₃CH₃). HRMS(ESI) m/z: calculated for C₂₄H₄₈O₈Na⁺[M+Na]⁺, 487.32414; found 487.32449.

5.8. Hexadecoxy ethoxyethyl β-D-glucopyranoside (4h)

Yield, 89.5%; $[\alpha]_{D}^{20}$ -11.5° (c 1.0, CH₃OH); ¹H NMR (DMSO-d6/D₂O): δ 4.13 (d, 1H, $J_{1,2} = 7.8$ Hz, H-1), 3.79 ~ 3.84 (m, 1H, CH₂CH₂O(CH₂)₂OC₁₆H₃₃), 3.64 (dd, 1H, $J_{5.6}$ = 1.7 Hz, $J_{6,6'} = 12.0$ Hz, H-6), 3.50 3.57 3H, ~ (m, CH₂CH₂OCH₂CH₂O(CH₂)₁₅CH₃), 3.46 ~ 3.48 (m, 2H, CH₂CH₂OC₁₆H₃₃), 3.40 ~ 3.44 (m, 3H, $CH_2OC_{16}H_{33}$, H-6'), 3.30 (t, 2H, J = 6.6 Hz, $OCH_2(CH_2)_{14}CH_3$), 3.14 (dd, 1H, $J_{2,3} = J_{3,4} = 8.7$ Hz, H-3), $3.05 \sim 3.11$ (m, 1H, H-5), 3.04 (dd, 1H, $J_{3,4} = J_{4,5} = 9.5$ Hz, H-4), 2.95 (dd, 1H, $J_{1,2} = 8.0$ Hz, $J_{2,3} = 8.8$ Hz, H-2), 1.37 ~ 1.46 (m, 2H, $OCH_2CH_2(CH_2)_{13}CH_3$, 1.10 ~ 1.24 (m, 26H, $O(CH_2)_2(CH_2)_{13}CH_3$), 0.78 (t, 3H, J =6.7 Hz, O(CH₂)₁₅CH₃). HRMS(ESI) m/z: calculated for $C_{26}H_{52}O_8Na^+[M+Na]^+$, 515.35544; found 515.35565.