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1 Methods

1.1 Observations

Two airborne platforms were used to quantify trace gas emissions from the Baltimore-

Washington area: Purdue University’s Beechcraft† Duchess housing the Airborne Laboratory

for Atmospheric Research, or ALAR, (Purdue) and the University of Maryland’s Cessna†

402B research aircraft (UMD). Both planes flew simultaneously for 5 days, mostly during the

afternoon hours, collecting trace gas mole fraction and meteorological data. Figure 1 shows

the flight paths of both aircraft for the flights conducted over the Baltimore-Washington

area in February 2016. A typical flight experiment includes transects at different altitudes

to capture trace gas enhancement at the downwind side and spirals, en route vertical profiles

generally exceeding the PBL, and missed approaches at regional airports to capture vertical

gradients.

The equipment on the Purdue aircraft included a global positioning and inertial navi-

gation system (GPS/INS), a Best Air Turbulence (BAT) probe for wind measurements, a

cavity ring-down spectroscopy (CRDS) analyzer (Picarro† Model G2301-m) for CH4, CO2,

and H2O measurements. Details about the instrumentation on the Purdue aircraft are de-

scribed elsewhere.1,2

The UMD Cessna was equipped with an instrument package to measure gaseous and

particulate air pollutants, including a CRDS (Picarro†, Model G2401-m) analyzer to measure

CO2, CH4, CO, and H2O. The instrument package has been described in detail elsewhere.3

Calibrations for CO2, CH4 (from both aircraft) and CO (UMD) were conducted both in-

flight and on the ground using NOAA/WMO-traceable standards. Observations, originally

collected at 0.5 Hz, were averaged at 1 minute resolution and the standard deviation of the

averaging period was computed in order to assess the representativity of the mean for each
†Certain commercial equipment, instruments, or materials are identified in this paper in order to specify

the experimental procedure adequately. Such identification is not intended to imply recommendation or
endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the
materials or equipment identified are necessarily the best available for the purpose.
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particular minute.

In order to ensure well-mixed conditions, the correlation of CO2 concentration with al-

titude was computed from the bottom up (with a floor of 150 magl) until the correlation

between concentration and altitude was significant, as we expect concentrations in well-mixed

conditions not to be correlated with altitude. Then, the highest altitude with no significant

correlation (correlation near to zero with p-values > 0.5) was used as the top of the mixed

layer. Observations outside this mixed layer were excluded.

To determine the effect of withholding observations from the inversion system, we alter-

natively used CO2 and CH4 observations from both aircraft, the UMD aircraft alone, or the

Purdue aircraft alone, as part of the ensemble of inversions. Purdue did not measure CO,

so the CO inversions all used the UMD observations alone.

1.2 Bayesian Inversion Framework

We estimate trace gas emissions from measured atmospheric mole fractions using a Bayesian

inverse analysis4,5 as in Lopez-Coto et al.6

The measurements model can be written as follows:

y = Hx+ εr (1)

where y is the observations vector (n x 1, where n is the number of observations), here the

tracer mole fractions measured along the track; x is the state vector (m x 1, where m is the

total number of pixels in the domain) which we aim to optimize, here the tracer fluxes; H is

the observation operator (n x m) which converts the model state to observations, constructed

by using the footprints computed by the transport model, and εr is the uncertainty in the

measurements and in the modeling framework (model-data mismatch). Fluxes are assumed

to be static in time for a given flight.

Optimum posterior estimates of fluxes are obtained by minimizing the cost function J :4,5
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J (x) =
1

2

[
(x− xb)

T P−1
b (x− xb) + (Hx− y)T R−1 (Hx− y)

]
(2)

where xb is the first guess or a priori state vector, Pb the a priori error covariance matrix

which represents the uncertainties in our a priori knowledge about the fluxes and R the error

covariance matrix, which represents the uncertainties in the observation operator H and the

observations y, also known as model-data mismatch.

The analytical solution for the posterior state vector, xa, can be written as:

xa = xb −K (Hx− y) (3)

K = PbH
T
(
HPbH

T + R
)−1 (4)

In the equations above, y usually represents the enhancement over the background, i.e.

the mole fraction enhancement at an observation location and time that is attributable to

emissions in the region of interest. However, here we split the background (ybg) into two

terms: the outside contribution from nearby sources (yoc) and the long range background

(ylr), so that the total mole fraction measured by the aircraft, yT, is:

yT = yic + ybg = yic + yoc + ylr (5)

Therefore, the observations vector y considered in this work contains both the inside

contribution (yic) due to the emissions that we aim to estimate plus the outside contribution

(yoc) from nearby sources.

In this case, the state vector contains additional parameters, similarly to,7–9 character-

izing the outside contribution from nearby sources for each observation (xoc) that are the

yoc computed as described in Section 1.5 Background determination . Therefore, the

observations operator H (n x (m+n)) is composed of the transport operator, T (n x m), and
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the outside contribution operator that is, in fact, the identity matrix, I (n x n).

H =

[
Tnxm Inxn

]
(6)

With this formulation, the prior error covariance Pb gets modified in a similar manner

to represent the uncertainty in the emissions and the outside contribution parts of the state

vector:

Pb =

Emxm 0

0 Onxn

 (7)

where E is the portion of Pb associated with the error in the emissions priors, and O is

the error on the prior estimate of the outside contribution.

1.3 Transport Models

The transport model used in this work was the Hybrid Single Particle Lagrangian Integrated

Trajectory Model (HYSPLIT10). The HYSPLIT model was used in a mode that allows it

to emulate the Stochastic Time Inverted Lagrangian Transport model11 and then compute

sensitivity of observations to surface fluxes, or footprints (units: ppm µmol-1 m2 s). Fig. S1

shows the total observations’ sensitivity (footprints) for both aircraft only for the data within

the well-mixed layer used in the inversion for the five different days (a-e) and the campaign

mean (f). The footprints show that the Washington, DC - Baltimore metropolitan area

was well-covered during the campaign as well as during each of the individual flights. The

sensitivity to nearby outside sources is also apparent, as previously mentioned.

In order to generate an ensemble of transport models and therefore better represent the

uncertainties, HYSPLIT was driven with five different meteorological products: the High

Resolution Rapid Refresh (HRRR) NOAA operational forecast product12 provided in the

proper format by the NOAA Air Resources Laboratory (ARL) and four configurations of
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the National Center for Atmospheric Research (NCAR) Weather Research and Forecasting

model (WRF13).

