Quantitative Analysis of Attachment Time of Air Bubbles to Solid

Surfaces in Water

Seongsoo Han'?, Anh V. Nguyen®", Kwanho Kim', Jaikoo Park?, Kwangsuk You'"

' Convergence Research Center for Development of Mineral Resources (DMR), Korea
Institute of Geoscience and Mineral Resources (KIGAM), 124 Gwahak-ro, Yuseong-gu,
Daejeon 34132, Republic of Korea

2 Department of Earth Resources and Environmental Engineering, Hanyang University, 222,

Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea

3School of Chemical Engineering, The University of Queensland, Brisbane, Queensland

4072, Australia

*Corresponding Author Information

Kwangsuk You (youks@kigam.re.kr)
Anh.V. Nguyen (Anh.Nguyen@eng.uq.edu.au)

Number of pages: #8
Number of figures: #5

S1


mailto:youks@kigam.re.kr

SUPPORTING INFORMATION
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Figure S1. Images of the water droplet static contact angles (a) 0° (pristine glass slide), (b) 55°
(0.01 mM OTS in toluene for 10 min), (c) 75° (0.1 mM OTS in toluene for 10 min), and (d)

105° (1 mM OTS in toluene for 10 min)
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Figure S2. Images of the hysteresis of the water contact angles (a) 0° (pristine glass slide) (b)
55+£10° (0.01 mM OTS in toluene for 10 min), (c) 75 = 5° (0.1 mM OTS in toluene for 10

min), and (d) 105 = 5° (1 mM OTS in toluene for 10 min)
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Corrected Pure

—— Corrected 0.01 mM OTS in Toluene
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Figure S3. Corrected force curves incorporating the capillary effect of the needle produced by

the water in the cell (solid line: after correction, dotted line: before correction)

S4



Conversion to dimensionless forms

Capillary number: Ca=uV /o
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At x = 0, we obtain the following limits:
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Numerical Solution by the three-point Finite Difference Method

We divide the film radius into N-1 sections (stages) and consider N points on the 1D mesh.

Applying the three-point FDM, we obtain the following ordinary differential equations (ODES):

Section 1 (around the film symmetry): Y =y;; A=filmradius/(N -1)
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Section k = 2 to N-1 (intermediate sections):

Y Yk
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Section N (at the film boundary):

1/4
M =—1—a£{log xCa B(HC)}

or or 2
; Py=0

This system of ODEs can be solved using the Matlab ODE solver “ODE15S.”
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Figure S4. Force with respect to the drainage time calculated by Eq. 15 (before attachment)

The y-axis in Figure S3 is the force calculated by Eg. (15) in the manuscript:

F(t)=27[," {P(x,t)+T1(xt)} xx (15)
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Figure S5. Hamaker function of silica showing increment with the IGE thickness.

S8



