Supporting Information

Palladium-catalyzed Cascade Reactions of δ -ketonitriles with Arylboronic Acids: Synthesis of Pyridines

Xinrong Yao,^{+a} Linjun Qi,^{+a} Renhao Li,^{b,*} Qianqian Zhen,^a Jichao Liu,^a Zhiwei Zhao,^a Yinlin Shao,^a Maolin Hu,^{a,*} and Jiuxi Chena,*

^aCollege of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, P. R. China. ^b School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, P. R. China ⁺ These authors contributed equally

E-mail: <u>lirh@wmu.edu.cn</u>

E-mail:<u>maolin@wzu.edu.cn</u> E-mail: <u>jiuxichen@wzu.edu.cn</u>

Table of Contents

General information	S2
Experimental section	
General Procedures for the Synthesis of 5-oxo-5-arylpentanenitrile	S3
General Procedures for the Synthesis of pyridine	S3
Analytical data for all products	S4
Analytical data for reactants	S16
Reference	S19
NMR spectra for all products	S21
NMR spectra for reactants	

General Information

Chemicals were received from commercial sources without further purification or prepared by literature methods. Melting points are uncorrected and recorded on Digital Melting Point Apparatus WRS-1B. ¹H NMR and ¹³C NMR spectra were measured on a 400 MHz or 500 MHz Bruker spectrometer, using DMSO- d_6 or CDCl₃ as the solvent with tetramethylsilane (TMS) as the internal standard at room temperature. Chemical shifts are given in δ relative to TMS, the coupling constants *J* are given in Hz. High-resolution mass spectra (HRMS) were recorded on an ESI-Q-TOF mass spectrometer.

Experimental section

General Procedures for the Synthesis of 5-oxo-5-arylpentanenitrile

Arylboronic acid **2** (0.4 mmol, 0.5 equiv), Pd(acac)₂ (5 mmol%), bpy (10 mol%), TsOH·H₂O (2 equiv), toluene (2.5 mL), H₂O (0.5 mL) and glutaronitrile (38 μ l, 0.8 mmol, 1 equiv) were successively added to a 25 ml sealing tube. The reaction mixture was stirred vigorously at 80 °C for 24 hours. After the reaction mixture was cooled to room temperature, washed with saturated NaHCO₃, and extracted with ethyl acetate (3 \times 10 ml). The combined organic layers were dried over anhydrous Na₂SO₄ and evaporated under a vacuum. The residue was purified by flash column chromatography with petroleum ether/ethyl acetate to afford 5-oxo-5-arylpentanenitrile **1**.

General Procedures for the Synthesis of pyridine

In air atmosphere, arylboronic acid **2** (0.4 mmol, 2 equiv), $Pd_2(dba)_3$ (5 mmol%), bpy (10 mol%), CH₃OH (2 ml), **1** (0.2 mmol, 1 equiv) and CF₃COOH (0.15 ml) were successively added to a 25 ml sealing tube. The reaction mixture was stirred vigorously at 90 °C and observed by TLC point plate until the end of the reaction. After the reaction mixture was cooled to room temperature, washed with saturated NaHCO₃, and extracted with ethyl acetate (3 × 10 ml). The combined organic layers were dried over anhydrous Na₂SO₄ and evaporated under a vacuum. The residue was purified by flash column chromatography with petroleum ether/ethyl acetate to afford **3** or **4**.

Analytical data for all products

2-methyl-6-phenylpyridine (3a); yellow oil (29.1 mg, 86%), (lit.¹). ¹H NMR (400 MHz, CDCl₃) δ 8.00-7.97 (m, 2H), 7.66-7.62 (m, 1H), 7.53-7.51 (m, 1H), 7.49-7.45 (m, 2H), 7.42-7.38 (m, 1H), 7.11-7.09 (m, 1H), 2.64 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 158.3, 157.0, 139.6, 137.0, 128.8, 128.7, 127.1, 121.7, 117.7, 24.7.