Four Planetary Boundary Layer (PBL) parameterizations were used in WRF along with

two sources of initial and boundary conditions to drive it. The local PBL scheme MYNN14

and the non-local scheme YSU15 were used along with the North American Regional Re-

analysis product (NARR16) provided by the National Center of Environmental Prediction

(NCEP) as initial and boundary conditions. On the other hand, the QNSE scheme17 and

BOULAC18 scheme with the Building Energy Parameterization (BEP19) were driven by

HRRR.20 The rest of the parameterizations were kept constant between WRF configura-

tions being: RRTMg for the radiation scheme,21 Thompson microphysics scheme22,23 and

Noah land surface model.24

WRF used a configuration with 3 nested domains (9, 3 and 1 km horizontal resolution)

and 60 vertical levels with 34 below 3000 m. The temporal resolution of the output was set

to 1 hour for the 9 and 3 km domains and 15 minutes for the 1 km domain, which covers

most of the flight tracks. NARR has 32 km horizontal resolution, 30 vertical levels and 3

hours temporal resolution while HRRR has 3 km horizontal resolution, 51 vertical levels and

1 hour temporal resolution. When driven by HRRR, only the 3 and 1 km domains were used

in WRF.

HYSPLIT was configured to use Planetary Boundary Layer Heights (PBLH) and Tur-

bulent Kinetic Energy (TKE) from the meteorological models with the exception of YSU,

which does not produce TKE due to the non-local nature of this PBL parameterization,

and HRRR. In these cases, HYSPLIT used the Kantha-Clayson parametrization to diag-

nose the turbulence. In addition, an experimental vertical mixing parametrization where the

eddy diffusivity for scalars, Kz, exported directly from the underlying WRF model is used

in HYSPLIT to compute the vertical velocity variances, was used with WRF-MYNN driven

by NARR. Table S1 summarizes the six transport configurations.

The HYSPLIT computation domain for the inversion was set to 100 x 125 grid cells (lat x
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lon) at 0.03o spatial resolution in order to fully cover the flight tracks and the area of interest.

In addition, a secondary domain of 300 x 183 grid cells at the same spatial resolution was

used to cover the outer region of influence (Fig. 1). Footprints were computed for both

aircraft every minute following the flight tracks.

Here we were after uncertainties that come from the fact that we do not know the right

physics and from the initial and boundary conditions. We wanted to have an ensemble of

plausible solutions covering that spectrum.

The PBL parametrization drives the vertical mixing of mass, heat and momentum in

the planetary boundary layer (PBL)25 and therefore directly impacts the prediction of tem-

perature, winds and of course planetary boundary layer height (PBLH). The TKE is also

different for each scheme, specially between MYNN and QNSE since the latest is based on a

substantially different theory.17 In addition to the 4 PBL schemes, the WRF ensemble con-

sisted of 2 sets of initial and boundary conditions (HRRR and NARR), which also impact

winds, temperatures, PBLH and other parameters. Also, the surface layer parametrization

was different in the models and one version had the BEP urban canopy model, directly

impacting the heat and latent fluxes, which act as the surface boundary condition for the

PBL scheme and strongly influence the near surface variables and PBL mean properties.26

The winds drive the advection in the Lagrangian model but the dispersion is driven by the

velocity variances which are parametrized in different ways, also making a big impact.27

In this work, we used 3 mixing parametrizations in HYSPLIT: KC which depends on the

friction velocity and the PBLH, one based on the TKE from WRF and one experimental

parametrization that uses directly the eddy diffusivity from WRF (computed by the PBL

scheme) to derive the velocity variances. In addition, the footprints, by definition, depend

inversely on the PBLH.11

We believe that all these choices and options generate enough (plausible) differences on

the ensemble of footprints. Nevertheless, to study the similarities among configurations, we

applied an agglomerative hierarchical clustering method.28–30
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The algorithm consists of an iterative process which looks for the smallest dissimilarities

between elements, based on the selected distance metric. Once the first 2 elements are

clustered, the algorithm computes distances (similarities) between this new cluster and each

of the former clusters using the linkage criterion. This process is repeated until all elements

are clustered into just one. To cluster N elements, N-1 iterations are required.

Each model is represented by a vector of the wind components for each minute along

the flight tracks for the 5 days, X = (u1 . . . uN , v1 . . . vN), where N is the total number of

minutes of the campaign.

The comparison metric is the Euclidean distance between models and the linkage criterion

is the "average" criterion, which is based on the average distance between pairs, i.e., the link

between two clusters contains all element pairs, and the distance between clusters equals the

average distance between the two elements. "Ward" and "complete" criteria were tested as

well with identical results in the resulting grouping.

Figure S2 shows a graphical representation of the clustering results, a dendogram, where

the dissimilarities (distance) between models are shown in the y axis. The top hierarchy is

split in two branches that are distinguished by the initial conditions (left branch contains

only configurations driven by NARR while the right branch contains configurations driven

by HRRR or HRRR itself). Thus, the most important choice generating variability in the

winds is in fact the initial conditions. The right branch is split further in two, with QS on

the left and HR and BL clustered together on the right. This indicates that HR and BL are

more similar to each other than they are to QS. This result is reasonable considering that

HR and BL use PBL schemes that follow a very similar theory (using different constants and

length scale formulations), while QS uses a substantially different theory for parametrizing

the turbulence. It is interesting to note that the difference between QS and the cluster BL-

HR is also larger than the differences between MY and YU. However, the difference between

MY and YU is larger than the difference between HR and BL. In conclusion, BL and HR are

the most similar configurations with respect to the wind prediction along the flight tracks.
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However, the differences between them are not small, being about 65 % of the most different

cluster.

In addition, we analyzed the relative ensemble spread (RES) with respect to enhance-

ments using AC2 emissions inventory, (Fig. S3). The relative ensemble spread of the en-

hancements had a campaign average of 50 % and was similar for all days, although modest

differences exist between days. This might also be due to the fact that different emissions

are being sampled each day due to the different flight patterns.

1.4 Emissions Inventories

In addition to the ensemble of transport models, we also used an ensemble of prior fluxes

to represent the a priori knowledge about the emissions in the area (summarized in Table

S2). All the inventories were re-gridded to the inversion domain (0.03°) using a geographical

re-projection with bilinear interpolation method.

