Supporting Information

Methanol-to-Olefins Conversion over Small-Pore DDR Zeolites: Tuning the

Propylene Selectivity via the Olefins-Based Catalytic Cycle

Jia Hua,¹ Xinglong Dong,² Jianjian Wang,³ Cailing Chen,² Zhan Shi,¹ Zhaohui Liu,^{2,*} Yu Han^{2,*}

- ¹ State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
- ² King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Advanced Membranes and Porous Materials Center, Thuwal 23955-6900, Saudi Arabia
- ³ Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 400044, P. R. China

Correspondence to: zhaohui.liu@kaust.edu.sa; yuu.han@kaust.edu.sa;

Catalyst	Si/Al	$S_{\text{BET}}{}^{\text{b}}$	Total	V _{Micpore} d	$V_{\text{Ext}}^{\ \text{e}}$	$S_{Micpore}^{f}$
	ratio ^a	m²/g	Volume ^c	cm ³ /g	cm ³ /g	m²/g
			cm ³ /g			
DDR_22	22	276	0.147	0.088	0.059	230
DDR_43	43	296	0.173	0.097	0.076	234
DDR_87	87	263	0.140	0.085	0.055	228
DDR_172	172	248	0.148	0.078	0.070	189
DDR_172*	168	213	0.138	0.053	0.085	143

Table S1. Textural properties of DDR zeolites with different Si/Al ratios.

^a Si/Al ratio was tested by ICP-OES

^b BET surface area

^c Total pore volume determined at the absorption pressure $P/P_0 = 0.95$.

^d The volume of micropores (< 1.5 nm) calculated by the NLDFT method.

^e The external pore volume cauculated from the total volume and the volume of micropores.

^f Surface area of micropores calculated by the NLDFT method.

DDR samples	DDR_22	DDR_43	DDR_87	DDR_172	DDR_172*
MeOH flow rate (mL/min)	0.0016	0.002	0.0011	0.001	0.0012
Carry gas (He) flow rate (mL/min)	20	20	20	20	20
Catalyst weight (mg)	11	15	20	30	50
SiC weight (mg)*	110	100	105	95	80
WHSV (g _{MeOH} g _{Cat} ⁻¹ h ⁻¹)	6.9	6.3	2.6	1.6	1.1
MeOH conversion (%)	51.2	51.6	46.4	47.1	52.9

Table S2. Reaction conditions used for DDR zeolites.#

[#] The reactions are performed at 400 °C and 10 mins on stream

* SiC is added to dilute the catalyst and its amount is adjusted to keep the length of catalyst bed identical

Si/Al in the HZSM-5 samples	55	115	651	1119	1580
DME pressure /kPa	55	57	54	51	49
Total feed pressure /kPa	104	105	106	103	104
Space-velocity /mol C (mol Al-s) ⁻¹	0.36	2.40	3.98	3.23	2.80
Net carbon converted /%	47	48	48	46	52

Table S3. Reaction conditions used for HZSM-5 zeolites.#

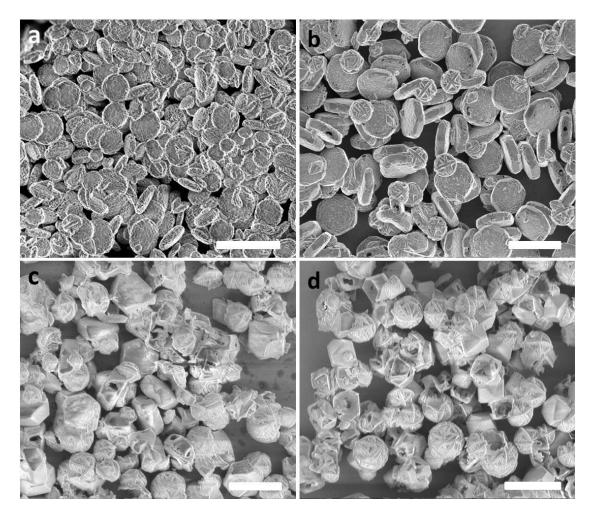

[#] Crystallite size of HZSM-5: 150–240 nm; reaction temperature: 350 °C. See more details in reference 31.

