Supporting Information

Structure-performance relationship in thermally stable energetic materials: tunable physical properties of benzopyridotetraazapentalene by incorporating amino groups, hydrogen bonding and π - π interactions

Wen-jing Geng,^{†,‡} Qing Ma,[‡] Ya Chen, [‡] Wei Yang, [‡] Yun-Fei Jia, ^{†,‡} Jin-shan Li, [‡]

Zhen-qi Zhang,^{*, ‡} Gui-Juan Fan,^{*, ‡} and Shu-Min Wang^{*,†}

[†]School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China [‡]Institute of Chemical Materials, Chinese Academy of Engineering Physics, Mianyang 621900, China

Table of contents

- 1. Experimental Section
- 2. Crystalline parameters
- 3. Hydrogen bonding interactions of 2 and 8 DMF
- 4. NMR spectra
- 5. FT-IR spectra
- 6. DSC-TG curves and thermal dynamic parameters

1. Experimental Section

Scheme 1 The synthetic pathway of compound 2

Scheme 2 The synthetic pathway of compound 8

4-diamino-2,8,10-trinitrobenzo-[4',5'][1,2,3]triazolo-[2',1':2,3][1,2,3]triazolo-[4,5b] pyridin-6-ium-5-ide (2). As shown in Scheme 1, BPTAP (**1**)^[1] (0.5g,1.285 mmol) was dissolved in 10 mL 0.4 M ammonia solution in 1,4-dioxane, the mixture was sealed and stirred at 100 °C for 5 h. Then it was cooled to room temperature and poured into the ice water (20 mL). The precipitate was collected by filtration. 0.381 g of **5** as a brick red solid was obtained in a yield of 82.5 %. ¹H NMR (400 MHz, d₆-DMSO): δ =9.18 (d, 1H), 9.01(d, 1H), 8.39 (s, 2H), 7.69 (s, 1H) ppm; ¹³C NMR (101 MHz, d₆-DMSO): δ =154.79, 148.73, 142.00, 139.52, 135.61, 132.36, 128.31, 123.55, 119.87, 111.88, 99.51 ppm. FT-IR (KBr): *v*=3349, 3093, 1560, 1540, 1451, 1417, 1336, 1243, 781, 726cm⁻¹. HRMS (ESI) m/z [M]⁻calcd for C₁₁H₄N₉O₆: 358.2103, found: 358.22933. Elemental analysis calcd: C 36.78, H 1.40, N 35.09, found: C 35.99, H 1.85, N 33.36.

5-chloro-1-(3-nitropyridin-2-yl)-1H-benzo[d]-[1,2,3]-triazole(5). As shown in Scheme 2, 5-chlorobenzotriazole (**3**) (1.15 g, 7.5 mmol), 2-chloro-3-nitro-pyridine (**4**) (1.187 g, 7.5 mmol) and anhydrous sodium carbonate (0.794 g, 7.5 mmol) were dissolved in DMF. The solution became syrup, and then it was heated to 120 °C for 5 h. The cooled reaction solution was poured into ice water and filtered to obtain a brown product. After drying, it was dissolved with ethyl acetate, and then decolorized with activated carbon to remove the impurities, the precipitate was collected by filtration. Isolated as white solid (1.074 g, yield 52%) by column chromatography (ethyl acetate: petroleum ether=1:5). ¹H NMR (400 MHz, DMSO-d₆): δ =9.01 (s,1 H), 8.81 (d, 1H), 8.79 (d, 1H), 8.45 (s, 1H), 8.24 (d, 1H), 7.96 (m,1H) ppm; ¹³C NMR(101MHz, DMSO-d₆): δ =152.26, 145.72, 139.68, 139.37, 135.51, 130.10, 129.93, 129.91, 125.14, 119.03, 113.99 ppm. FT-IR(KBr): *v*=3095, 1614, 1597, 1526, 1480, 1356, 856, 757,640 cm⁻¹

9-chlorobenzo[4',5'][1,2,3]triazolo[2',1':2,3][1,2,3]triazolo[4,5-b]pyridin-6-ium-5ide(6). Compound 5 (0.95 g, 0.003.45 mol) was dissolved in 14 ml of xylene, and 2.5 ml of triethyl phosphite was added dropwise with stirring. The solution became yellow, and it was refluxed at 150 °C for 10 h. Then it was cooled to room temperature and petroleum ether was added, collected the precipitate by filtration. Isolated as white solid (0.504 g, yield 60%) by column chromatography (ethyl acetate: petroleum ether=1:5). ¹H NMR (400 MHz, DMSO-d₆): δ = 8.57 (s, 1H), 8.35 (s, 1H), 8.24 (s, 1H), 7.96 (s, 1H), 7.69 (s, 2H) ppm.¹³CNMR (101MHz, DMSO-d₆): δ =170.77, 143.36, 137.12, 127.43, 124.14, 122.85, 117.84, 115.65, 112.18, 110.43 ppm. FT-IR(KBr): *v*=3095, 1590, 1518, 1459, 1422, 856, 792, 744, 689 cm⁻¹