1.4.1 CO2

Nine CO2 emissions inventories were used in the inversion to investigate the resultant vari-

ability in the posterior emissions. Four of them (Vulcan, ODIAC, FFDAS and ACES) are

existing anthropogenic CO2 inventories but for a different year; one provides only on-road

emissions (DARTE); one is the mean of the previous five (Ensemble); and the rest (Flat and

Simple) are constructed here to complement the ensemble of prior fluxes (Fig. S4, Table S3).

Vulcan31 is a 10x10 km fossil fuel emissions dataset for the United States for the year

2002. The Open-source Data Inventory for Anthropogenic CO2 (ODIAC32) is a dataset with

a horizontal resolution of ~1 km based on total emissions estimated by the Carbon Dioxide

Information and Analysis Center (CDIAC) at the US Department of Energy’s Oak Ridge

National Laboratory. Here we use the ODIAC monthly average for February 2015. The

Fossil Fuel Data Assimilation System (FFDAS33) is a global product with a horizontal grid

of 0.1° x 0.1°. The Database of Road Transportation Emissions (DARTE34) is a data set
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that provides a 33-year, 1 km resolution inventory of annual on-road CO2 emissions for the

conterminous United States. Since DARTE only provides road emissions, the National Land

Cover Database (NLCD, 2011) was used to compute an urban fraction and assign an emission

value of 5 µmol m-2 s-1 (multiplied by the urban fraction) for urban areas to complement

this prior. This value is derived based on the other priors’ values for urban areas. The

Anthropogenic Carbon Emissions System (ACES) provides estimates of annual and hourly

CO2 emissions from the combustion of fossil fuels for 13 states across the Northeastern United

States on a 1 x 1 km spatial grid, for the year 2011.35 For the ensemble of inversions, we

use two different versions of ACES as priors: first, the 2011 annual mean (AC), and second,

the mean over the Februaries of 2013 and 2014 (AC2) during the afternoon hours to be

consistent with the hours that the flights were conducted.

Using the five inventories described above (Vulcan, ODIAC, DARTE, FFDAS and ACES)

we also computed their mean (Ensemble thereafter) and used it as an additional prior in

our inverse analysis. Furthermore, we constructed a flat prior that is constant for the whole

domain with a value of 1 µmol m-2 s-1. This value is arbitrary, as this prior is designed to

represent the case of zero prior knowledge about emissions. Lastly, we constructed a simple

inventory following the methodology in Lopez-Coto et al.6 where the land use emissions are

considered to be the urban fraction multiplied by 5 µmol m-2 s-1, the road emissions to be 2

µmol m-2 s-1, and the point sources emissions from the EPA GHGRP. The value assigned to

on-road emissions is low due to the large area that one road pixel represents at our resolution

(~ 9 km2). In addition, this value is close to the mean value across the inversion domain

for the road emissions provided by DARTE (1.9 µmol m-2 s-1). All emissions priors were

constant in time. Fig. S4 shows the nine CO2 prior emissions used in the inversions.

1.4.2 CH4

Methane prior emissions were represented using the EPA gridded inventory for 2012,36

EDGAR v4.3.237 for 2012, the mean of the previous two, and a flat prior. Both the EPA and

S-11



EDGAR inventories are provided at 0.1° × 0.1° and were re-gridded to the 0.03° resolution

of this study. The flat prior was chosen to be 1 nmol m-2 s-1 (Fig. S5, Table S3).

1.4.3 CO

For CO we use EDGAR v4.3.238 at 0.1°, the National Emissions Inventory (NEI) for 2011

at 4 km resolution from EPA,39 the annual mean ACES inventory (AC as in the CO2 case)

scaled using the mean observed ∆CO:∆CO2 ratio (6.18 ppb/ppm) and, again, a flat prior

(Fig. S6, Table S3).

1.5 Background Determination

Properly accounting for the background is critical for the inversion as the flux correction is

based on the observed enhancements above the background value. The impact of upwind

sources can be important especially in areas such as the one under study here, where multiple

urban areas and oil and gas fields exist around the area (Figure 1).

Measurements along an upwind flight transect often do not properly represent the back-

ground in the downwind transect because of differences in timing of both transects plus

the differences induced by the transport of air masses itself, such as flow convergence or

divergence and differences in the mixing layer height.3,40,41

Here we choose to optimize the contribution to the background of sources nearby but

outside our domain, yoc (Eq. 5). First, we estimate this contribution as a first guess using a

Lagrangian approach by convolving footprints from a reduced set of our ensemble of transport

models and with prior fluxes. We extend the domain to the full extent shown in Fig. 1,

to account for the contribution of large nearby sources, including the cities of Philadelphia,

New York and Pittsburgh as well as the gas operations in the Marcellus shale. The full

background is then represented as the ensemble mean of the contribution from outside of

the domain of interest (yoc, time-varying along the track) plus the long-range background

(ylr, constant for a given flight) (Eq. 5). ylr is defined here as a reference value measured
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along the track, the 5th percentile, minus the mean contribution from inside and outside of

the inversion domain for all the locations measuring below the specified reference value (Eq.

8).

ylr=p5th (obs)− 1

N

N∑
obs<p5th(obs)

(yic+yoc) (8)

Selecting the 5th percentile as reference value shields the background from abnormally

low values that may occur due to non-representative situations. On the other hand, the

specific inside contribution of the reference value along the track might be misrepresented

due to transport model and emissions errors. To alleviate this situation, we consider that

contribution to be the mean value of all the measurements below the reference value, as

indicated in Eq. 8. This methodology yields to a time varying background and the associated

uncertainties, as described below.

The uncertainty in the background (σbg) is composed of 3 terms: 1) the uncertainty in the

outside contribution (σoc) due to the transport models and prior fluxes, 2) the uncertainty

in the inside contribution (σic) due to the ensemble of transport models and prior fluxes

and 3) the uncertainty in the determination of the inside and outside contribution due to

the potential mis-location of the reference value picked along the track (σmis). All the

uncertainties are computed as the standard deviation of the respective set of data used in

the calculation.

Because the outside contribution determined in this way depends on the priors used in

the computation, it might underestimate or overestimate the values if the ensemble of priors

do. To address this problem, we optimize the outside contribution of the background along

with the fluxes in the same inversion as described above, Eq. 5 to 7.

In addition, we also performed a sensitivity test (separately from the main ensemble of

inversions) to specifically determine the impact of 1) not optimizing the outside contribution,

2) scaling the outside Contribution, and 3) using a less sophisticated approach of selecting a
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single constant value along the track as background defined by the 1st, 5th or 10th percentile.

For the scaled background case, a single scaling factor for each flight was applied to the

background time series. This scaling factor was the ratio of posterior to prior emissions for

the inversion case where the background was not optimized or scaled (case 1 in the above

text).