2-methyl-6-(p-tolyl)pyridine (3b); Pale yellow oil (30.0 mg, 82%), (lit.²). ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 8.2 Hz, 2H), 7.62-7.59 (m 1H), 7.49 (d, *J* = 7.8 Hz, 1H), 7.27 (d, *J* = 8.0 Hz, 2H), 7.07 (d, *J* = 7.6 Hz, 1H), 2.63 (s, 3H), 2.41 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 158.3, 157.0, 138.6, 137.0, 136.8, 129.4, 126.9, 121.3, 117.3, 24.8, 21.2.

2-methyl-6-(m-tolyl)pyridine (3c); yellow oil (28.6 mg, 78%), (lit.³). ¹H NMR (400 MHz, CDCl₃) δ 7.82 (s, 1H), 7.74 (d, *J* = 7.8 Hz, 1H), 7.69-7.65 (m, 1H), 7.53-7.51 (m, 1H), 7.38-7.34 (m, 1H), 7.24-7.22 (m, 1H), 7.13-7.11 (m, 1H), 2.67 (s, 3H), 2.44 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 158.1, 156.9, 138.4, 137.6, 129.9, 128.7, 128.0, 124.4, 121.9, 118.3, 24.3, 21.5.

2-methyl-6-(o-tolyl)pyridine (3d); yellow oil (26.0 mg, 71%), (lit.³). ¹H NMR (400 MHz, CDCl₃) δ 7.63-7.60 (m, 1H), 7.38-7.36 (m, 1H), 7.27-7.26 (m, 1H), 7.25-7.23 (m, 2H), 7.17 (d, *J* = 7.7 Hz, 1H), 7.10 (d, *J* = 7.7 Hz, 1H), 2.61 (s, 3H), 2.34 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 159.5, 157.8, 140.7, 136.3, 135.7, 130.7, 129.6, 128.1, 125.9, 121.1, 121.0, 24.6, 20.3.

2-(4-(tert-butyl)phenyl)-6-methylpyridine (3e); yellow oil (34.2 mg, 76%) (lit.³). ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, *J* = 8.1 Hz, 2H), 7.64-7.60 (m, 1H), 7.51-7.48 (m, 3H), 7.08 (d, *J* = 7.6 Hz, 1H), 2.63 (s, 3H), 1.36 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 158.2, 157.0, 151.9, 136.9, 126.8, 125.6, 121.3, 117.5, 34.7, 31.3, 24.6.

2-([1,1'-biphenyl]-4-yl)-6-methylpyridine (3f); yellow oil (39.7 mg, 81%), (lit.⁴). ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 8.3 Hz, 2H), 7.72-7.65 (m, 5H), 7.58 (d, *J* = 7.8 Hz, 1H), 7.48-7.45 (m, 2H), 7.38-7.35 (m, 1H), 7.13 (d, *J* = 7.5 Hz, 1H), 2.68 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 156.4, 140.7, 137.3, 137.3, 128.8, 127.5, 127.5, 127.4, 127.2, 127.1, 121.8, 117.8, 100.0, 24.5.

2-(4-methoxyphenyl)-6-methylpyridine (3g); yellow oil (32.7 mg, 82%), (lit.²). ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 8.8 Hz, 2H), 7.62-7.59 (m, 1H), 7.46 (d, *J* = 7.8 Hz, 1H), 7.05 (d, *J* = 7.6 Hz, 1H), 6.99 (d, *J* = 8.8 Hz, 2H), 3.86 (s, 3H), 2.62 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 160.4, 158.1, 156.5, 137.0, 132.2, 128.3, 121.0, 117.0, 114.1, 55.4, 24.6.