9-chloro-2,4,8,10-tetranitrobenzo[4',5'][1,2,3]triazolo[2',1':2,3][1,2,3]triazol-o[4,5 -b]pyridin-6-ium-5-ide(7). 1.06 mL of concentrated sulfuric acid was added to a three-necked flask with a thermometer and then compound **6** (0.12 g, 0.493 mmol) was added slowly with stirring at room temperature. The solution became yellow. After being completely dissolved, 1.06.ml fuming nitric acid was added slowly at 30 °C, and the solution turned black immediately. After complete addition, the mixture was stirred at room temperature for 30 min, and the temperature was raised to 80 °C for another 2 h. The solution became yellow, subsequently the reaction solution was cooled to the room temperature and poured into ice water for quenching. The product **7** is obtained by suction filtration. Isolated as white solid (0.14 g, yield 71.1%) by column chromatography (ethyl acetate: petroleum ether=1:3). ¹H NMR (400MHz, DMSO-d₆): δ =9.64 (s,1H), 9.27 (s,1H) ppm;¹³C NMR (101MHz, DMSO-d₆): δ =150.02, 144.91, 141.13, 138.62, 137.09, 134.02, 121.81, 119.06, 113.95 ppm. FT-IR(KBr): ν =3071, 1596, 1546, 1485, 1360, 858, 819, 753, 637 cm⁻¹ **4,9-diamino-2,8,10-trinitrobenzo-[4',5'][1,2,3]-triazolo-[2',1':2,3]-[1,2,3]-tri-azolo [4,5-b]-pyridin-6-ium-5-ide (8)**. 80 mL of 0.4 M ammonia solution in 1,4-dioxane in a single-necked flask, compound **7** (0.8 g, 0.188 mmol) was added in one portion under stirring at room temperature. Then the mixture was heated to 100 °C for 6 h, and poured into ice water for quenching. The precipitate was collected by filtration. It can be further purified by anti-solvent crystallization: the product was dissolved in 10-20 mL DMF and poured slowly into ice water (300 g). 0.424 g of compound **8** as a brick red solid was obtained in a yield of 80%. Its ¹³C NMR signal can not be obtained because of its weak solubility in DMSO though it was scanned for 24 h. ¹H NMR (400 MHz, DMSO-d₆): δ =9.22 (s,2H), 8.92 (s,1H), 8.35 (s,2H), 7.65 (s,1H) ppm. FT-IR(KBr): ν =3351, 1625, 1545, 1517, 1485, 1265, 991, 776 cm⁻¹; HRMS (ESI) m/z [M]⁻calcd for C₁₁H₅N₁₀O₆: 373.2307, found: 373.24019. Elemental analysis calcd: C 35.30, H 1.62, N 37.43; found: C 34.90, H 1.90, N 36.61.

2. Crystalline parameters

Table S1. Crystal data and struct	ure refinement for compound 2.
Identification code	CCDC 1967657
Empirical formula	C11 H5 N9 O6
Formula weight	359.24

Temperature	293(2) K		
Wavelength	0.71073 Å		
Crystal system	Orthorhombic		
Space group	Рссп		
Unit cell dimensions	a = 13.1386(7) Å	= 90 °.	
	b = 22.6944(13) Å	= 90 °.	
	c = 9.7371(5) Å	= 90 °.	
Volume	2903.3(3) Å ³		
Z	8		
Density (calculated)	1.644 Mg/m ³		
Absorption coefficient	0.138 mm ⁻¹		
F(000)	1456		
Crystal size	0.150 x 0.120 x 0.100 mm	0.150 x 0.120 x 0.100 mm ³	
Theta range for data collection	2.754 to 25.500 °.	2.754 to 25.500 °.	
Index ranges	-14<=h<=15, -27<=k<=27	-14<=h<=15, -27<=k<=27, -10<=l<=11	
Reflections collected	12375		
Independent reflections	2690 [R(int) = 0.0348]		
Completeness to theta = 25.242°	99.7 %		
Absorption correction	Semi-empirical from equiv	valents	
Max. and min. transmission	0.7456 and 0.6177		
Refinement method	Full-matrix least-squares of	on F ²	
Data / restraints / parameters	2690 / 0 / 244		
Goodness-of-fit on F ²	1.064		
Final R indices [I>2sigma(I)]	R1 = 0.0486, wR2 = 0.129	07	
R indices (all data)	R1 = 0.0678, wR2 = 0.142	.9	
Extinction coefficient	0.0044(13)		
Largest diff. peak and hole	0.223 and -0.193 e.Å ⁻³		

	Х	У	Z	U(eq)
O(1)	9340(1)	4246(1)	3848(2)	79(1)
O(2)	8759(2)	3715(1)	5487(3)	89(1)
O(3)	1411(1)	4029(1)	5623(2)	75(1)
O(4)	1083(1)	3419(1)	7254(2)	59(1)
O(5)	3722(2)	2520(1)	9760(2)	68(1)
O(6)	5265(2)	2495(1)	8992(2)	88(1)
N(1)	3367(1)	4230(1)	4734(2)	42(1)
N(2)	4329(1)	4321(1)	4330(2)	40(1)
N(3)	4695(1)	4665(1)	3363(2)	44(1)

Table S2.	Atomic coordinates ($x10^4)$ and equivalent isotropic displacement parameters (Å 2x	
10 ³) for cor	npound 2. $aU(eq)$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.	

N(4)	5036(1)	4006(1)	5039(2)	41(1)
N(5)	6375(2)	5182(1)	1636(2)	54(1)
N(6)	6874(1)	3979(1)	4907(2)	47(1)
N(7)	8643(2)	4046(1)	4533(2)	57(1)
N(8)	1673(1)	3680(1)	6500(2)	47(1)
N(9)	4390(2)	2669(1)	8950(2)	56(1)
C(1)	3484(2)	3833(1)	5780(2)	40(1)
C(2)	4505(2)	3682(1)	6015(2)	39(1)
C(3)	4855(2)	3300(1)	7007(2)	44(1)
C(4)	4100(2)	3072(1)	7835(2)	45(1)
C(5)	3078(2)	3198(1)	7678(2)	44(1)
C(6)	2762(2)	3569(1)	6651(2)	41(1)
C(7)	5728(2)	4563(1)	3459(2)	41(1)
C(8)	5972(2)	4164(1)	4495(2)	41(1)
C(9)	7596(2)	4227(1)	4150(2)	47(1)
C(10)	7497(2)	4621(1)	3084(3)	48(1)
C(11)	6529(2)	4810(1)	2669(2)	44(1)