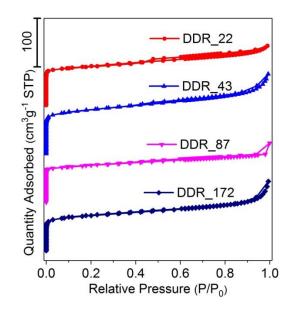
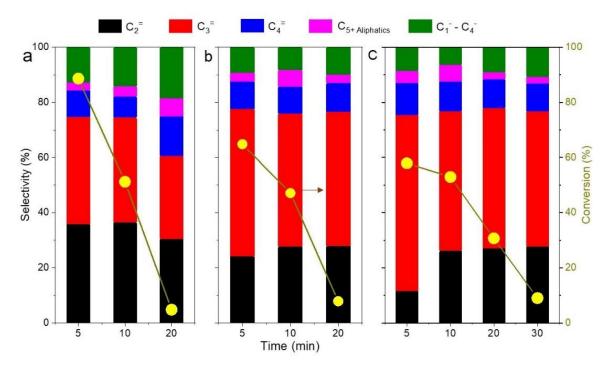
Table S4. Conversion-weighed average selectivity over the entire deactivation cycle.

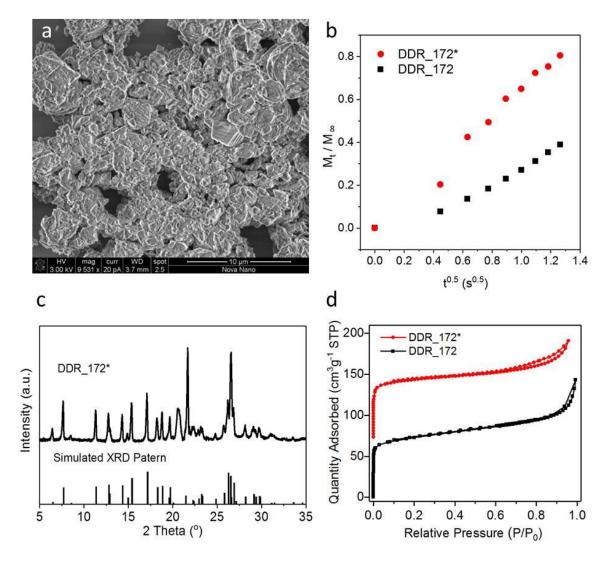
DDR samples	DDR_22	DDR_172	DDR_172*
Amount of converted MeOH (mmol)	19.38	10.33	17.38
Yield of $C_2^{=} / C_3^{=} / C_4^{=} /$	6.88 / 7.23 / 1.79 /	2.75 / 5.17 / 1.02 /	4.04 / 9.32 / 1.89 /
C ₅₊ / C ₁₋₄ - (mmol C)	0.74 / 2.75	0.48 / 0.90	0.77 / 1.36
Selectivity of $C_2^{=}/C_3^{=}/$	35.48 / 37.28 / 9.23	26.64 / 50.07 / 9.91	23.27 / 53.64 /
$C_4^{=} / C_{5+} / C_{1-4^{-}} (C\%)$	/ 3.84 / 14.17	/ 4.64 / 8.74	10.85 / 4.43 / 7.81

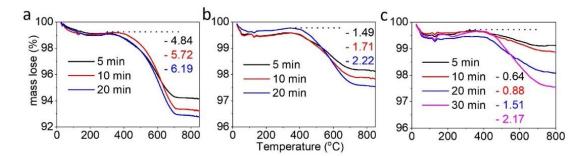
Table S5. Quantification of residual species (overall aliphatics and MBs) analyzed in Figure 5 by integrating their peak areas in the GC profiles.

