Supporting Information

Understanding the Morphology of High-performance Solar Cells Based on a Low Cost Polymer Donor

Zhengqing Xu, ^{†,}, ^v Fei Pan, ^{‡,§,} ^v Chenkai Sun, ^{‡,§} Song Hong, [†] Shanshan Chen, ^{⊥,#} Changduk Yang, [#] Zhiguo Zhang, ^{‡,§} Yao Liu, [†] Thomas P. Russell, ^{II,†} Yongfang Li ^{*,‡,§} and Dong Wang ^{*,†}

[†]Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.

[‡]Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

[§]School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

¹MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing 400044, China

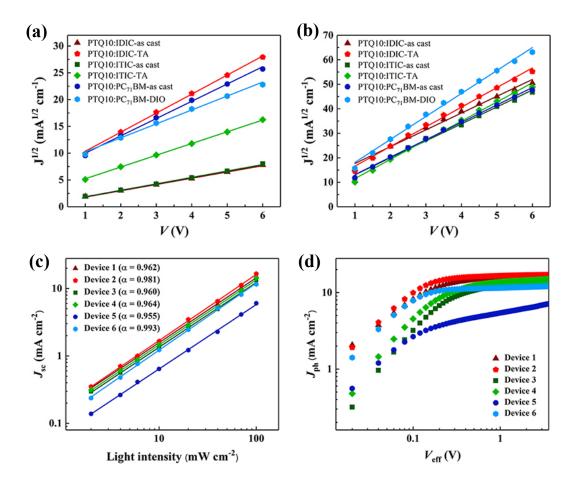
[#]Department of Energy Engineering, School of Energy and Chemical Engineering, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, South Korea

Polymer Science and Engineering Department, University of Massachusetts Amherst, Massachusetts 01003, United States

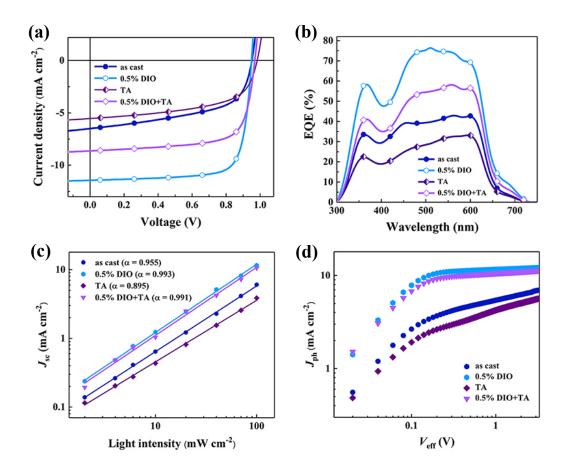
[¶]Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States

Corresponding Author

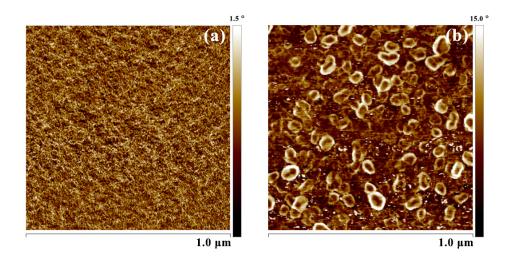
*E-mail: liyf@iccas.ac.cn

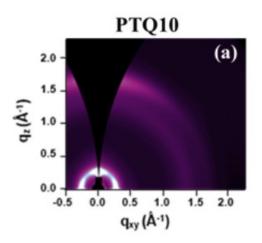

*E-mail: dwang@mail.buct.edu.cn

Sample Number ^a	$\mu_{\rm h}$ (×10 ⁻⁴ cm ² V ⁻¹ s ⁻¹)	μ _e (×10 ⁻⁴ cm ² V ⁻¹ s ⁻¹)	μ _e /μ _h	Charge dissociation probability ^b
1	0.381	4.94	13.0	96.0%
2	1.53	6.76	4.42	98.2%
3	0.178	4.80	27.0	95.2%
4	0.840	6.11	7.27	95.8%
5	0.956	1.11	1.17	87.2%
6	1.13	1.84	1.62	97.4%


Table S1 Charge transport properties of PTQ10 based devices

^aSample numbers that correspond to the devices are the same as that shown in **Table 1** in the main manuscript.


^bUnder the short-circuit conditions.


Figure S1. $J^{1/2}$ vs. V plots of PTQ10 based hole-only devices (a) and electron-only devices (b). (c) J_{sc} dependence on light intensity and (d) J_{ph} vs. V_{eff} plots of PTQ10-based devices.

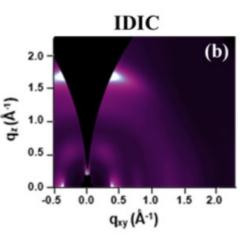
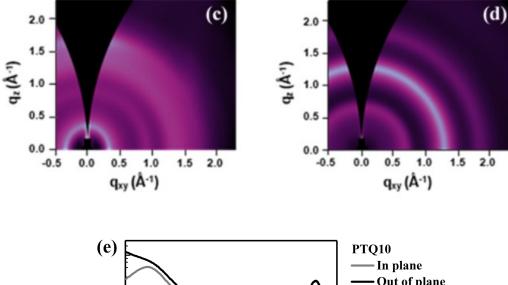


Figure S2. (a) *J*-*V* curves, (b) EQE spectra, (c) the dependence of J_{sc} on light intensity and (d) J_{ph} versus V_{eff} plot of PTQ10:PC₇₁BM-based devices.


Figure S3. AFM phase images of (a) PTQ10:IDIC-as cast films and (b) PTQ10:IDIC-TA films. TA treatments were performed at 140 °C for 5 min.

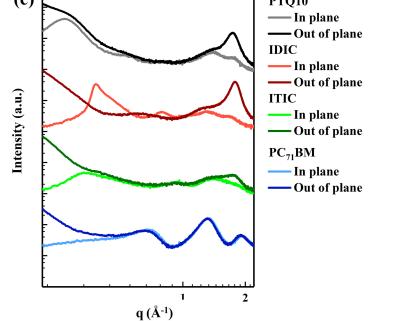


Figure S4. GIWAXS images of neat PTQ10 (a), IDIC (b), ITIC (c), and PC₇₁BM (d) films and (e) corresponding line cut profiles.

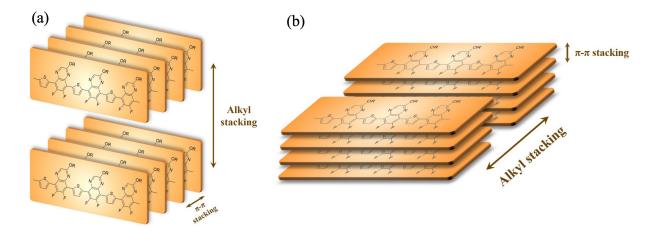


Figure S5. Schematic illustration of the PTQ10 crystallite oriented (a) edge-on and (b) face-on.