Atom	Length/Å	Atom	Length/Å
O(1)-N(7)	1.220(3)	N(6)-C(8)	1.320(3)
O(2)-N(7)	1.205(3)	N(6)-C(9)	1.326(3)
O(3)-N(8)	1.214(3)	N(7)-C(9)	1.483(3)
O(4)-N(8)	1.221(2)	N(8)-C(6)	1.460(3)
O(5)-N(9)	1.227(3)	N(9)-C(4)	1.469(3)
O(6)-N(9)	1.216(3)	C(1)-C(2)	1.404(3)
N(1)-N(2)	1.341(2)	C(1)-C(6)	1.407(3)
N(1)-C(1)	1.369(3)	C(2)-C(3)	1.377(3)
N(2)-N(3)	1.313(2)	C(3)-C(4)	1.379(3)
N(2)-N(4)	1.360(2)	C(3)-H(3)	0.9300
N(3)-C(7)	1.380(3)	C(4)-C(5)	1.382(3)
N(4)-C(8)	1.386(3)	C(5)-C(6)	1.372(3)
N(4)-C(2)	1.389(3)	C(5)-H(5)	0.9300
N(5)-C(11)	1.329(3)	C(7)-C(8)	1.393(3)
N(5)-H(5A)	0.88(3)	C(7)-C(11)	1.418(3)
N(5)-H(5B)	0.86(3)	C(9)-C(10)	1.376(3)
O(1)-N(7)	1.220(3)	C(10)-C(11)	1.402(3)
O(2)-N(7)	1.205(3)	C(10)-H(10)	0.9300

Table S3 Bond lengths [Å] and angles [] for compound 2

Table S4 Bond angles [[°]] for compound 2

Atom	angles [°]	Atom	angles []
N(2)-N(1)-C(1)	102.33(16)	N(4)-C(2)-C(1)	103.82(18)
N(3)-N(2)-N(1)	130.30(18)	C(2)-C(3)-C(4)	114.0(2)
N(3)-N(2)-N(4)	115.28(16)	C(2)-C(3)-H(3)	123.0
N(1)-N(2)-N(4)	114.42(17)	C(4)-C(3)-H(3)	123.0
N(2)-N(3)-C(7)	102.21(17)	C(3)-C(4)-C(5)	123.8(2)
N(2)-N(4)-C(8)	105.97(17)	C(3)-C(4)-N(9)	118.6(2)
N(2)-N(4)-C(2)	106.49(16)	C(5)-C(4)-N(9)	117.6(2)
C(8)-N(4)-C(2)	147.49(19)	C(6)-C(5)-C(4)	120.1(2)
C(11)-N(5)-H(5A)	118.8(19)	C(6)-C(5)-H(5)	119.9
C(11)-N(5)-H(5B)	113.8(17)	C(4)-C(5)-H(5)	119.9
H(5A)-N(5)-H(5B)	127(3)	C(5)-C(6)-C(1)	119.8(2)
C(8)-N(6)-C(9)	109.7(2)	C(5)-C(6)-N(8)	118.42(19)
O(2)-N(7)-O(1)	123.9(2)	C(1)-C(6)-N(8)	121.8(2)
O(2)-N(7)-C(9)	118.9(2)	N(3)-C(7)-C(8)	112.59(18)
O(1)-N(7)-C(9)	117.2(2)	N(3)-C(7)-C(11)	128.8(2)

O(3)-N(8)-O(4)	124.0(2)	C(8)-C(7)-C(11)	118.6(2)
O(3)-N(8)-C(6)	117.46(18)	N(6)-C(8)-N(4)	126.7(2)
O(4)-N(8)-C(6)	118.5(2)	N(6)-C(8)-C(7)	129.3(2)
O(6)-N(9)-O(5)	124.4(2)	N(4)-C(8)-C(7)	103.92(18)
O(6)-N(9)-C(4)	118.2(2)	N(6)-C(9)-C(10)	128.9(2)
O(5)-N(9)-C(4)	117.4(2)	N(6)-C(9)-N(7)	114.0(2)
N(1)-C(1)-C(2)	112.94(18)	C(10)-C(9)-N(7)	117.2(2)
N(1)-C(1)-C(6)	130.78(19)	C(9)-C(10)-C(11)	120.1(2)
C(2)-C(1)-C(6)	116.27(19)	C(9)-C(10)-H(10)	120.0
C(3)-C(2)-N(4)	130.2(2)	C(11)-C(10)-H(10)	120.0
C(3)-C(2)-C(1)	125.9(2)	N(5)-C(11)-C(10)	123.4(2)
C(10)-C(11)-C(7)	113.4(2)	N(5)-C(11)-C(7)	123.3(2)

Table S5. Hydrogen coordinates ($x\,10^4$) and isotropic displacement parameters (Å $^2x\,10^3$) for compound 2.

	х	у	Z	U(eq)
H(3)	5539	3204	7109	53
H(5)	2603	3031	8270	52
H(10)	8073	4762	2638	57
H(5A)	5750(30)	5298(13)	1460(30)	71(9)
H(5B)	6930(20)	5284(11)	1210(30)	58(8)