1.6 Error Covariances

1.6.1 Prior Flux Error Covariance

The prior flux error covariance, E in Eq. 7, represents the uncertainties in the prior esti-

mation of the fluxes. It is commonly assumed to follow an exponential model where the

correlation between two points decays as the distance between them increases.6,42–44

Eij = σiσje
−dij/L (9)

where σi represents the uncertainty for the pixel i, d ij represents the distance between

the pixels i and j and L is the correlation length of the spatial field.

A wide range of correlation lengths is found in the literature from less than 10 km to

hundreds or thousands of kilometers.8,42,44 Typically, small values of the correlation length

are associated with high-resolution studies conducted in small domains, as for Indianapolis,44

while large correlation length values are seen in low-resolution inversions in regional to global

domains.42 In this work, the correlation length was assumed to be 10 km, consistent with

Lopez-Coto et al.,6 where the authors found this value to be appropriate for studies at urban

scales.

Although bottom-up CO2 emissions estimates are made on global and national scales with

small uncertainties, considerable errors are introduced when the emissions are disaggregated

due to the usage of proxies to spatially distribute emissions.45 Reported errors at grid cell

levels range from 4% to more than 190%, averaging about 120%.46 These errors depend
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on the inventory disaggregation methodology as well as on the resolution that the error

evaluation is performed. For CH4 and CO it is likely that the errors at grid cell levels are

even larger than for CO2 because of the less well-known characteristics of these species’

sources.

Given the aforementioned reported uncertainties at grid cell levels, here we use a value

of 100% of the grid cell emissions as uncertainty for all the prior inventories and gases with

the exception of FFDAS and the ensemble cases for CO2. FFDAS provides uncertainties at

grid cell level that are very small as compared to the other uncertainty estimates. Because

we use the FFDAS annual mean for 2010 to represent a few days in February 2016, the

FFDAS provided uncertainties probably do not represent the real errors in our application;

therefore we multiplied the provided annual uncertainty by 121/2 to try to get a monthly

uncertainty estimate, assuming the annual uncertainty is provided as the uncertainty of the

annual mean. The uncertainties still remained low compared to the uncertainty estimates

for the rest of priors and the impact on the inversion will reflect that. For the ensemble

mean prior, we used the standard deviation of the ensemble at each pixel to represent the

uncertainties.

For the flat prior cases, we assigned uncertainty values of 10 µmol m-2 s-1 for CO2, 30

nmol m-2 s-1 for CH4 and 50 nmol m-2 s-1 for CO. This choice was based on the 90th percentile

of the ensemble of prior emissions within the accounting box for CO2 (8.9 µmol m-2 s-1) and

CH4 (32.5 nmol m-2 s-1). For CO we used the CO2 value scaled by the ∆CO:∆CO2 ratio.

Because the inventories used here represent only anthropogenic emissions, pixels with

low or zero fossil fuel emissions will have a very low uncertainty value making it difficult for

the inversion to correct those areas, for example in cases where there may be non-reported

emissions such as fugitive emissions or even wintertime biogenic respiration. To address this,

we set a floor in the prior uncertainties of 1 µmol m-2 s-1 for CO2, 3 nmol m-2 s-1 for CH4

and 5 nmol m-2 s-1 for CO.
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1.6.2 Outside Contribution (background) Prior Error Covariance

We consider a double exponential model, in space and time, to represent the error covariance

of the outside contribution along the track (O in Eq. 7). The diagonal is populated with

the uncertainty of the initial guess outside contribution (σoc) based on the variance from

the different transport models and prior fluxes.

Because the only constraint imposed on the outside contribution during the inversion

comes through the covariance, we impose very large correlation length (L=104 km) and

correlation time (τ = 8760 h). These choices are based on the assumption that the error

structure in the outside contribution is similar across large scales in space and time, meaning

that if an underestimation/overestimation exists in a region, would likely occur in the nearby

areas even if they are very far apart due to the nature of the construction.

Making the correlation equal to zero would allow each individual point to be corrected

independently leading to a general over-fitting. Correlations equal to one would force the

entire time series for one flight to be scaled up or down together, not allowing for any

additional correction in time and space of this background. The selected correlation model

allows the inversion to coherently adjust the time series while retaining some flexibility to

adjust each point independently based on the specific errors assigned along the diagonal.

1.6.3 Model Error

The model-data mismatch error covariance (R) was assumed to have three independent

contributions: 1) uncertainty in the observations (Robs), 2) uncertainty in the long range

background mole fraction (Rlrbg) and 3) uncertainty in the transport model representation

(Rtransport). The uncertainties in the observations are assigned as the measurement uncer-

tainties (0.2 ppm for CO2, 2 ppb for CH4 and 2 ppb for CO, obtained from the calibrations

and comparisons between measurements from the two aircraft) and the representativity of

the assigned mean to the whole averaging period (one minute in our case). This contribution

is not correlated and thus the covariance was considered diagonal, where the diagonal was
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populated with the maximum of the measurement variance and the variance of the averag-

ing period (1 minute). The long-range background determination also introduces uncertainty

into the system. This contribution was also assumed to be uncorrelated and the covariance

diagonal populated with the sum of the variances due to the inside contribution and the

mis-location errors (σ2
ic + σ2

mis). Lastly, the transport model uncertainty is complex with

several previously published methods for its determination. Here we tested two methods,

both based on the ensemble of transport models. First, we tested a diagonal covariance

populated with the inter-model variance simulated using the same surface fluxes (the prior

emissions in each inversion case) in all the transport models similar to47 and.48 As stated

in,47 this estimate can be too large for some models and too small for other models, thus,

in order to better represent the fidelity of each model and for each observation, we weighted

the inter-model standard deviation (σe) with the relative error (ε) computed by using the

wind measurements from the aircraft as follows:

σ2 = σ2
eε

2 = σ2
e(ε2ws + ε2wd) (10)

where εws is the relative error for wind speed and εws is the normalized absolute error for

the wind direction. Due to the circular nature of the wind direction, the absolute difference

is kept between 0 and π by measuring the absolute differences larger than π in the opposite

direction (2π −∆). Then we normalized the error to the maximum range, π.