2-(3-methoxyphenyl)-6-methylpyridine (3h); Pale yellow oil (33.8 mg, 85%) (lit.⁵). ¹H NMR (400 MHz, CDCl₃) δ 7.64-7.61 (m, 1H), 7.57 (d, *J* = 2.0 Hz, 1H), 7.54-7.49 (m, 2H), 7.38-7.35 (m, 1H), 7.09 (d, *J* = 7.6 Hz, 1H), 6.96-6.94 (m, 1H), 3.89 (s, 3H), 2.63 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 160.1, 158.3, 156.8, 141.3, 136.8,

129.6, 121.7, 119.5, 117.7, 114.7, 112.4, 55.4, 24.7.

2-methyl-6-(4-phenoxyphenyl)pyridine (3i); yellow oil (41.3 mg, 79%). ¹H NMR (400 MHz, CDCl₃) δ 7.98-7.95 (m, 2H), 7.65-7.61 (m, 1H), 7.49-7.47 (m, 1H), 7.37-7.34 (m, 2H), 7.14-7.04 (m, 6H), 2.63 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 158.3, 158.0, 157.1, 156.3, 137.0, 134.8, 129.8, 128.6, 123.4, 121.3, 119.0, 119.0, 117.3, 24.7. HRMS (ESI) calcd for C₁₈H₁₆NO [M + H]⁺: 262.1227, found 262.1226.

2-methyl-6-(4-(trifluoromethoxy)phenyl)pyridine (3j); yellow oil (41.0 mg, 81%). ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 8.8 Hz, 2H), 7.69-7.65 (m, 1H), 7.50 (d, *J* = 7.9 Hz, 1H), 7.32-7.30 (m, 2H), 7.13 (d, *J* = 7.6 Hz, 1H), 2.64 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 158.6, 155.5, 137.3, 130.1, 129.9, 128.6, 128.0, 122.1, 121.1, 117.7, 37.9, 24.6. HRMS (ESI) calcd for C₁₃H₁₁F₃NO [M + H]⁺: 254.0787, found 254.0790.

3-(4-fluorophenyl)-6-methylpyridine (3k); yellow oil (19.5 mg, 52%), (lit.⁶). ¹H NMR (400 MHz, CDCl₃) δ 7.98-7.95 (m, 2H), 7.64-7.61 (m, 1H), 7.46 (d, *J* = 7.8 Hz, 1H), 7.16-7.12 (m, 2H), 7.09 (d, *J* = 7.6 Hz, 1H), 2.62 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 163.4 (d, *J*_{C-F} = 247.9 Hz), 158.4, 155.9, 136.9, 135.9 (d, *J*_{C-F} = 3.1 Hz), 128.8 (d, *J*_{C-F} = 8.3 Hz), 121.5, 117.2, 115.5 (d, *J*_{C-F} = 21.5 Hz), 24.7.

2-(3-fluorophenyl)-6-methylpyridine (3l); yellow oil (25.6 mg, 63%), (lit.³). ¹H NMR (400 MHz, CDCl₃) δ 7.76-7.71 (m, 2H), 7.69-7.65 (m, 1H), 7.52-7.50 (m, 1H), 7.45-7.39 (m, 1H), 7.15-7.07 (m, 2H), 2.65 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 163.3 (d,

 $J_{C-F} = 245.4 \text{ Hz}$), 158.5, 155.5, 155.4, 137.3, δ 130.2 (d, $J_{C-F} = 8.1 \text{ Hz}$), δ 122.6 (d, $J_{C-F} = 2.6 \text{ Hz}$), 122.3, 117.8, δ 115.7 (d, $J_{C-F} = 21.5 \text{ Hz}$), δ 114.1 (d, $J_{C-F} = 22.8 \text{ Hz}$), 24.5.

2-(4-chlorophenyl)-6-methylpyridine (3m); yellow oil (26.8 mg, 66%), (lit.⁷). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 8.3 Hz, 2H), 7.64-7.61 (m, 1H), 7.48 (d, *J* = 7.8 Hz, 1H), 7.42 (d, *J* = 8.4 Hz, 2H), 7.10 (d, *J* = 7.6 Hz, 1H), 2.62 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 158.5, 155.7, 138.2, 137.0, 134.8, 128.8, 128.3, 121.9, 117.3, 24.7.