Table S6. Torsion angles [] for compound 2

C(1)-N(1)-N(2)-N(3)	-179.4(2)	O(4)-N(8)-C(6)-C(5)	-3.1(3)
C(1)-N(1)-N(2)-N(4)	0.6(2)	O(3)-N(8)-C(6)-C(1)	-2.9(3)
N(1)-N(2)-N(3)-C(7)	179.9(2)	O(4)-N(8)-C(6)-C(1)	177.2(2)
N(4)-N(2)-N(3)-C(7)	-0.1(2)	N(2)-N(3)-C(7)-C(8)	-0.7(2)
N(3)-N(2)-N(4)-C(8)	0.8(2)	N(2)-N(3)-C(7)-C(11)	179.7(2)
N(1)-N(2)-N(4)-C(8)	-179.15(17)	C(9)-N(6)-C(8)-N(4)	-179.6(2)
N(3)-N(2)-N(4)-C(2)	179.07(17)	C(9)-N(6)-C(8)-C(7)	-1.1(3)
N(1)-N(2)-N(4)-C(2)	-0.9(2)	N(2)-N(4)-C(8)-N(6)	177.6(2)
N(2)-N(1)-C(1)-C(2)	0.0(2)	C(2)-N(4)-C(8)-N(6)	0.8(5)
N(2)-N(1)-C(1)-C(6)	178.6(2)	N(2)-N(4)-C(8)-C(7)	-1.1(2)
N(2)-N(4)-C(2)-C(3)	-178.9(2)	C(2)-N(4)-C(8)-C(7)	-178.0(3)
C(8)-N(4)-C(2)-C(3)	-2.1(5)	N(3)-C(7)-C(8)-N(6)	-177.6(2)
N(2)-N(4)-C(2)-C(1)	0.8(2)	C(11)-C(7)-C(8)-N(6)	2.1(4)
C(8)-N(4)-C(2)-C(1)	177.6(3)	N(3)-C(7)-C(8)-N(4)	1.2(2)
N(1)-C(1)-C(2)-C(3)	179.3(2)	C(11)-C(7)-C(8)-N(4)	-179.20(19)
C(6)-C(1)-C(2)-C(3)	0.5(3)	C(8)-N(6)-C(9)-C(10)	0.1(3)
N(1)-C(1)-C(2)-N(4)	-0.5(2)	C(8)-N(6)-C(9)-N(7)	-179.92(19)
C(6)-C(1)-C(2)-N(4)	-179.31(18)	O(2)-N(7)-C(9)-N(6)	-2.1(3)
N(4)-C(2)-C(3)-C(4)	177.8(2)	O(1)-N(7)-C(9)-N(6)	177.9(2)
C(1)-C(2)-C(3)-C(4)	-1.9(3)	O(2)-N(7)-C(9)-C(10)	177.9(2)
C(2)-C(3)-C(4)-C(5)	1.6(3)	O(1)-N(7)-C(9)-C(10)	-2.1(3)
C(2)-C(3)-C(4)-N(9)	-178.5(2)	N(6)-C(9)-C(10)-C(11)	-0.1(4)
O(6)-N(9)-C(4)-C(3)	-9.2(3)	N(7)-C(9)-C(10)-C(11)	179.9(2)
O(5)-N(9)-C(4)-C(3)	172.6(2)	C(9)-C(10)-C(11)-N(5)	-179.0(2)
O(6)-N(9)-C(4)-C(5)	170.8(2)	C(9)-C(10)-C(11)-C(7)	0.9(3)
O(5)-N(9)-C(4)-C(5)	-7.5(3)	N(3)-C(7)-C(11)-N(5)	-2.2(4)
C(3)-C(4)-C(5)-C(6)	0.1(4)	C(8)-C(7)-C(11)-N(5)	178.2(2)
N(9)-C(4)-C(5)-C(6)	-179.8(2)	N(3)-C(7)-C(11)-C(10)	177.8(2)
C(4)-C(5)-C(6)-C(1)	-1.7(3)	C(8)-C(7)-C(11)-C(10)	-1.8(3)
C(4)-C(5)-C(6)-N(8)	178.5(2)	O(4)-N(8)-C(6)-C(5)	-3.1(3)
N(1)-C(1)-C(6)-C(5)	-177.1(2)	O(3)-N(8)-C(6)-C(1)	-2.9(3)
C(2)-C(1)-C(6)-C(5)	1.4(3)	O(4)-N(8)-C(6)-C(1)	177.2(2)
N(1)-C(1)-C(6)-N(8)	2.6(4)	N(2)-N(3)-C(7)-C(8)	-0.7(2)
C(2)-C(1)-C(6)-N(8)	-178.83(19)	N(2)-N(3)-C(7)-C(11)	179.7(2)
O(3)-N(8)-C(6)-C(5)	176.9(2)	C(9)-N(6)-C(8)-N(4)	-179.6(2)

Identification code	CCDC 1970939		
Empirical formula	C11 H6 Cl N5 O2		
Formula weight	275.66		
Temperature	192(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P -1		
Unit cell dimensions	a = 6.9177(8) Å	= 88.706(4) °.	
	b = 7.3512(8) Å	= 78.355(3) °.	
	c = 12.8123(14) Å	= 62.367(3) °.	
Volume	563.45(11) Å ³		
Z	2		
Density (calculated)	1.625 Mg/m ³		
Absorption coefficient	0.345 mm ⁻¹		
F(000)	280		
Crystal size	0.160 x 0.130 x 0.100 mm ³		
Theta range for data collection	3.138 to 25.999°.		
Index ranges	-8<=h<=8, -9<=k<=9, -15<=l<=1	5	
Reflections collected	7825		
Independent reflections	2159 [R(int) = 0.0457]		
Completeness to theta = 25.242°	97.4 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.7456 and 0.6397		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	2159 / 0 / 173		
Goodness-of-fit on F ²	1.085		
Final R indices [I>2sigma(I)]	R1 = 0.0545, wR2 = 0.1389		
R indices (all data)	R1 = 0.0603, $wR2 = 0.1424$		
Extinction coefficient	0.17(3)		
Largest diff. peak and hole	0.296 and -0.213 e.Å ⁻³		

 Table S7.
 Crystal data and structure refinement for compound 5.