This definition of the transport model error covariance assumes there are no correlations

in space and time which is unlikely to be true. Therefore, for the second method, which was

used in the main ensemble of inversions, we computed the correlations between the different

transport models and included them into the covariance as follows:

Rtransport = σ ⊗ σ · cor(T) (11)

where σ is the weighted inter-model standard deviation computed as in the previous case,
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⊗ is the outer product, and T is a matrix constructed with the simulated observations using

the same surface fluxes (the prior emissions in each inversion case) in all transport models.

S-18



2 Figures

Figure S1: Total observations’ sensitivity for both aircraft only for the data within the
well-mixed layer used in the inversion for a) 02/08/2016 (RF1), b) 02/12/2016 (RF2), c)
02/17/2018 (RF3), d) 02/18/2016 (RF4), e) 02/19/2016 (RF5) and f) the campaign average.
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Figure S2: Dendogram computed using agglomerative hierarchical clustering with euclidean
distance as similarity metric and the "average" method as the linkage criterion.
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Figure S3: Histograms of the Relative Ensemble Spread (RES, %) for the different days (a-e)
and for the entire campaign (f) using AC2 emissions inventory.
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Figure S4: Prior CO2 emission rate spatial distribution (a) AC is ACES inventory annual
mean, (b) AC2 is the mean for February between 12 - 19 EST, (c) DA is the DARTE
inventory, (d) EB is the ensemble mean inventory, (e) FF is FFDAS inventory, (f) FL is the
Flat inventory, (g) OD is ODIAC, (h) SP is the simple inventory and (i) VU is VULCAN.
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Figure S5: CH4 prior emissions (a) EP is EPA inventory, (b) EG is EDGAR (v4.3.2), (c)
EB is the ensemble mean and (d) FL is the flat inventory
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Figure S6: CO prior emissions (a) AC is ACES inventory scaled using the observed
∆CO:∆CO2 ratio, (b) FL is Flat inventory, (c) EG is EDGAR (v4.3.2) and (d) NI is NEI-
2011 inventory
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Figure S7: Boxplots of the total estimated CO2 emission rate within the accounting box
compared to the values provided by ACES, scaled to totals of 2016, for February between 12
- 19 EST (referred as REF in the four panels) grouped by: (a) the different inventories used
as priors where AC is ACES inventory annual mean, AC2 is the mean for February between
12 - 19 EST, DA is the DARTE inventory, EB is the ensemble mean inventory, FF is FFDAS
inventory, FL is the Flat inventory, OD is ODIAC, SP is the simple inventory and VU is
VULCAN; (b) the different research flights; (c) the different transport model configurations
where HR is HRRR, YU is YSU, MY is MYNN, MY2 is MYNN with HYSPLIT using the
WRF eddy diffusivities to compute the mixing, QS is QNSE and BL is BouLac; (d) the
observation dataset choice using observations from only the UMD Cessna, Purdue Duchess,
or both. Blue bars indicate the 25th and 75th quantiles, whiskers the range, x’s the outliers
(1.5 times the IQR), red line the median, square markers the mean and the dotted line the
posterior mean. The circled pluses in panel (a) represent each prior’s total emissions.
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Figure S8: Mean estimated CO2 emission rate spatial distribution for all days and transport
models using the different priors (a) AC is ACES inventory annual mean, (b) AC2 is the
mean for February between 12 - 19 EST, (c) DA is the DARTE inventory, (d) EB is the
ensemble mean inventory, (e) FF is FFDAS inventory, (f) FL is the Flat inventory, (g) OD
is ODIAC, (h) SP is the simple inventory and (i) VU is VULCAN.
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Figure S9: Spatial distribution of differences between the mean estimated CO2 emission rate
and the prior emissions for all days and transport models using the different priors: (a) AC
is ACES inventory annual mean, (b) AC2 is the mean for February between 12 - 19 EST,
(c) DA is the DARTE inventory, (d) EB is the ensemble mean inventory, (e) FF is FFDAS
inventory, (f) FL is the Flat inventory, (g) OD is ODIAC, (h) SP is the simple inventory
and (i) VU is VULCAN (Table S2). The legend also indicates the total difference inside the
accounting box (dashed red).
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Figure S10: Total estimated CH4 emission rate within the accounting box grouped by:
(a) the different inventories used as priors where EG is EDGAR, EP is EPA, EB is the
ensemble and FL is the Flat inventory; (b) the different days; (c) the different transport
model configurations (as in Fig. S7); (d) the observation dataset choice. Markers as in Fig.
S7
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Figure S11: Mean estimated CH4 emission rate spatial distribution for all days and transport
models using the different priors (a) EP is EPA inventory, (b) EG is EDGAR, (c) EB is the
ensemble mean inventory and (d) FL is the Flat inventory
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Figure S12: Spatial distribution of differences between the mean estimated CH4 emission
rate and the prior emissions for all days and transport models using the different priors (a)
EP is EPA inventory, (b) EG is EDGAR, (c) EB is the ensemble mean inventory and (d)
FL is the Flat inventory
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Figure S13: Total estimated CO emission rate within the accounting box grouped by: (a) the
different inventories used as priors where AC is ACES inventory annual mean scaled using the
mean observed ∆CO:∆CO2 ratio, EG is EDGAR inventory, FL is the Flat inventory and NI
is the NEI inventory; (b) the different days; (c) the different transport model configurations
(as in Fig. S7); (d) the observation dataset selection using only UMD plane because no CO
measurements were made with the Purdue plane. Markers as in Fig. S7
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Figure S14: Mean estimated CO emission rate spatial distribution for all days and transport
models using the different priors (a) AC is ACES inventory annual mean scaled using the
mean observed ∆CO:∆CO2 ratio, (b) FL is the Flat inventory, (c) EG is EDGAR inventory
and (d) NI is the NEI inventory
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Figure S15: Spatial distribution of differences between the mean estimated CO emission rate
and the prior emissions for all days and transport models using the different priors (a) AC
is ACES inventory annual mean scaled using the mean observed ∆CO:∆CO2 ratio, (b) FL
is the Flat inventory, (c) EG is EDGAR inventory and (d) NI is the NEI inventory
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Figure S16: Boxplots of the sensitivity analysis for a) CO2 (N = 9720), b) CH4 (N = 4320)
and c) CO (N = 1440) for the 12 cases where the covariances and background choice were
changed: OB are cases with optimized Lagrangian background, SB is scaled Lagrangian
background, cases C05, C1 and C2 are non-optimized Lagrangian background and C1P01,
C1P05 and C1P10 are using a constant background determined by the quantile 1st, 5th or
10th respectively. Case EDC1 refers to diagonal transport error covariance. The C in all
cases refers to the prior flux error covariance being 50%, 100% or 200%. Blue bars indicate
the 25th and 75th quantiles, whiskers the range, x’s the outliers (1.5 times the IQR), red
line the median, square markers the mean, the dashed line the mean and the dotted lines
the range ± 1-σ. S-34



