Supplementary files

Title: Smart Hydrogel-based DVDMS/bFGF Nanohybrids for Antibacterial Phototherapy with Multiple Damaging-sites and Accelerated Wound Healing

Authors: Bingjie Mai¹, Mengqi Jia¹, Shupei Liu¹, Zonghai Sheng², Min Li¹, Yiru Gao¹, Xiaobing Wang¹, Quanhong Liu^{1*}, Pan Wang^{1*}

Affiliation:

Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, Shaanxi, China

²Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

Corresponding author: Pan Wang & Quanhong Liu

E-mail: Pan Wang, wangpan@snnu.edu.cn; Quanhong Liu, lshaof@snnu.edu.cn

Telephone: + 86-29-8531 0275

Materials and methods

Characterization of PLGA-bFGF nanoparticles

PLGA-bFGF nanoparticles (PLGA-bFGF NPs) were prepared by the double emulsion-solvent evaporation method. Briefly, bFGF and bovine serum albumin (BSA) solutions were poured into PLGA dichloromethane. The primary emulsion was generated by a high-speed homogenizer (FJ200-SH, Shanghai suoying instruments co., LTD). Afterwards, the resultant emulsion was added to PVA solution and homogenized to obtain the multiple emulsion, and then the emulsion droplets were solidified at room temperature. The NPs were collected by centrifugation and obtained after freeze-drying. The morphology of the NPs was observed using SEM (SU8220, HITACHI, Japan). The Zeta potential was determined by Delsa Nano C Size/Zeta Potential Analysis Instrument (Beckman Instruments, German). The FT-IR spectra of PLGA-BSA, BSA and PLGA were recorded in the range of 400-4000 cm⁻¹ using a Perkin Elmer Frontier infrared spectrometer. Stability studies were obtained by detecting the size of PLGAbFGF stored in PBS, Feta calf serum (FBS) and DMEM culture medium (DMEM CM). The PLGA-NPs and CSDP hydrogels were placed in 2 ml of PBS (pH 7.4 and pH 6.8) and incubated with shaking (100 rpm) at 37 °C for 18 days. At designated time point, the supernatant was collected and equal amount of fresh medium was added to each sample. Adopting the ELISA Assay Kit to detect the bFGF concentration in releasing media.

Biocompatibility evaluation of the CSDP

Hemolytic activity was determined by incubating suspensions of human red blood cells with CSDP. Red blood cells were rinsed several times in PBS by centrifugation for 3 min at 3000 g until the OD of the supernatant reached the OD of the control. Red blood cells were counted by a hemocytometer and adjusted to $7.7 \times 10^6 \pm 0.3 \times 10^6$ cells/ml. Red blood cells were then incubated at room temperature for 1 h in 2% Triton X-100 (Positive control), in PBS (Control), or with different hydrogels. The samples were then centrifuged at 10000 g for 5 min, the supernatant was separated from the pellet, and its absorbance measured at 570 nm. The relative optical density compared

to that of the suspension treated with PBS was defined as the percentage of hemolysis. The cytotoxicity was measured by employing a direct contact test between hydrogels and NIH3T3 cells. NIH3T3 cells were seeded in 96-well plate at a density of 10000 cells/well. After cultured for 24 h, the hydrogels were introduced into the wells. The cell proliferation under the hydrogel was evaluated by CCK 8 Kit and calcein AM/PI staining after 12 h and 24 h.

The Balb/c mouse back skin was shaved 24 h before the experiment to allow for full recovery from possible disturbance to the stratum corneum by the shaving process. The CSDP was administrated onto the shaved area. The mice administrated with PBS served as a control group. After 14 days treatment, all the mice were sacrificed, and the treated areas were collected for histological examination. To fix the tissue, the skin samples were immersed into 10% formalin for 18 h and then embedded in paraffin. H&E staining and TUNEL assay were used to evaluate the cellular morphology change and apoptosis, respectively. Tissue slices were imaged with fluorescence microscopy.

Evaluation of the antibacterial activity of free DVDMS-PACT and antibiotic

S. aureus and MDR-*S. aureus* suspensions (10^8 CFU/ml) were respectively added to free DVDMS (2, 5, 10 µg/ml) prepared in a 24-well flat-bottomed plate, and incubated for 75 min at 37 °C. After irradiating with different laser doses (10, 20, 30 J/cm²), CFUs were counted. For comparison, suspensions of bacteria were parallelly incubated with different concentration of antibiotics-Levofloxacin, Ciprofloxacin and Clindamycin for 75 min at 37 °C, CFUs were counted, respectively.