Atom	Length/Å	0 11	Atom	Length/Å
Cl(1)-C(3)	1.744(3)		C(2)-C(3)	1.358(4)
Cl(1)-C(3)	1.744(3)		C(2)-H(2)	0.9500
O(1)-N(5)	1.212(4)		C(3)-C(4)	1.402(4)
O(2)-N(5)	1.218(3)		C(4)-C(5)	1.376(4)
N(1)-N(2)	1.289(3)		C(4)-H(4)	0.9500
N(1)-C(1)	1.377(4)		C(5)-C(6)	1.395(4)
N(2)-N(3)	1.370(3)		C(5)-H(5)	0.9500
N(3)-C(6)	1.377(3)		C(7)-C(8)	1.385(4)
N(3)-C(7)	1.407(4)		C(8)-C(9)	1.379(4)
N(4)-C(7)	1.325(4)		C(9)-C(10)	1.372(4)
N(4)-C(11)	1.332(4)		C(9)-H(9)	0.9500
N(5)-C(8)	1.473(4)		C(10)-C(11)	1.375(5)
C(1)-C(6)	1.387(4)		C(10)-H(10)	0.9500

Table S8 Bond lengths [Å] and angles [] for compound 5

Table S9 Bond angles [] for compound 5

Atom	angles []	Atom	angles []
N(2)-N(1)-C(1)	108.4(2)	C(4)-C(5)-H(5)	122.0
N(1)-N(2)-N(3)	108.7(2)	C(6)-C(5)-H(5)	122.0
N(2)-N(3)-C(6)	110.2(2)	N(3)-C(6)-C(1)	103.0(2)
N(2)-N(3)-C(7)	120.3(2)	N(3)-C(6)-C(5)	134.4(3)
C(6)-N(3)-C(7)	129.3(2)	C(1)-C(6)-C(5)	122.5(3)
C(7)-N(4)-C(11)	118.0(3)	N(4)-C(7)-C(8)	121.9(3)
O(1)-N(5)-O(2)	124.7(3)	N(4)-C(7)-N(3)	114.9(3)
O(1)-N(5)-C(8)	118.6(3)	C(8)-C(7)-N(3)	123.2(3)
O(2)-N(5)-C(8)	116.6(3)	C(9)-C(8)-C(7)	119.7(3)
N(1)-C(1)-C(6)	109.7(2)	C(9)-C(8)-N(5)	116.9(3)
N(1)-C(1)-C(2)	129.3(3)	C(7)-C(8)-N(5)	123.3(2)
C(6)-C(1)-C(2)	121.1(3)	C(10)-C(9)-C(8)	118.2(3)
C(3)-C(2)-C(1)	115.8(3)	C(10)-C(9)-H(9)	120.9
C(3)-C(2)-H(2)	122.1	C(8)-C(9)-H(9)	120.9
C(1)-C(2)-H(2)	122.1	C(9)-C(10)-C(11)	118.6(3)
C(2)-C(3)-C(4)	123.4(3)	C(9)-C(10)-H(10)	120.7
C(2)-C(3)-Cl(1)	118.6(2)	C(11)-C(10)-H(10)	120.7
C(4)-C(3)-Cl(1)	117.9(2)	N(4)-C(11)-C(10)	123.5(3)
C(5)-C(4)-C(3)	121.2(3)	N(4)-C(11)-H(11)	118.2
C(5)-C(4)-H(4)	119.4	C(10)-C(11)-H(11)	118.2
C(3)-C(4)-H(4)	119.4	C(4)-C(5)-C(6)	116.0(3)

Table S10. Torsion angles [] for compound 5

C(1)-N(1)-N(2)-N(3)	0.5(3)	C(4)-C(5)-C(6)-C(1)	-0.1(4)
N(1)-N(2)-N(3)-C(6)	-1.2(3)	C(11)-N(4)-C(7)-C(8)	-0.5(5)
N(1)-N(2)-N(3)-C(7)	-176.2(3)	C(11)-N(4)-C(7)-N(3)	-178.1(3)
N(2)-N(1)-C(1)-C(6)	0.4(3)	N(2)-N(3)-C(7)-N(4)	152.4(3)
N(2)-N(1)-C(1)-C(2)	-179.7(3)	C(6)-N(3)-C(7)-N(4)	-21.5(4)
N(1)-C(1)-C(2)-C(3)	-179.3(3)	N(2)-N(3)-C(7)-C(8)	-25.1(4)
C(6)-C(1)-C(2)-C(3)	0.6(4)	C(6)-N(3)-C(7)-C(8)	160.9(3)
C(1)-C(2)-C(3)-C(4)	-0.6(5)	N(4)-C(7)-C(8)-C(9)	-2.5(5)
C(1)-C(2)-C(3)-Cl(1)	179.1(2)	N(3)-C(7)-C(8)-C(9)	174.9(3)
C(2)-C(3)-C(4)-C(5)	0.3(5)	N(4)-C(7)-C(8)-N(5)	174.3(3)
Cl(1)-C(3)-C(4)-C(5)	-179.4(2)	N(3)-C(7)-C(8)-N(5)	-8.3(5)
C(3)-C(4)-C(5)-C(6)	0.0(4)	O(1)-N(5)-C(8)-C(9)	120.8(3)
N(2)-N(3)-C(6)-C(1)	1.4(3)	O(2)-N(5)-C(8)-C(9)	-56.1(4)
C(7)-N(3)-C(6)-C(1)	175.8(3)	O(1)-N(5)-C(8)-C(7)	-56.1(4)
N(2)-N(3)-C(6)-C(5)	-179.5(3)	O(2)-N(5)-C(8)-C(7)	127.0(3)
C(7)-N(3)-C(6)-C(5)	-5.0(5)	C(7)-C(8)-C(9)-C(10)	3.1(5)
N(1)-C(1)-C(6)-N(3)	-1.1(3)	N(5)-C(8)-C(9)-C(10)	-173.9(3)
C(2)-C(1)-C(6)-N(3)	179.0(3)	C(8)-C(9)-C(10)-C(11)	-0.9(5)
N(1)-C(1)-C(6)-C(5)	179.6(3)	C(7)-N(4)-C(11)-C(10)	2.8(5)
C(2)-C(1)-C(6)-C(5)	-0.2(4)	C(9)-C(10)-C(11)-N(4)	-2.2(6)
C(4)-C(5)-C(6)-N(3)	-179.1(3)	C(1)-N(1)-N(2)-N(3)	0.5(3)