Figure S17: Posterior fluxes obtained using the flat prior averaged across the five days of the
campaign.
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Figure S18: Location of the CEMS power plants and TMAS counting stations within the
inversion domain. Accounting box also shown. The circled black crosses with yellow back-
ground are the Dickerson power plant (left) and Brandon Shores power plant (right).
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Figure S19: Hourly traffic counts for two TMAS stations placed in Washington, DC and
Baltimore during the month of February 2016.
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Figure S20: Daily cycle of the hourly traffic counts for nine TMAS stations placed within
the accounting box for the month of February 2016.
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Figure S21: Hourly CO2 emission rate for two Power Plants in the area during the month of
February 2016.
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3 Tables

Table S1: Transport model configurations summary with the labels used to identify them
throughout the text.

Label Model IC/BC HYSPLIT vertical mixing

HR HRRR RAP Kantha / Clayson
YU WRF-YSU NARR Kantha / Clayson
MY WRF-MYNN NARR TKE
MY2 WRF-MYNN NARR Experimental (Kz)
QS WRF-QNSE HRRR TKE
BL WRF-BouLac+ UCM HRRR TKE
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Table S2: Summary of the emissions inventories used as priors along with the labels used to
identify them throughout the text.

Tracer Label Name Period Total* (mol s-1)

CO2 VU VULCAN Feb – 2002 63 103
OD ODIAC Feb – 2015 49 103
DA DARTE + LandUse 2012 42 103
FF FFDAS 2010 42 103
AC ACES 2011 59 103
EB ENSEMBLE --- 51 103

AC2 ACES2 Feb – 2013 & 2014 (Afternoon hours) 94 103
FL FLAT --- 14 103
SP SIMPLE --- 42 103

CH4 EP EPA 2012 153
EG EDGAR 2012 237
EB ENSEMBLE --- 195
FL FLAT --- 14

CO AC ACES** 2011 362
EG EDGAR 2012 436
NI NEI 2011 932
FL FLAT --- 14

*Washington DC / Baltimore area accounting box. **Scaled using the mean observed ∆CO:∆CO2 ratio.

S-41



Table S3: Summary of the sensitivity analysis cases along with the labels used to identify
them throughout the text.

Case Background Prior Covariance Transport Covariance

OBC05 Optimized lagrangian background 50% prior emissions Full covariance
C05 Non-Optimized lagrangian background 50% prior emissions Full covariance
OBC1 Optimized lagrangian background 100% prior emissions Full covariance
OBC1* Optimized lagrangian background 100% prior emissions Full covariance
C1 Non-Optimized lagrangian background 100% prior emissions Full covariance
SBC1 Scaled lagrangian background 100% prior emissions Full covariance
OBC2 Optimized lagrangian background 200% prior emissions Full covariance
C2 Non-Optimized lagrangian background 200% prior emissions Full covariance
C1P01 Constant background (P1%) 100% prior emissions Full covariance
C1P05 Constant background (P5%) 100% prior emissions Full covariance
C1P10 Constant background (P10%) 100% prior emissions Full covariance
EDC1 Optimized lagrangian background 100% prior emissions Diagonal covariance
*Uncertainty due to the potential mis-location of the reference value (σmis) excluded.

S-42



References

(1) Salmon, O. E.; Shepson, P. B.; Ren, X.; Marquardt Collow, A. B.; Miller, M. A.;

Carlton, A. G.; Cambaliza, M. O. L.; Heimburger, A.; Morgan, K. L.; Fuentes, J. D.;

Stirm, B. H.; Grundman II, R.; Dickerson, R. R. Urban emissions of water vapor in

winter. Journal of Geophysical Research: Atmospheres 2017, 122, 9467–9484.

(2) Salmon, O. E.; Shepson, P. B.; Ren, X.; He, H.; Hall, D. L.; Dickerson, R. R.;

Stirm, B. H.; Brown, S. S.; Fibiger, D. L.; McDuffie, E. E.; Campos, T. L.; Gur-

ney, K. R.; Thornton, J. A. Top-Down Estimates of NOx and CO Emissions From

Washington, D.C.-Baltimore During the WINTER Campaign. Journal of Geophysical

Research: Atmospheres 2018, 123, 7705–7724.

(3) Ren, X.; Salmon, O. E.; Hansford, J. R.; Ahn, D.; Hall, D.; Benish, S. E.; Strat-

ton, P. R.; He, H.; Sahu, S.; Grimes, C.; Heimburger, A. M. F.; Martin, C. R.; Co-

hen, M. D.; Stunder, B.; Salawitch, R. J.; Ehrman, S. H.; Shepson, P. B.; Dicker-

son, R. R. Methane Emissions From the Baltimore-Washington Area Based on Airborne

Observations: Comparison to Emissions Inventories. Journal of Geophysical Research:

Atmospheres 2018, 123, 8869–8882.

(4) Enting, I. Inverse Problems in Atmospheric Constituent Transport ; Cambridge Atmo-

spheric and Space Science Series; Cambridge University Press, 2002.

(5) Tarantola, A.; for Industrial, S.; Mathematics, A. Inverse Problem Theory and Meth-

ods for Model Parameter Estimation; Other titles in applied mathematics; Society for

Industrial and Applied Mathematics, 2005.

(6) Lopez-Coto, I.; Ghosh, S.; Prasad, K.; Whetstone, J. Tower-based greenhouse gas mea-

surement network design—The National Institute of Standards and Technology North

East Corridor Testbed. Advances in Atmospheric Sciences 2017, 34, 1095–1105.

S-43



(7) Stohl, A.; Seibert, P.; Arduini, J.; Eckhardt, S.; Fraser, P.; Greally, B. R.; Lunder, C.;

Maione, M.; Mühle, J.; O’Doherty, S.; Prinn, R. G.; Reimann, S.; Saito, T.; Schmid-

bauer, N.; Simmonds, P. G.; Vollmer, M. K.; Weiss, R. F.; Yokouchi, Y. An analytical

inversion method for determining regional and global emissions of greenhouse gases:

Sensitivity studies and application to halocarbons. Atmospheric Chemistry and Physics

2009, 9, 1597–1620.

