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Characterization

Fourier transform infrared (FT-IR) spectra was measured within a 4000 to 400 cm−1 

region on a Bruker TENSOR-27 infrared spectrophotometer (KBr pellet). 1H NMR 

and 13C NMR in solution, solid-state 13C cross-polarization/magic-angle-spinning 

(CP/MAS) NMR and 29Si MAS NMR data were collected on Bruker AVANCE-500 

NMR Spectrometer operating at a magnetic field strength of 9.4 T. The resonance 
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frequencies at this field strength were 125 and 99 MHz for 13C NMR and 29Si NMR, 

respectively. A chemagnetics 5 mm triple-resonance MAS probe was used to acquire 

13C and 29Si NMR spectra. 29Si MAS NMR spectrum with high power proton 

decoupling was recorded using a π/2 pulse length of 5 μs, a recycle delay of 120 s and 

a spinning rate of 5 kHz. Elemental analysis was performed using an Elementar vario 

EL III elemental analyzer.

Thermogravimetric analysis (TGA) was performed under N2 using a TA SDTQ600 

at a temperature range of room temperature to 800°C with a heating rate of 10°C 

min−1. Field-emission scanning electron microscopy (FE-SEM) experiments were 

performed by using HITACHI S4800 Spectrometer. The particle size analysis was 

performed using a Zetasizer3000 instrument. Powder X-ray diffraction (PXRD) was 

carried out on a Riguku D/MAX 2550 diffractometer with Cu-Kα radiation, 40 kV, 20 

mA with the 2θ range of 10°~80° (scanning rate of 10° min−1) at room temperature. 

Nitrogen sorption isotherm measurement was performed on a Micro Meritics surface 

area and pore size analyzer. Before measurement, sample was degassed at 100°C for 

least 12 h. A sample of ca. 100 mg and a UHP-grade nitrogen (99.999%) gas source 

were used in the nitrogen sorption measurements at 77 K and collected on a 

Quantachrome Quadrasorb apparatus. BET surface area was determined over a P/P0 

range from 0.01 to 0.20. Nonlocal density functional theory (NL-DFT) pore size 

distribution was determined using the carbon/slit-cylindrical pore mode of the 

Quadrawin software. Ultraviolet absorption (UV) spectrum was determined with 

TU-1901 double beam UV-vis spectrophotometer. The fluorescence (excitation and 

emission) spectra of the samples were determined with a Hitachi F-7000 fluorescence 

spectrophotometer using a monochromated Xe lamp as an excitation source.
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Figure S1. TGA curve of IPF under N2 atmosphere with a heating rate of 10°C min-1

Figure S2. PXRD pattern of IPF
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Figure S3. FE-SEM image of IPF

Figure S4. Particle size distribution of IPF suspension in water (5.0 mM)



S-6

Figure S5. Stern–Volmer plot for IPF dispersion in the presence of I− (R2 = 0.997)

Figure S6. Plot of emission intensity at 400 nm versus the concentration of I− (1～10 

μM) 
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Figure S7. (a-b) Nitrogen adsorption-desorption isotherms (a) and pore size 

distribution curves (b) of IPF prepared with the reaction times at 12 h, 24 h, 36 h, and 

48 h. 
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Figure S8. (a, c, e) Fluorescence quenching spectra of IPF prepared with the reaction 

time at 12 h (a), 24 h (c), and 36 h (e) suspensions in water (0.1 mg/mL) with various 

concentrations of I− (0 ～ 1×10−3 mol/L, λex = 345 nm). The insets show the 

photographs of Stern–Volmer plot for IPF-12h (R2 = 0.927), IPF-24h (R2 = 0.977), 

IPF-36h (R2 = 0.952) suspensions in the presence of I−. (b, d, f) Plot of emission 

intensity of IPF prepared with the reaction time at 12 h (b), 24 h (d), and 36 h (f) 

suspensions versus the concentration of I− (1～10 μM).
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Figure S9. (a-b) The idealized geometry of IPF sensing Br− by placing one iodide ion 

outside (a) and inside the pore (b) optimized by Material studio 8.0 using LDA/PWC 

as the force field (black: carbon atom; white: hydrogen atom; brown: bromine atom; 

green: chlorine atom; yellow: silicon atom; red: oxygen atom). We hypothesize that 

no destruction of the cage silsesquioxane units occurred after the formation of porous 

structure.
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Figure S10. The pH effect on the detection performance of IPF dispersion in the 

absence and presence of I−

Figure S11. Stern–Volmer plot (0～600 μM) for the paper strips in the presence of I− 

(R2 = 0.9874)
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Figure S12. Plot of emission intensity at 405 nm versus the concentration of I− (1～

10 µM) 

Figure S13. BET plot of IPF prepared with the reaction time at 12 h (r = 0.999998, C 

= 12.429)
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Figure S14. BET plot of IPF prepared with the reaction time at 24 h (r = 0.999908, C 

= 173.655)

Figure S15. BET plot of IPF prepared with the reaction time at 36 h (r = 0.999988, C 

= 133.406)
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Figure S16. BET plot of IPF prepared with the reaction time at 48 h (r = 0.999901, C 

= 157.827)

Table S1. Porosity data of IPF prepared with the reaction times at 12 h, 24 h, 36 h, 

and 48 h.

IPF SBET
[a]/m2 g–1 Smicro

[b]/m2 g–1 Vtotal
[c]/cm3 g–1 Vmicro

[d]/cm3 g–1 Vmicro/Vtotal

IPF (12 h) 50 2.95 0.20 0.04 0.2

IPF (24 h) 113 0 0.36 0 0

IPF (36 h) 215 123 0.23 0.05 0.22

IPF (48 h) 379 227 0.53 0.10 0.19

[a] Surface area calculated from N2 adsorption isotherm using the BET method; [b] 

Microporous surface area calculated from N2 adsorption isotherm using t-plot method; 

[c] Total pore volume calculated at P/P0 = 0.99; [d] Micropore volume derived using 

the t-plot method based on the de Boer thickness equation. 