2-(4-bromophenyl)-6-methylpyridine (3n); yellow oil (28.7 mg, 58%) (lit.⁷). ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 8.5 Hz, 2H), 7.67-7.64 (m, 1H), 7.59 (d, J = 8.5 Hz, 2H), 7.50 (d, J = 7.8 Hz, 1H), 7.13 (d, J = 7.6 Hz, 1H), 2.64 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 158.4, 155.5, 137.5, 131.9, 128.7, 123.5, 122.2, 117.7, 24.4.

2-methyl-6-(naphthalen-2-yl)pyridine (30); yellow oil (36.4 mg, 83%) (lit.⁸). ¹H NMR (400 MHz, CDCl₃) δ 8.49 (s, 1H), 8.18-8.13 (m, 1H), 7.98-7.93 (m, 2H), 7.91-7.86 (m, 1H), 7.69-7.68 (m, 2H), 7.54-7.50 (m, 2H), 7.15-7.13 (m, 1H), 2.70 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 158.4, 156.8, 137.1, 133.6, 133.6, 128.7, 128.4, 127.7, 126.4, 126.4, 126.2, 124.8, 121.7, 118.0, 24.7.

2-methyl-6-(naphthalen-1-yl)pyridine (3p); yellow oil (37.2 mg, 85%) (lit.⁹). ¹H NMR (400 MHz, CDCl₃) δ 8.05-8.03 (d, *J* = 8.1 Hz, 1H), 7.91-7.89 (m, 2H), 7.75-7.71 (m, 1H), 7.61-7.44 (m, 4H), 7.38 (d, *J* = 7.6 Hz, 1H), 7.22 (d, *J* = 7.8 Hz, 1H), 2.70 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 158.2, 136.8, 134.0, 131.3, 128.8, 128.3, 127.5,

126.3, 125.8, 125.7, 125.3, 122.2, 121.7, 24.6.

2,6-diphenylpyridine (4a); White solid (42.1 mg, 91%), mp 75-77 °C (lit.¹⁰ 76–77 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, *J* = 7.6 Hz, 4H), 7.85-7.81 (m, 1H), 7.71 (d, *J* = 7.8 Hz, 2H), 7.54-7.50 (m, 4H), 7.47-7.43 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 156.9, 139.5, 137.5, 129.0, 128.7, 127.0, 118.6.

2-phenyl-6-(o-tolyl)pyridine (4b); White solid (43.1 mg, 88%), mp 62-64 °C (lit.¹¹ 63-64 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, *J* = 7.6 Hz, 2H), 7.84-7.81 (m, 1H), 7.71 (d, *J* = 7.9 Hz, 1H), 7.51-7.46 (m, 3H), 7.43-7.40 (m, 1H), 7.37 (d, *J* = 7.6 Hz, 1H), 7.32-7.30 (m, 3H), 2.50 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 159.8, 156.5, 140.5, 139.4, 137.0, 136.2, 130.9, 129.8, 128.9, 128.7, 128.3, 127.1, 125.9, 122.4, 118.3, 20.7.

2-phenyl-6-(m-tolyl)pyridine (4c); White solid (45.1 mg, 92%), mp 63-65 °C (lit.¹¹ 66-67 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, *J* = 7.6 Hz, 2H), 7.98 (s, 1H), 7.92 (d, *J* = 7.7 Hz, 1H), 7.83-7.79 (m, 1H), 7.68 (d, *J* = 7.8 Hz, 2H), 7.52-7.49 (m, 2H), 7.45-7.38 (m, 2H), 7.25 (s, 1H), 2.47 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.0, 156.8, 139.4, 139.3, 138.3, 137.6, 129.8, 129.0, 128.7, 128.6, 127.8, 127.1, 124.2, 118.9, 118.7, 21.6.