Table S11.	Crystal data and structure	e refinement for compound 8.	
Identification	n code	CCDC 1967658	
Empirical for	rmula	C14 H13 N11 O7	
Formula wei	ght	447.35	
Temperature		293(2) K	
Wavelength		0.71073 Å	
Crystal syste	m	Orthorhombic	
Space group		P 21 21 21	
Unit cell dim	ensions	a = 7.2893(5) Å	= 90 °.
		b = 8.7871(9) Å	= 90 °.
		c = 28.116(2) Å	= 90 °.
Volume		1800.9(3) Å ³	
Z		4	
Density (calc	culated)	1.650 Mg/m^3	
Absorption c	oefficient	0.136 mm ⁻¹	
F(000)		920	
Crystal size		0.160 x 0.130 x 0.080 mm	3
Theta range	for data collection	2.428 to 25.997 °.	
Index ranges		-8<=h<=8, -10<=k<=7, -34	4<=l<=28
Reflections c	collected	8972	
Independent	reflections	3508 [R(int) = 0.0581]	
Completenes	is to theta = 25.242°	99.7 %	
Absorption c	orrection	Semi-empirical from equiv	alents
Max. and mi	n. transmission	0.7456 and 0.6348	
Refinement 1	nethod	Full-matrix least-squares o	n F ²
Data / restrai	nts / parameters	3508 / 0 / 294	
Goodness-of	-fit on F ²	1.044	
Final R indic	es [I>2sigma(I)]	R1 = 0.0558, wR2 = 0.108	3
R indices (all	l data)	R1 = 0.1100, wR2 = 0.133	0
Absolute stru	icture parameter	1.3(10)	

Table S12 Dol	iu ienguis [A] anu ai	igies [] for compound o	
Atom	Length/Å	Atom	Length/Å
O(1)-N(7)	1.223(5)	C(1)-C(2)	1.408(6)
O(2)-N(7)	1.198(5)	C(2)-C(3)	1.399(7)
O(3)-N(9)	1.207(6)	C(3)-C(4)	1.401(7)
O(4)-N(9)	1.230(6)	C(4)-C(5)	1.361(7)
O(5)-N(10)	1.199(6)	C(4)-H(4)	0.9300
O(6)-N(10)	1.201(6)	C(6)-C(11)	1.400(7)
N(1)-N(2)	1.320(6)	C(6)-C(7)	1.407(7)
N(1)-C(6)	1.374(6)	C(7)-C(8)	1.373(7)
N(2)-N(3)	1.328(5)	C(8)-C(9)	1.390(6)
N(2)-N(4)	1.379(5)	C(8)-H(8)	0.9300
N(3)-C(2)	1.369(7)	C(9)-C(10)	1.421(7)
N(4)-C(1)	1.374(6)	C(10)-C(11)	1.433(7)
N(4)-C(7)	1.379(6)	O(7)-C(12)	1.212(7)
N(5)-C(3)	1.341(6)	N(11)-C(12)	1.308(8)
N(5)-H(5A)	0.8599	N(11)-C(13)	1.436(7)
N(5)-H(5B)	0.8599	N(11)-C(14)	1.455(8)
N(6)-C(1)	1.323(6)	C(12)-H(12)	0.9300
N(6)-C(5)	1.335(6)	C(13)-H(13A)	0.9600
N(7)-C(5)	1.480(7)	C(13)-H(13B)	0.9600
N(8)-C(10)	1.358(6)	C(13)-H(13C)	0.9600
N(8)-H(8A)	0.8602	C(14)-H(14A)	0.9600
N(8)-H(8B)	0.8599	C(14)-H(14B)	0.9600
N(9)-C(11)	1.425(7)	C(14)-H(14C)	0.9600
N(10)-C(9)	1.463(6)	C(1)-C(2)	1.408(6)

Table S12 Bond lengths [Å] and angles [] for compound 8

Table S13 Bond angles [] for compound 8

Atom	angles []	Atom	angles []
N(2)-N(1)-C(6)	102.5(4)	N(1)-C(6)-C(11)	129.9(5)
N(1)-N(2)-N(3)	130.5(4)	N(1)-C(6)-C(7)	111.7(4)
N(1)-N(2)-N(4)	115.6(4)	C(11)-C(6)-C(7)	118.4(5)
N(3)-N(2)-N(4)	113.9(4)	C(8)-C(7)-N(4)	130.2(5)
N(2)-N(3)-C(2)	103.0(4)	C(8)-C(7)-C(6)	124.2(4)
C(1)-N(4)-N(2)	106.5(4)	N(4)-C(7)-C(6)	105.5(4)