(8) Lauvaux, T.; Schuh, A. E.; Uliasz, M.; Richardson, S.; Miles, N.; Andrews, A. E.;

Sweeney, C.; Diaz, L. I.; Martins, D.; Shepson, P. B.; Davis, K. J. Constraining the CO2

budget of the corn belt: exploring uncertainties from the assumptions in a mesoscale

inverse system. Atmospheric Chemistry and Physics 2012, 12, 337–354.

(9) Henne, S.; Brunner, D.; Oney, B.; Leuenberger, M.; Eugster, W.; Bamberger, I.; Mein-

hardt, F.; Steinbacher, M.; Emmenegger, L. Validation of the Swiss methane emission

inventory by atmospheric observations and inverse modelling. Atmospheric Chemistry

and Physics 2016, 16, 3683–3710.

(10) Stein, A. F.; Draxler, R. R.; Rolph, G. D.; Stunder, B. J. B.; Cohen, M. D.; Ngan, F.

NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bulletin

of the American Meteorological Society 2015, 96, 2059–2077.

(11) Lin, J. C.; Gerbig, C.; Wofsy, S. C.; Andrews, A. E.; Daube, B. C.; Davis, K. J.;

Grainger, C. A. A near-field tool for simulating the upstream influence of atmospheric

observations: The Stochastic Time-Inverted Lagrangian Transport (STILT) model.

Journal of Geophysical Research: Atmospheres 2003, 108 .

(12) Benjamin, S. G.; Weygandt, S. S.; Brown, J. M.; Hu, M.; Alexander, C. R.;

Smirnova, T. G.; Olson, J. B.; James, E. P.; Dowell, D. C.; Grell, G. A.; Lin, H.;

Peckham, S. E.; Smith, T. L.; Moninger, W. R.; Kenyon, J. S.; Manikin, G. S. A North

S-44



American Hourly Assimilation and Model Forecast Cycle: The Rapid Refresh. Monthly

Weather Review 2016, 144, 1669–1694.

(13) Skamarock, W. C.; Klemp, J. B.; Dudhia, J.; Gill, D. O.; Barker, D.; Duda, M. G.;

yu Huang, X.; Wang, W.; Powers, J. G. A Description of the Advanced Research WRF

Version 3 ; 2008.

(14) Nakanishi, M.; Niino, H. An Improved Mellor–Yamada Level-3 Model: Its Numerical

Stability and Application to a Regional Prediction of Advection Fog. Boundary-Layer

Meteorology 2006, 119, 397–407.

(15) Hong, S.-Y. A new stable boundary-layer mixing scheme and its impact on the simulated

East Asian summer monsoon. Quarterly Journal of the Royal Meteorological Society

2010, 136, 1481–1496.

(16) Mesinger, F.; DiMego, G.; Kalnay, E.; Mitchell, K.; Shafran, P. C.; Ebisuzaki, W.;

JoviÄĞ, D.; Woollen, J.; Rogers, E.; Berbery, E. H.; Ek, M. B.; Fan, Y.; Grumbine, R.;

Higgins, W.; Li, H.; Lin, Y.; Manikin, G.; Parrish, D.; Shi, W. North American Regional

Reanalysis. Bulletin of the American Meteorological Society 2006, 87, 343–360.

(17) Sukoriansky, S.; Galperin, B.; Perov, V. ‘Application of a New Spectral Theory of Stably

Stratified Turbulence to the Atmospheric Boundary Layer over Sea Ice’. Boundary-

Layer Meteorology 2005, 117, 231–257.

(18) Bougeault, P.; Lacarrere, P. Parameterization of Orography-Induced Turbulence in a

Mesobeta–Scale Model. Monthly Weather Review 1989, 117, 1872–1890.

(19) Martilli, A.; Clappier, A.; Rotach, M. W. An urban surface exchange parameterisation

for mesoscale models. Boundary-layer meteorology 2002, 104, 261–304.

(20) Blaylock, B. K.; Horel, J. D.; Crosman, E. T. Impact of Lake Breezes on Summer Ozone

S-45



Concentrations in the Salt Lake Valley. Journal of Applied Meteorology and Climatology

2017, 56, 353–370.

(21) Mlawer, E. J.; Taubman, S. J.; Brown, P. D.; Iacono, M. J.; Clough, S. A. Radiative

transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for

the longwave. Journal of Geophysical Research: Atmospheres 1997, 102, 16663–16682.

(22) Thompson, G.; Rasmussen, R. M.; Manning, K. Explicit forecasts of winter precipita-

tion using an improved bulk microphysics scheme. Part I: Description and sensitivity

analysis. Monthly Weather Review 2004, 132, 519–542.

(23) Thompson, G.; Field, P. R.; Rasmussen, R. M.; Hall, W. D. Explicit forecasts of winter

precipitation using an improved bulk microphysics scheme. Part II: Implementation of

a new snow parameterization. Monthly Weather Review 2008, 136, 5095–5115.

(24) Chen, F.; Dudhia, J. Coupling an Advanced Land SurfaceâĂŞHydrology Model with

the Penn StateâĂŞNCAR MM5 Modeling System. Part I: Model Implementation and

Sensitivity. Monthly Weather Review 2001, 129, 569–585.

(25) Stull, R. B., Ed. An Introduction to Boundary Layer Meteorology ; Springer Netherlands,

1988.

(26) Shin, H. H.; Hong, S.-Y. Intercomparison of Planetary Boundary-Layer Parametriza-

tions in the WRF Model for a Single Day from CASES-99. Boundary-Layer Meteorology

2011, 139, 261–281.

(27) Karion, A.; Lauvaux, T.; Coto, I. L.; Sweeney, C.; Mueller, K.; Gourdji, S.;

Angevine, W.; Barkley, Z.; Deng, A.; Andrews, A.; Stein, A.; Whetstone, J. Inter-

comparison of atmospheric trace gas dispersion models: Barnett Shale case study. At-

mospheric Chemistry and Physics 2019, 19, 2561–2576.

(28) Everitt, B., Ed. Cluster Analysis ; London: Heinemann Educational Books, 1974.

S-46



(29) Hartigan, J. A. Clustering Algorithms ; John Wiley & Sons, Inc.: New York, NY, USA,

1975.

(30) Fovell, R. G.; Fovell, M.-Y. C. Climate Zones of the Conterminous United States Defined

Using Cluster Analysis. Journal of Climate 1993, 6, 2103–2135.