Effect of PLGA-bFGF on wound healing

To verify the efficacy of PLGA-bFGF NPs in promoting wound healing, 0.785 cm² circle full-thickness wound in skin was made on the dorsal surface of each mouse. Subsequently, PLGA-bFGF NPs were applied to each of the following days to observe the healing of the skin. For evaluation of skin regeneration in wound area, the regenerated skin collected on 21 day was used to perform H&E and Masson trichrome stain. Histopathological changes were observed using microscopy. Subsequently, the regenerated skins from the wound site were also excised at 7, 14 and 21 day for immunofluorescence staining. The fixed and frozen sections were stained with bFGF

antibody (Abcam). FITC-conjugated goat anti-rabbit IgG (Abcam) was used as the secondary antibody to reveal bFGF expression. The nuclei were counterstained with DAPI mounting solution. Slides were observed under a fluorescence microscope.

Figure S1. Characterization of PLGA-bFGF nanoparticles. (A) SEM image of PLGA-bFGF. Scale bar=500 nm. (B) High magnification image of PLGA-bFGF. Scale bar= 200 nm. (C) DLS particle size distribution of PLGA-bFGF. (D) Zeta potential of Blank PLGA and PLGA-bFGF. (E) FT-IR spectra of Glu, PLGA, BSA and PLGA-BSA. (F) Changes in diameters of PLGA-bFGF after storage at 4 °C and 37 °C for different times in the presence of PBS, FBS and DMEM CM. (G) *In vitro* release profiles of the PLGA-bFGF and CSDP hydrogel at pH values of 7.4 and 6.8. Data are expressed as mean ± SD of three independent experiments.

Figure S2. Characterization of CSDP hydrogel. (A) Parameters and gelation time of hydrogel samples. (B) Synthesis scheme of CS hydrogel. (C) Identification of ionic bonds in the synthetic reactions. a) CMCS-SA, b) CMCS-SA-CMC, c) CMCS-SA-Triethylamine. (D) Bacteria counts of *S. aureus*/MDR-*S. aureus* with PLGA-bFGF, CS hydrogel and CSDP hydrogel treatment. Right inset: photographs shows the inhibition zone of CSDP hydrogel against *S. aureus*/MDR-*S. aureus*. (E) Equilibrium swelling ratio of hydrogels after swelling for 24 h in different PBS (pH 1-10). (F) Effects of pH change and incubation time on the swelling quality of CSDP hydrogel. Absorption spectra (G) and Fluorescence spectra (H) of Free DVDMS and DVDMS released from CSDP hydrogel. (I) Singlet oxygen production of free DVDMS and DVDMS released from CSDP hydrogel. Data are expressed as mean \pm SD of three independent experiments, **p*<0.05, **p*<0.01 *versus* Control, #*p*<0.05 between groups.

Figure S3. Antibacterial activity of different treatment for *S. aureus*/MDR-*S. aureus*. CFU analysis of MDR-*S. aureus* (A) and *S. aureus* (B) after free DVDMS-PACT treatment. (C) Bacterial viability of levofloxacin for *S. aureus*/MDR-*S. aureus*. (D) Bacterial viability of ciprofloxacin for *S. aureus*/MDR-*S. aureus*. (D) Bacterial viability of ciprofloxacin for *S. aureus*/MDR-*S. aureus*. Bacterial viability of clindamycin for MDR-*S. aureus* (E) and *S. aureus* (F). (G) Bacterial viability of free DVDMS-PACT and CSDP Hydrogel-PACT for *S. aureus*/MDR-*S. aureus*. (H) Bacterial survival percentage of (C). (I) Bacterial survival percentage of (D). (J) Bacterial survival percentage of (E). (K) Bacterial survival percentage of (F). Data are expressed as mean \pm SD of four independent experiments, **p*<0.05, **p*<0.01 *versus* Control, #*p*<0.05 between groups.

Figure S4. Antibacterial activity of CSDP-PACT for *S. aureus*. Flow cytometry (A) and fluorescence microscopy (B) combined with SYTO 9/PI staining to illustrate bacterial viability. Intracellular ROS generation of MDR-*S. aureus* (C) and *S. aureus* (D) detected by DCFH-DA as measured by flow cytometry. Data are expressed as mean \pm SD of three independent experiments, Scale bar=50 µm.