C(1)-N(4)-C(7)	148.9(5)	C(7)-C(8)-C(9)	116.0(5)
N(2)-N(4)-C(7)	104.6(4)	C(7)-C(8)-H(8)	122.0
C(3)-N(5)-H(5A)	108.7	C(9)-C(8)-H(8)	122.0
C(3)-N(5)-H(5B)	109.9	C(8)-C(9)-C(10)	124.2(5)
H(5A)-N(5)-H(5B)	109.5	C(8)-C(9)-N(10)	114.4(5)
C(1)-N(6)-C(5)	109.6(4)	C(10)-C(9)-N(10)	121.4(4)
O(2)-N(7)-O(1)	122.2(5)	N(8)-C(10)-C(9)	122.9(5)
O(2)-N(7)-C(5)	120.2(4)	N(8)-C(10)-C(11)	120.6(5)
O(1)-N(7)-C(5)	117.6(5)	C(9)-C(10)-C(11)	116.5(4)
C(10)-N(8)-H(8A)	107.7	C(6)-C(11)-N(9)	118.7(5)
C(10)-N(8)-H(8B)	110.2	C(6)-C(11)-C(10)	120.3(5)
H(8A)-N(8)-H(8B)	109.5	N(9)-C(11)-C(10)	120.9(4)
O(3)-N(9)-O(4)	121.0(5)	C(12)-N(11)-C(13)	121.3(5)
O(3)-N(9)-C(11)	118.3(5)	C(12)-N(11)-C(14)	121.4(6)
O(4)-N(9)-C(11)	120.7(5)	C(13)-N(11)-C(14)	117.4(6)
O(5)-N(10)-O(6)	120.8(5)	O(7)-C(12)-N(11)	126.4(6)
O(5)-N(10)-C(9)	120.2(5)	O(7)-C(12)-H(12)	116.8
O(6)-N(10)-C(9)	119.0(5)	N(11)-C(12)-H(12)	116.8
N(6)-C(1)-N(4)	127.0(4)	N(11)-C(13)-H(13A)	109.5
N(6)-C(1)-C(2)	128.7(5)	N(11)-C(13)-H(13B)	109.5
N(4)-C(1)-C(2)	104.2(5)	H(13A)-C(13)-H(13B)	109.5
N(3)-C(2)-C(3)	129.1(5)	N(11)-C(13)-H(13C)	109.5
N(3)-C(2)-C(1)	112.4(4)	H(13A)-C(13)-H(13C)	109.5
C(3)-C(2)-C(1)	118.4(5)	H(13B)-C(13)-H(13C)	109.5
N(5)-C(3)-C(2)	121.8(5)	N(11)-C(14)-H(14A)	109.5
N(5)-C(3)-C(4)	124.1(5)	N(11)-C(14)-H(14B)	109.5
C(2)-C(3)-C(4)	114.1(5)	H(14A)-C(14)-H(14B)	109.5
C(5)-C(4)-C(3)	120.2(5)	N(11)-C(14)-H(14C)	109.5
C(5)-C(4)-H(4)	119.9	H(14A)-C(14)-H(14C)	109.5
C(3)-C(4)-H(4)	119.9	H(14B)-C(14)-H(14C)	109.5
N(6)-C(5)-C(4)	128.9(5)	C(4)-C(5)-N(7)	117.6(5)
N(6)-C(5)-N(7)	113.5(5)		

Table S14. Torsion angles [] for compound 8

C(5)-N(1)-N(2)-N(4)	-174.92(16)	N(7)-C(1)-C(6)-C(5)	-175.76(17)
C(7)-N(1)-N(2)-N(4)	-1.7(2)	C(4)-C(5)-C(6)-N(3)	-177.49(19)
C(5)-N(1)-N(2)-N(3)	1.4(2)	N(1)-C(5)-C(6)-N(3)	0.0(2)
C(7)-N(1)-N(2)-N(3)	174.60(16)	C(4)-C(5)-C(6)-C(1)	-1.3(3)

N(4)-N(2)-N(3)-C(6)	174.2(2)	N(1)-C(5)-C(6)-C(1)	176.18(17)
N(1)-N(2)-N(3)-C(6)	-1.3(2)	C(11)-N(5)-C(7)-N(1)	178.04(19)
N(3)-N(2)-N(4)-C(8)	-174.37(19)	C(11)-N(5)-C(7)-C(8)	-0.9(3)
N(1)-N(2)-N(4)-C(8)	1.2(2)	N(2)-N(1)-C(7)-N(5)	-177.81(19)
O(2)-N(7)-C(1)-C(2)	-33.2(3)	C(5)-N(1)-C(7)-N(5)	-9.7(4)
O(1)-N(7)-C(1)-C(2)	148.1(2)	N(2)-N(1)-C(7)-C(8)	1.3(2)
O(2)-N(7)-C(1)-C(6)	143.53(19)	C(5)-N(1)-C(7)-C(8)	169.5(3)
O(1)-N(7)-C(1)-C(6)	-35.1(3)	N(2)-N(4)-C(8)-C(7)	-0.2(2)
C(6)-C(1)-C(2)-C(3)	0.4(3)	N(2)-N(4)-C(8)-C(9)	177.3(2)
N(7)-C(1)-C(2)-C(3)	177.16(18)	N(5)-C(7)-C(8)-N(4)	178.4(2)
C(6)-C(1)-C(2)-Cl(1)	-179.14(15)	N(1)-C(7)-C(8)-N(4)	-0.7(2)
N(7)-C(1)-C(2)-Cl(1)	-2.4(3)	N(5)-C(7)-C(8)-C(9)	0.6(3)
C(1)-C(2)-C(3)-C(4)	-2.1(3)	N(1)-C(7)-C(8)-C(9)	-178.53(18)
Cl(1)-C(2)-C(3)-C(4)	177.51(16)	N(4)-C(8)-C(9)-N(6)	0.4(4)
C(1)-C(2)-C(3)-N(8)	-178.91(18)	C(7)-C(8)-C(9)-N(6)	177.8(2)
Cl(1)-C(2)-C(3)-N(8)	0.7(3)	N(4)-C(8)-C(9)-C(10)	-177.2(2)
O(3)-N(8)-C(3)-C(4)	104.7(2)	C(7)-C(8)-C(9)-C(10)	0.2(3)
O(4)-N(8)-C(3)-C(4)	-73.8(3)	N(6)-C(9)-C(10)-C(11)	-178.1(2)
O(3)-N(8)-C(3)-C(2)	-78.2(3)	C(8)-C(9)-C(10)-C(11)	-0.5(3)
O(4)-N(8)-C(3)-C(2)	103.3(3)	C(7)-N(5)-C(11)-C(10)	0.5(3)
C(2)-C(3)-C(4)-C(5)	1.9(3)	C(7)-N(5)-C(11)-N(9)	180.00(17)
N(8)-C(3)-C(4)-C(5)	178.78(18)	C(9)-C(10)-C(11)-N(5)	0.1(4)
C(3)-C(4)-C(5)-N(1)	-176.9(2)	C(9)-C(10)-C(11)-N(9)	-179.32(18)
C(3)-C(4)-C(5)-C(6)	-0.2(3)	O(5)-N(9)-C(11)-N(5)	0.6(3)
N(2)-N(1)-C(5)-C(4)	176.5(2)	O(6)-N(9)-C(11)-N(5)	178.3(2)
C(7)-N(1)-C(5)-C(4)	8.4(5)	O(5)-N(9)-C(11)-C(10)	-179.8(2)
N(2)-N(1)-C(5)-C(6)	-0.7(2)	O(6)-N(9)-C(11)-C(10)	-2.2(3)
C(7)-N(1)-C(5)-C(6)	-168.9(3)	C(14)-O(8)-C(12)-O(7)	2.0(4)
N(2)-N(3)-C(6)-C(1)	-174.8(2)	C(14)-O(8)-C(12)-C(13)	-175.5(2)
N(2)-N(3)-C(6)-C(5)	0.8(2)	C(12)-O(8)-C(14)-C(15)	174.7(2)
C(2)-C(1)-C(6)-N(3)	176.6(2)	N(7)-C(1)-C(6)-C(5)	-175.76(17)
N(7)-C(1)-C(6)-N(3)	-0.3(3)	C(4)-C(5)-C(6)-N(3)	-177.49(19)

