2	Efficient Removal of Sulfur Dioxide from Flue Gas
3	through Liquid Catalytic Oxidation Using Copper
4	Tailing as the <i>in situ</i> Iron Ion Donator
5 6 7	Lei Tao, Xueqian Wang *, Langlang Wang, Yixing Ma, Yingjie Zhang, Ping Ning
8	Faculty of Environmental Science and Engineering, Kunming University of Science
9	and Technology, Kunming 650500, China
10	
11 12	
12	
14	
15	Figure S1. A copper pyrometallurgical process from Cu-Fe-S ores.
16	Figure S2. FT-IR spectra of raw and spent copper tailings.
17	Figure S3. SEM/EDS images of raw and spent copper tailing.
18	

Appendix: Supporting Information

^{*}Corresponding author:

E-mail: wxq3000@aliyun.com. Tel/Fax: +86 13888183303.

1 Copper pyrometallurgical process

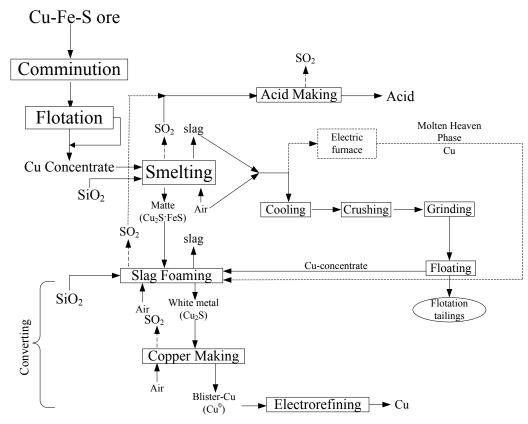
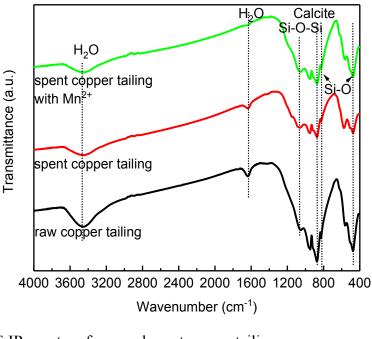


Fig. S1. A copper pyrometallurgical process from Cu-Fe-S ores [1].

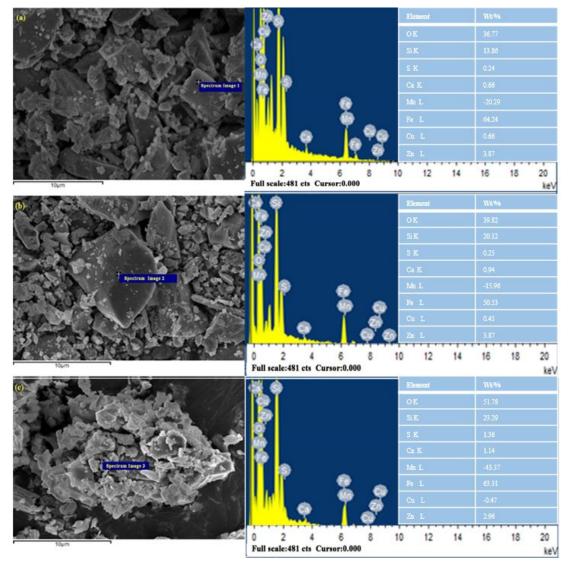

4

5 **Reference**

- 6 [1] F. Carranza, N. Iglesias, A. Mazuelos, R. Romero, O. Forcat, Ferric leaching of
- 7 copper slag flotation tailings, Minerals Engineering, 22(2009) 107-110.

1 FT-IR spectroscopy

The functional groups of the samples were identified using Fourier-transform 2 infrared spectrometer (FTIR, Bruker Vertex 70). The FT-IR patterns of the copper 3 tailing and the spent copper tailing are shown in Figure S1. As shown in Figure S1, the 4 absorption peaks at around 1640 cm⁻¹ are ascribed to O-H bending vibration, the 5 absorption peaks at around 1097 cm⁻¹ are ascribed to the symmetrical stretching 6 vibration of Si-O-Si, and the FT-IR bands at about 798 and 467 cm⁻¹ are ascribed to the 7 symmetrical stretching vibration of Si-O bonds ^{11, 22}. Combined with the raw and spent 8 copper tailing, the intensity of Si-O stretching vibration weakened slightly, other main 9 10 absorption peaks remained almost identical, confirming that the dissolution of Fe₂SiO₄ and the main structure of copper tailing was stable during the flue gas desulfurization 11 12 process.



14 **Figure S2.** FT-IR spectra of raw and spent copper tailings.

15

13

1 SEM-EDS

- 3 Figure S3. SEM/EDS images of raw and spent copper tailing. (a) raw copper tailing,
- 4 (b) spent copper tailing after 10 h flue gas desulfurization, and (c) spent copper tailing
- 5 combined with Mn^{2+} after 10 h flue gas desulfurization.