Figure S5. (A) Effect of DVDMS-PACT on MDR-S. *aureus*. (B) Selected MDR-S. *aureus* genes that displayed altered expression after DVDMS-PACT treatment as determined by RT-PCR. Data are expressed as mean \pm SD of three independent experiments, *p<0.05, **p<0.01 versus Control.

Figure S6. *S. aureus* biofilms disrupted by CSDP-PACT. (A) SEM images of *S. aureus* biofilms with different treatment. Scale bar=10 μ m. (B) 3D confocal images of *S. aureus* biofilms with different treatment.

Figure S7. Effect of PLGA-bFGF on wound healing. Skin wound healing rate (%) (A) and representative images of wounds (B) in the different treatment groups. (C) Representative photographs of skin wound tissues on day 7, day 14 and day 21 after H&E, Masson and bFGF (green) immunofluorescence. Data are expressed as mean \pm SD of four independent experiments, **p*<0.05, ***p*<0.01 *versus* Model.

Figure S8. Representative bacterial colonies with different treatment.

Figure S9. Evaluation of side effects using CSDP-PACT. (A) H&E staining of heart, liver, spleen, lung, and kidney slices after 21-days treatment for the different groups. Scale bar=100 μ m. (B) Body weight changes after different treatments. (C) Weights of major organs in the mice. Data shown as means \pm SD from four mice in each group.

KECC	Conolid	roadcount PACT	rondcount Control	log2FoldChange	mal	nadi ConoNamo	Descrition
REGG	Gene Iu	127.8010872	Teadcount_Control	2 4722	2 2 7 E 22	Fragi Generatie	Descrition
	gene2/91	127.8910872	1419.339024	-3.4722	2.37E-23	6.05E-20 SAOUHSC_02969	arginine deiminase
	gene2790	193.0501900	1033./25288	-2.4208	1.11E-13	2.84E-11 SAOUHSC_02968	ornithine carbamoyl transferase
	gene2788	618.9552296	1908.319759	-1.6244	1.20E-07	1.17E-05 SAOUHSC_02965	carbamatekinase
	gene2019	21.82074323	99.64348862	-2.1911	1.26E-06	9.18E-05 SAOUHSC_02134	nitricoxide synthase oxygenase subunit
	gene2332	132.8860901	420.3138234	-1.6613	6.11E-06	0.00034612 SAOUHSC_02468	acetolactate synthase
	gene1275	75.51770936	19.75005169	1.935	5.93E-05	0.0021923 SAOUHSC_01366	anthranil ate synthase component I
	gene403	1613.484711	653.8092783	1.3032	7.84E-05	0.0027025 gltD	glutamate synthase subunitbeta
Amino acids	gene2020	17.16669899	59.90062393	-1.803	0.00014905	0.0044212 SAOUHSC_02135	hypothetical protein
	gene2417	513.9483605	1207.210438	-1.232	0.00016979	0.0048109 ureC	urease subunitalpha
	gene1766	3949.449721	2090.079793	0.91809	0.0013662	0.022059 SAOUHSC_01901	putativetranslaldolase
	gene1276	36.23381815	11.303976	1.6805	0.0014647	0.02267 SAOUHSC_01367	anthranilate synthase component II
	gene2674	19.59400853	62.04700106	-1.6629	0.0014732	0.02267 SAOUHSC_02840	L-serinedehydrataseiron-sul fur-dependentsubunitbeta
	gene402	4186.343445	1950.873409	1.1016	0.0015223	0.023115 SAOUHSC_00435	glutamatesynthasel argesubunit
	gene1277	85.19393066	31.64775602	1.4286	0.0029506	0.037477 trpD	anthranil ate pho sphori bo syl transferase
	gene745	3715.005868	6899.643548	-0.89316	0.00394	0.045895 tpiA	triosephosphateisomerase
	gene2357	212.3481249	1140.073798	-2.4246	2.85E-12	5.19E-10 rpsE	30S ribosomal protein S5
	gene2361	11.00861108	58.72674801	-2.4154	1.51E-05	0.0007536 rpsN	30S ribosomal proteinS14
Ribosome	gene2356	8.077682908	50.2580743	-2.6373	1.61E-05	0.00079053 rpmD	50S ribosomal proteinL30
	gene2359	176.0027938	1359.335493	-2.9492	9.96E-05	0.0033418 rplF	50S ribosomal proteinL6
	gene2369	123.446904	1035.421576	-3.0683	0.0003053	0.0072113 rplV	50S ribosomal proteinL22
Peptido glycan	gene1905	1996.235297	560.1942698	1.8333	1.24E-07	1.17E-05 SAOUHSC_02012	glycosyl transferase
bio synth esis	gene1076	145.026976	343.6440949	-1.2446	0.00028194	0.0068499 murD	UDP-N-acetylmuramoyl-L-alanyl-D-glutamatesynthetase
Pentose phosphate	gene2247	1475.274422	564.288045	1.3865	3.57E-05	0.001517 SAOUHSC_02379	2-deoxyribose-5-phosphateal dolase
pathway	gene1766	3949,449721	2090.079793	0.91809	0.0013662	0.022059 SAOUHSC 01901	putativetranslaldolase

