Supporting Information:

Unraveling the RNA binding properties of the Iron-Sulfur Zinc Finger Protein CPSF30

Jordan D. Pritts^a, Matthew S. Hursey^a, Jamie L. Michalek^a, Sharon Batelu^b, Timothy L. Stemmler^b, Sarah L. J. Michel^{a*}

^aDepartment of Pharmaceutical Sciences, School of Pharmacy, University of Maryland,

Baltimore, Maryland 21201-1180, United States

^bDepartment of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201

*To whom correspondence should be addressed. Phone: (410) 706-7038. Fax: (410) 706-

5017. Email: smichel@rx.umaryland.edu

Figure S3. (A) Plot of the change in absorption as Co(II)-CPSF30-F2F3 is titrated with ZnCl₂. The experiment was performed in 200 mM HEPES, 100 mM NaCl buffer at a pH of 7.5. (B) Plot of the change in absorption spectrum at 650 nm as a function of concentration as zinc(II) is added to Co(II)-CPSF30-F2F3. The data was fit to yield an upper limit dissociation constant, K_d , of 3.38 (± 2.49) x 10⁻¹³ M. The solid line represents a nonlinear least-squares fit to the competitive binding model.

Figure S5. Fluorescence Anisotropy (FA) monitored binding of Zn(II)-CPSF30-F2F3 to ARE₁₁ (bright red diamonds), AAU₉ (black circles), AAU₁₂ (orange squares), AAU₂₄ (green diamonds), α -syn₂₄ (sky blue triangle), three other α -syn₂₄ stocks (pink circles, purple squares, line green triangles), and α -syn₃₀ (burnt red diamonds). RNAs ARE₁₁, AAU₉, AAU₁₂, AAU₂₄, and α -syn₂₄ were prepared in 200 mM HEPES, 100 mM NaCl, 0.05 mg/mL bovine serum albumin (BSA), pH 7.5. Three additional RNA stocks of α -syn₂₄ and one of α -syn₃₀ were prepared in 200 mM HEPES, 50 mM NaCl, 0.05 mg/mL bovine serum albumin (BSA), pH 8.0. No binding is observed using any RNAs.