Supplementary Information

Kinetic Investigation on the Cationic Polymerization of *o*-Phthalaldehyde: Understanding Ring-Expansion Polymerization

Anthony Engler, Paul A. Kohl*

School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.

*Corresponding author: kohl@gatech.edu

1.	General	Experimental	Details
----	---------	--------------	---------

2. Polymerization Data

S2 S4

1. General Experimental Details

Figure S1. Pictures of flow reactor parts. (a) syringe pump; (b) 316 stainless steel pipe, 1/16" OD x 0.014 in wall thickness; (c) PTFE luer-lock adapter and tubing, 12" long, 1/16" ID; (d) 316 stainless steel union tee for 1/16" OD pipe.

Figure S2. Picture of constructed stainless steel reactor portion.

Figure S3. Flow reactor set up during operation.

Table S1. Flow reactor parameters. See Figure S2 for identification of segment lines.

Length of segment 'A'	12 in	Volume	187 μL
Length of segment 'B'	10 in		
Length of segment 'C'	10 in		
Internal diameter of steel pipes	876 μm		
Surface area-to-volume ratio of segment 'A'	4571 m ⁻¹		

2. Polymerization data

Flow Polymerizations

τ _R (s)	Yield (%)	M _n (kDa)	Ð
2.00	4.3	40.8	2.02
4.00	24.3	68.7	1.96
7.00	30.9	73.6	1.88
10.00	34.3	77.4	1.67
20.04	47.8	80.9	2.03
29.93	66.6	89	1.85
44.93	72.5	129	2.04
59.93	80.7	133	2.08
90.00	85.8	137	1.84
121.78	89.6	188	1.94

Table S2. Polymerization data for the flow reactor experiments with [M]/[I] = 500 and T = -78°C.

Table S3. Polymerization data for the flow reactor experiments with [M]/[I] = 300 and T = -78°C.

τ _R (s)	Yield (%)	M _n (kDa)	Ð
2.00	23.7	34.2	2.47
4.00	40.4	50.5	2.32
7.00	51.5	66.2	2.01
10.00	57.1	63.6	1.81
20.04	70.5	64.8	1.74
29.93	77.6	77.8	2.29
44.93	82.5	81.7	2.16
59.93	85.8	99.2	2.10
80.34	88.9	101	1.81
100.05	92.2	137	1.87

Table S4. Polymerization data for the flow reactor experiments with [M]/[I] = 160 and T = -78°C.

τ _R (s)	Yield (%)	M _n (kDa)	Ð
1.00	8.97	66.7	2.24
2.00	45.5	126	2.10
4.00	56.1	139	2.07
7.00	78.9	170	2.08
10.00	85.9	198	2.01

20.04	90.4	244	2.06
29.93	92.3	252	2.26
44.93	94.3	276	1.94

Table S5. Polymerization	data for the flow reactor	r experiments with [N	4]/[I] = 50 and T = -78°C.
--------------------------	---------------------------	-----------------------	----------------------------

τ _R (s)	Yield (%)	M _n (kDa)	Ð
0.50	6.67	91.6	2.22
1.00	45.3	130	2.11
2.00	65.6	140	2.33
4.00	85.6	144	2.37
7.00	91.4	177	2.14
10.00	94.4	277	2.13

Table S6. Polymerization data for the flow reactor experiments with [M]/[I] = 160 and $T = -57^{\circ}C$. Sample with $\tau_R = 1.00$ did not have enough material for a GPC sample. Data points below the thick horizontal line are beyond the linear portion of the reaction and highlight the pinching reaction affects.

τ _R (s)	Yield (%)	M _n (kDa)	Ð
1.00	0.28	-	-
2.00	30.3	87	2.14
4.00	48.3	106	2.03
7.00	55.9	120	2.15
10.00	56.9	85.8	2.08
20.00	55.5	68.5	1.95

Table S7. Polymerization data for the flow reactor experiments with [M]/[I] = 160 and T = -67°C.

τ _R (s)	Yield (%)	M _n (kDa)	Ð
1.00	2.91	40	2.87
2.00	37.3	122	2.14
4.00	62.4	154	2.20
7.00	70.3	155	2.17
10.00	78.7	174	2.09

Figure S4. Equilibrium batch polymerization data systematically varying the [M]₀ values to show that large polymer is formed before this kinetics transition, and therefore likely not due to cyclic critical concentrations as given by Jacobson-Stockmayer theory.