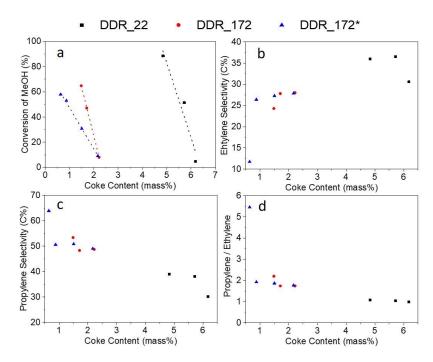
DDR samples	Area of Aliphatics	Area of MBs	MBs/Aliphatics
DDR_22	268775	480579	1.788
DDR_172	345415	406185	1.176
DDR_172*	278593	113327	0.407

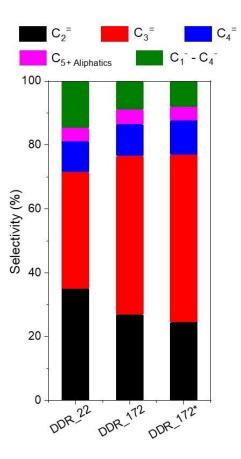
Figure S1. SEM images of as-synthesized DDR zeolites with different Si/Al ratios: (a) Si/Al = 22; (b) Si/Al = 43; (c) Si/Al = 87; (d) Si/Al = 172. The scale bars represent 10 μ m.

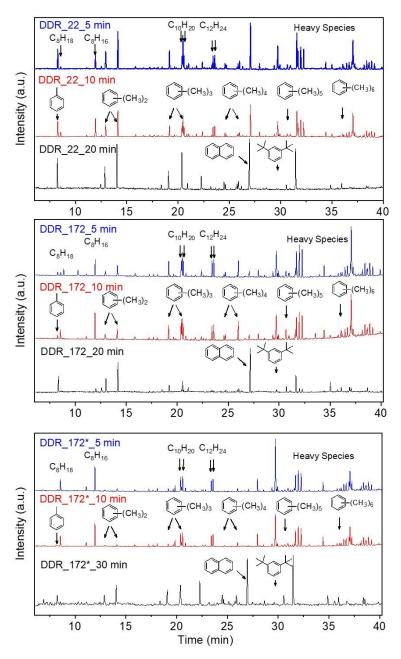




Figure S2. Ar adsorption isotherms of DDR zeolites with different Si/Al ratios.


Figure S3. NH₃-TPD profiles of the as-synthesized DDR zeolites with different Si/Al ratios.


Figure S4. Conversion of methanol and effluent hydrocarbon product selectivity versus time-onstream during the reaction of MTO over DDR_22 (a), DDR_172 (b) and DDR_172* (c).


Figure S5. (a) SEM image of DDR_172*. (b) Adsorption uptake of propylene on DDR_172* in comparison with that of DDR_172. (c) PXRD pattern of DDR_172*. (d) Ar adsorption isotherms of DDR_172* in comparison with that of DDR_172.


Figure S6. Thermogravimetric analysis of used catalysts (a, DDR_22; b, DDR_172; c, DDR_172*) at different reaction times.

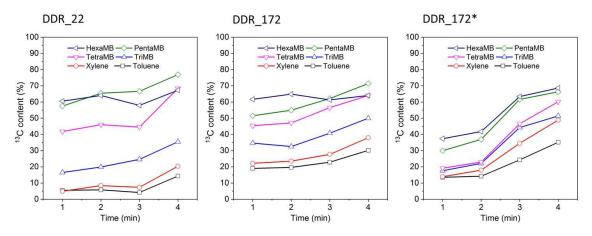

Figure S7. Plots of conversion of methanol (a), Ethylene selectivity (b), Propylene selectivity (c), and Propylene/Ethylene ratio (d), as a function of the coke content in used DDR zeolites.

Figure S8. Conversion-weighed averaged selectivity over the entire reaction on DDR_22, DDR_172, and DDR_172*, as labelled.

Figure S9. GC analysis of the residual hydrocarbon species extracted from used DDR catalysts (DDR_22, DDR_172 and DDR_172* from top to down) at different reaction times.

Figure S10. Evolution of ¹³C content in the residual species in the used catalysts after ¹²C/ ¹³C-methanol feed switch over different DDR zeolites.