 Table S1: Differential genes in the KEGG pathway.

Target gene	Primer	Sequence (5'-3')		
16S rRNA	16S rRNA for	CGTGCTACAATGGACAATACAAA		
	16S rRNA rev	ATCTACGATTACTAGCGATTCCA		
Gene 2365-	Gene 2365 for	TCTGCAAGGTCGCGTTGTTAGC		
rpsQ	Gene 2365 rev	CTTGGACAGCGGACGGCATTC		
Gene 2790-	Gene 2790 for	GTGCAGCGTTTACAGTTGCG		
SAOUHSC_02968	Gene 2790 rev	CCACACCGGTACACCAGAGA		
Gene 0718-	Gene 0718 for	CGTTCAGTTACTCGGCGGTATGG		
secA	Gene 0718 rev	TTCAGGTAAGCAGGCAGCGTTG		
Gene 1275-	Gene 1275 for	TCAACGTGGTGAGACGACAC		
SAOUHSC_01366	Gene 1275 rev	AGCATACGATGTTCGCTGCAT		
Gene 1276-	Gene 1276 for	TGGTCCAGGGCATCCATTAGA		
SAOUHSC_01367	Gene 1276 rev	CGTGCATAACCTTGTCGCCT		
Gene 2357-	Gene 2357 for	CGTGAAGTTCCAGCAGCGATCC		
rpsE	Gene 2357 rev	ATTGCACCACCGGCGATGATAC		
Gene 0160-	Gene 0160 for	AGGACCTGCTGCTGATTTTGA		
SAOUHSC_00173	Gene 0160 rev	AGGTTCAGCATTGTGTCCTTCA		
Gene 2256-	Gene 2256 for	TCAGTCAGCGAAGCAAGTGTTGG		
SAOUHSC_02388	Gene 2256 rev	AGGATGATTCGCGTGATGTATGGC		
Gene 2257-	Gene 2257 for	GGCGGTCTCCTTGCTAACAG		
SAOUHSC_02389	Gene 2257 rev	TGCGACAAGTGCAACACCTA		
Gene 2791-	Gene 2791 for	GACCAGGCGTTGTAGTGACTTACG		
SAOUHSC 02969	Gene 2791 rev	TCCACGTACCAACTCGCTACCAG		

 Table S2. Primers used in real-time RT-PCR with SYBR green probes.

		Fold change ± SD		
Gene	Description	RT-PCR	RNA-seq	
Gene 2365	30S ribosomal protein S17	-6.60	-2.6873	
rpsQ				
Gene 2790	Ornithine carbamoyl	-4.94	-2.4208	
SAOUHSC_02968	transferase			
Gene 0718	Preprotein translocase subunit	5.77	1.4466	
secA	SecA			
Gene 1275	Anthranilate synthase	1.93	1.935	
SAOUHSC_01366	component I			
Gene 1276	Anthranilate synthase	0.69	1.6805	
SAOUHSC_01367	component II			
Gene 2357	30 S ribosomal protein S5	-0.50	-2.4246	
rpsE				
Gene 0160	azoreductase	1.83	2.4427	
SAOUHSC_00173				
Gene 2256	Hypothetical protein	1.77	3.6516	
SAOUHSC_02388				
Gene 2257	Cation efflux family protein	1.30	3.4137	
SAOUHSC_02389				
Gene 2791	Arginine deiminase	-2.81	-3.4722	
SAOUHSC 02969				

Table S3. Selected MDR-S. aureus genes that displayed altered expression afterDVDMS-PACT treatment as determined by microarray analysis and RT-PCR.