compound	hond —	d/	— ∠D H ∧
compound	bollu	D-HA	<d-na< td=""></d-na<>
	N5-H5AN3	2.7238	100.678
	N5-H5AO3	2.6832	90.871
2	N5-H5BO3	2.4659	106.348
	N5-H5A01	2.1436	168.279
_	N5-H5BN1	2.3709	167.251
	N5-H5AN1	3.1583	142.485
8 [.] DMF	N5-H5AN2	3.1733	123.405
	N5-H5A07	2.6198	112.059
	N5-H5AN3	2.8360	92.383
	N5-H5BN3	2.7771	102.913
	N5-H5B07	2.2225	148.456
	N8-H8AO5	2.0320	127.076
	N8-H8BO2	3.1248	70.850
	N8-H8AO2	2.2789	135.761
	N8-H8AN10	2.5302	108.988
	N8-H8AO4	3.2870	153.310
	N8-H8BO4	1.9216	128.553
	N8-H8BN9	2.5066	105.353

Table S15 Hydrogen bond lengths /Å and angles / ° of Compound 2 and Compound 8 DMF.

3. NMR spectra

Figure S1. 1H NMR of energetic compound 2

Figure S2. ¹³C NMR of energetic compound 2

Figure S3. ¹H NMR of energetic compound 5

Figure S4. ¹³C NMR of energetic compound 5

Figure S5. ¹H NMR of energetic compound 6

Figure S6. ¹³C NMR of energetic compound 6

210 200 190 150 170 160 150 140 130 120 110 100 90 50 70 60 50 40 30 20 10 0 -10 fl (ppm)

Figure S8. ¹³C NMR of energetic compound 7

Figure S9. ¹H NMR of energetic compound 8 (weak solubility in DMSO)

4. FT-IR spectra

Figure S10. IR spectra of compound 2

Figure S11. IR spectra of compound 8

5. DSC-TG curves and thermal dynamic parameters

Figure S12. DSC curves of BPTAP

Figure S13	. DSC curve	s of BPTAP
------------	-------------	------------

		Kissinger			Ozawa	
$\beta/K \cdot min^{-1}$	T_P/K	method			method	
		E _K /kJ mol ⁻¹	lnA	r	E _o /kJ mol ⁻¹	r
5	650.96					
10	664.17	247 52	27 74	0.0694	245 70	0.0700
15	665.59	247.32	37.74	0.9004	243.19	0.9709
20	669.9					

Table S16 Kinetic parameters of BPTAP obtained by Kissinger and Ozawa method

Figure S15. TG curves of compound 2

methoa						
		Kissinger			Ozawa	
$\beta/K \cdot min^{-1}$	T_P/K	method			method	
		E _K /kJ mol ⁻¹	lnA	r	E _o /kJ mol ⁻¹	r
5	616.85					
10	626.65	204 022	21 126	0 0008	214 45	0.0055
15	632.65	204.022	21.120	0.9998	214.43	0.9933
20	638.25					

 Table S17 Kinetic parameters of compound 2 obtained by Kissinger and Ozawa method

Figure S16. DSC curves of compound 8

Figure S17. TG curves of compound 8

		Kissinger		Ozawa		
$\beta/K \cdot min^{-1}$	T_P/K	method	method			
		E _K /kJ mol ⁻¹	lnA	r	E _o /kJ mol ⁻¹	r
5	593.39	298.42	45.687	0.96534	293.256	0.96742
10	602.63					
15	604.42					
20	605.92					

Table S18 Kinetic parameters obtained by Kissinger and Ozawa method

References

[1] Huynh, M.H.V.; Hiskey, M.A.; Chavez, D. E.; Gilardi, R. D. Tetraazapentalene chemistry: unexpected intramolecular electron rearrangement induced by highly reactive ψ -dinitroso substituents. *Angew. Chem. Int. Ed.* **2005**, *44*, 7089-7094.