(31) Gurney, K. R.; Mendoza, D. L.; Zhou, Y.; Fischer, M. L.; Miller, C. C.; Geethaku-

mar, S.; de la Rue du Can, S. High Resolution Fossil Fuel Combustion CO2 Emission

Fluxes for the United States. Environmental Science & Technology 2009, 43, 5535–

5541, PMID: 19708393.

(32) Oda, T.; Maksyutov, S. A very high-resolution (1 km x 1 km) global fossil fuel CO2

emission inventory derived using a point source database and satellite observations of

nighttime lights. Atmospheric Chemistry and Physics 2011, 11, 543–556.

(33) Rayner, P. J.; Raupach, M. R.; Paget, M.; Peylin, P.; Koffi, E. A new global gridded

data set of CO2 emissions from fossil fuel combustion: Methodology and evaluation.

Journal of Geophysical Research: Atmospheres 2010, 115, D19306.

(34) Gately, C. K.; Hutyra, L. R.; Sue Wing, I. Cities, traffic, and CO2: A multidecadal

assessment of trends, drivers, and scaling relationships. Proceedings of the National

Academy of Sciences 2015, 112, 4999–5004.

(35) Gately, C. K.; Hutyra, L. R. Large Uncertainties in Urban-Scale Carbon Emissions.

Journal of Geophysical Research: Atmospheres 2017, 122, 11,242–11,260.

(36) Maasakkers, J. D.; Jacob, D. J.; Sulprizio, M. P.; Turner, A. J.; Weitz, M.; Wirth, T.;

Hight, C.; DeFigueiredo, M.; Desai, M.; Schmeltz, R.; Hockstad, L.; Bloom, A. A.;

Bowman, K. W.; Jeong, S.; Fischer, M. L. Gridded National Inventory of U.S.

Methane Emissions. Environmental Science & Technology 2016, 50, 13123–13133,

PMID: 27934278.

S-47



(37) Janssens-Maenhout, G.; Crippa, M.; Guizzardi, D.; Muntean, M.; Schaaf, E.; Den-

tener, F.; Bergamaschi, P.; Pagliari, V.; Olivier, J. G. J.; Peters, J. A. H. W.; van

Aardenne, J. A.; Monni, S.; Doering, U.; Petrescu, A. M. R. EDGAR v4.3.2 Global

Atlas of the three major Greenhouse Gas Emissions for the period 1970–2012. Earth

System Science Data Discussions 2017, 2017, 1–55.

(38) Crippa, M.; Guizzardi, D.; Muntean, M.; Schaaf, E.; Dentener, F.; van Aardenne, J. A.;

Monni, S.; Doering, U.; Olivier, J. G. J.; Pagliari, V.; Janssens-Maenhout, G. Grid-

ded emissions of air pollutants for the period 1970–2012 within EDGAR v4.3.2. Earth

System Science Data 2018, 10, 1987–2013.

(39) EPA National Emissions Inventory. https://www.epa.gov/

air-emissions-inventories/2011-national-emissions-inventory-nei-data,

2011.

(40) Cambaliza, M. O. L.; Shepson, P. B.; Caulton, D. R.; Stirm, B.; Samarov, D.; Gur-

ney, K. R.; Turnbull, J.; Davis, K. J.; Possolo, A.; Karion, A.; Sweeney, C.; Moser, B.;

Hendricks, A.; Lauvaux, T.; Mays, K.; Whetstone, J.; Huang, J.; Razlivanov, I.;

Miles, N. L.; Richardson, S. J. Assessment of uncertainties of an aircraft-based mass bal-

ance approach for quantifying urban greenhouse gas emissions. Atmospheric Chemistry

and Physics 2014, 14, 9029–9050.

(41) Karion, A.; Sweeney, C.; Kort, E. A.; Shepson, P. B.; Brewer, A.; Cambaliza, M.; Con-

ley, S. A.; Davis, K.; Deng, A.; Hardesty, M.; Herndon, S. C.; Lauvaux, T.; Lavoie, T.;

Lyon, D.; Newberger, T.; Petron, G.; Rella, C.; Smith, M.; Wolter, S.; Yacovitch, T. I.;

Tans, P. Aircraft-Based Estimate of Total Methane Emissions from the Barnett Shale

Region. Environmental Science & Technology 2015, 49, 8124–8131, PMID: 26148550.

(42) Mueller, K. L.; Gourdji, S. M.; Michalak, A. M. Global monthly averaged CO2 fluxes

S-48



recovered using a geostatistical inverse modeling approach: 1. Results using atmospheric

measurements. Journal of Geophysical Research: Atmospheres 2008, 113 .

(43) Shiga, Y. P.; Michalak, A. M.; Randolph Kawa, S.; Engelen, R. J. In-situ CO2 monitor-

ing network evaluation and design: A criterion based on atmospheric CO2 variability.

Journal of Geophysical Research: Atmospheres 2013, 118, 2007–2018.

(44) Lauvaux, T.; Miles, N. L.; Deng, A.; Richardson, S. J.; Cambaliza, M. O.; Davis, K. J.;

Gaudet, B.; Gurney, K. R.; Huang, J.; O’Keefe, D.; Song, Y.; Karion, A.; Oda, T.;

Patarasuk, R.; Razlivanov, I.; Sarmiento, D.; Shepson, P.; Sweeney, C.; Turnbull, J.;

Wu, K. High-resolution atmospheric inversion of urban CO2 emissions during the dor-

mant season of the Indianapolis Flux Experiment (INFLUX). Journal of Geophysical

Research: Atmospheres 2016, 121, 5213–5236.

(45) Oda, T.; Maksyutov, S.; Andres, R. J. The Open-source Data Inventory for Anthro-

pogenic CO2, version 2016 (ODIAC2016): a global monthly fossil fuel CO2 gridded

emissions data product for tracer transport simulations and surface flux inversions.

Earth System Science Data 2018, 10, 87–107.

(46) Andres, R. J.; Boden, T. A.; Higdon, D. M. Gridded uncertainty in fossil fuel carbon

dioxide emission maps, a CDIAC example. Atmospheric Chemistry and Physics 2016,

16, 14979–14995.

(47) Engelen, R. J.; Denning, A. S.; Gurney, K. R. On error estimation in atmospheric CO2

inversions. Journal of Geophysical Research: Atmospheres 2002, 107, ACL 10–1–ACL

10–13.

(48) Desroziers, G.; Berre, L.; Chapnik, B.; Poli, P. Diagnosis of observation, background

and analysis-error statistics in observation space. Quarterly Journal of the Royal Me-

teorological Society 2005, 131, 3385–3396.

S-49


