An Empirical Model for the Design of Batteries with High Energy Density

Yingqiang Wu,^{§†} LeqiongXie,^{\perp †} Hai Ming,^{&†} Yingjun Guo,[£] Jang-Yeon Hwang,^ζ Wenxi Wang,[‡] Xiangming He,^{\perp} Limin Wang,[§] Husam N. Alshareef, ^{‡*} Yang-Kook Sun^{ζ*} and Jun Ming^{§*}

§ State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.

[⊥] Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, P.
 R. China.

[&] Research Institute of Chemical Defense, Beijing 100191, P. R. China.

[£] Huzhou Kunlun Power Battery Materials Co., LTD. Huzhou, 313000, P. R. China.

⁵ Department of Energy Engineering, Hanyang University, Seoul 133-791, Republic of Korea.

[‡] Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.

[†] These authors contribute equally

* To whom correspondence should be addressed: <u>husam.alshareef@kaust.edu.sa;</u> <u>yksun@hanyang.ac.kr; jun.ming@ciac.ac.cn</u>.

Figure S1. Dependence of energy density (E) on the k value under two different ΔU values: $\Delta U = 3.7$ and $\Delta U = 3.3$.

Figure S2. Dependence of E on (a) k value in C || LiFePO₄ battery, (b) C_n value in Si/C || LiFePO₄ battery, and (c) k value in C || NCM811 battery.

Figure S3. Variation of E value with anode capacity (C_n) and ΔU value in a hypothetical high voltage battery, where the LiNi_{0.5}Mn_{1.5}O₄ is used as cathode, and the k, C_p and $\chi \frac{\epsilon_n}{\epsilon_p}$ values are fixed at 0.55, 130 Ah kg⁻¹, and 1.1, respectively.

Figure S4. Strategy and parameters for designing the Li-S battery with energy densities ranging from 300 Wh kg⁻¹ to 500 Wh kg⁻¹ based on the proposed model.

Table S1. Estimated energy density of LIBs using the NCM811 cathode combined with various anodes. The following parameters were fix for the calculation: k = 0.55, $C_p = 200$ Ah kg⁻¹, $\chi \frac{\epsilon_n}{\epsilon_p} = 1.1$

Kind Batteries	C_n / Ah kg ⁻¹	ΔU / V	E / Wh kg ⁻¹
C NCM811	340	3.6	240.4
Si/C NCM811	800	3.3	284.7
SnO ₂ /C NCM811	800	2.7	232.9
Co ₃ O ₄ /C NCM811	800	2.0	172.5

Electrode material	Potential (vs. K/K ⁺) / V	Capacity / Ah kg ⁻¹	Ref.
Graphite	0.01-1.5	273	[2]
Hard carbon microspheres	0.01-1.5	262	[2]
Graphene	0.6	300	[4]
Nitrogen-doped graphene	0.01-1.5	330	[2]
Sb	0.7	600	[5]
FePO ₄	1.5-3.5	156	[7]
KFe4 ^{III} [Fe ^{II} (CN) ₆] (PB)	2.0-4.5	110	[6]
K _{1.75} Mn[Fe(CN) ₆] _{0.93} ·0.16H ₂ O	2.0-4.5	141	[3]
P3-type K _{0.5} MnO ₂	1.5-4.2	140	[3]
$K_{0.7}Fe_{0.5}Mn_{0.5}O_2$	1.5-4.0	178	[3]
KVPO ₄ F	2.0-4.8	72	[1]

Table S2. Electrode materials commonly used in K-ion battery¹⁻⁷

		Ч. Ч
Battery	$\Delta U / V$	E / Wh kg ⁻¹
$C \parallel FePO_4$	1.9	78.1
$C \parallel PB$	3.45	95.8
$Sb \parallel FePO_4$	1.5	88.2
Sb PB	3.05	106.4
$C \parallel K_2 Mn [Fe(CN)_6]^8$	3.5	126.4

Table S3. Estimated energy density of KIBs calculated with k = 0.5 and $\chi \frac{\epsilon_n}{\epsilon_p} = 1.1$.

References

- Hosaka, T.; Kubota, K.; Hameed, A. S.; Komaba, S. Research Development on K-Ion Batteries. *Chem. Rev.* 2020, DOI:10.1021/acs.chemrev.9b00463 10.1021/acs.chemrev.9b00463.
- Zhang, J.; Liu, T.; Cheng, X.; Xia, M.; Zheng, R.; Peng, N.; Yu, H.; Shui, M.; Shu, J. Development Status and Future Prospect of Non-Aqueous Potassium Ion Batteries for Large Scale Energy Storage. *Nano Energy* 2019, 60, 340-361.
- Sha, M.; Liu, L.; Zhao, H.; Lei, Y. Review on Recent Advances of Cathode Materials for Potassium-ion Batteries. *Energy Environ. Mater.* 2020, 0, 1-11.
- Ju, Z.; Zhang, S.; Xing, Z.; Zhuang, Q.; Qiang, Y.; Qian, Y. Direct Synthesis of Few-Layer F-Doped Graphene Foam and Its Lithium/Potassium Storage Properties. *ACS Appl. Mater. Interfaces* 2016, *8*, 20682.
- 5. McCulloch, W. D.; Ren, X.; Yu, M.; Huang, Z.; Wu, Y. Potassium-Ion Oxygen Battery based on a High Capacity Antimony Anode. *ACS Appl. Mater. Interfaces* **2015**, *7*, 26158.
- Pramudita, J. C.; Sehrawat, D.; Goonetilleke, D.; Sharma, N. An Initial Review of the Status of Electrode Materials for Potassium-Ion Batteries. *Adv. Energy Mater.* 2017, *7*, 1602911.
- Mathew, V.; Kim, S.; Kang, J.; Gim, J.; Song, J.; Baboo, J. P.; Park, W.; Ahn, D.; Han, J.; Gu, L. Amorphous Iron Phosphate: Potential Host for Various Charge Carrier Ions. *NPG Asia Mater.* 2014, 6, e138.
- Hosaka, T.; Kubota, K.; Kojima, H.; Komaba, S. Highly Concentrated Electrolyte Solutions for 4 V Class Potassium-Ion Batteries. *Chem. Commun.* 2018, 54, 8387.