2-phenyl-6-(p-tolyl)pyridine (4d); White solid (45.6 mg, 93%), mp 95-96 °C (lit.¹² 91-92 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, *J* = 7.6 Hz, 2H), 7.85-7.81 (m, 1H),

7.71 (d, J = 7.9 Hz, 1H), 7.51-7.46 (m, 3H), 7.43-7.40 (m, 1H), 7.37 (d, J = 7.6 Hz, 1H), 7.32-7.30 (m, 3H), 2.50 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 156.8, 156.7, 139.4, 139.0, 137.5, 136.5, 129.4, 129.0, 128.7, 127.1, 127.0, 118.5, 21.3.

2-(4-(tert-butyl)phenyl)-6-phenylpyridine (4e); White solid (53.4 mg, 93%), mp 92– 93 °C (lit.¹² 93–95 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, *J* = 7.6 Hz, 2H), 8.09 (d, *J* = 8.3 Hz, 2H), 7.82-7.79 (m, 1H), 7.68 (d, *J* = 7.8 Hz, 2H), 7.54-7.49 (m, 4H), 7.45-7.42 (m, 1H), 1.38 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 156.9, 156.7, 152.2, 139.4, 137.5, 136.6, 129.0, 128.7, 127.0, 126.8, 125.7, 118.5, 118.4, 34.7, 31.3.

2-(4-isopropylphenyl)-6-phenylpyridine (4f); White solid (48.6 mg, 89%), mp 89–92 °C . ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, *J* = 7.5 Hz, 2H), 8.08 (d, *J* = 8.1 Hz, 2H), 7.82-7.79 (m, 1H), 7.67 (d, *J* = 7.7 Hz, 2H), 7.52-7.49 (m, 2H), 7.44 (d, *J* = 7.3 Hz, 1H), 7.37 (d, *J* = 8.0 Hz, 2H), 3.01-2.95 (m, 1H), 1.31 (d, *J* = 6.9 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 156.9, 156.7, 150.0, 139.3, 137.6, 136.9, 129.0, 128.7, 127.1, 127.1, 126.8, 118.6, 118.5, 34.0, 24.0. HRMS (ESI) calcd for C₂₀H₂₀N⁺ [M + H]⁺: 274.1590, found 274.1592.

2-(2,4-dimethylphenyl)-6-phenylpyridine (4g); White solid (47.7 mg, 92%), mp 78-79 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, *J* = 7.5 Hz, 2H), 7.83-7.79 (m, 1H), 7.69 (d, *J* = 7.9 Hz, 1H), 7.50-7.47 (m, 2H), 7.42 (d, *J* = 7.7 Hz, 2H), 7.36 (d, *J* = 7.6 Hz, 1H), 7.16-7.12 (m, 2H), 2.49 (s, 3H), 2.40 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 159.9, 156.4, 139.6, 138.1, 137.8, 136.9, 136.0, 131.7, 129.8, 128.9, 128.7, 127.1, 126.6, 122.4, 118.0, 21.2, 20.7. HRMS (ESI) calcd for $C_{19}H_{18}N [M + H]^+$: 260.1434, found 260.1435.

2-(3,5-dimethylphenyl)-6-phenylpyridine (4h); White solid (48.7 mg, 94%), mp 82-84 °C (lit.¹³ 178-180 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.16-8.15 (m, 2H), 7.82-7.79 (m, 1H), 7.76 (s, 2H), 7.68 (d, *J* = 7.7 Hz, 2H), 7.53-7.50 (m, 2H), 7.45 (d, *J* = 7.4 Hz, 1H), 7.09 (s, 1H), 2.44 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 157.3, 156.9, 139.6, 139.5, 138.2, 137.4, 130.7, 128.9, 128.7, 127.1, 124.9, 118.8, 118.6, 21.5. HRMS (ESI) calcd for C₁₉H₁₈N [M + H]⁺: 260.1434, found 260.1435.

2-(naphthalen-2-yl)-6-phenylpyridine (4i); White solid (34.9 mg, 62%), mp 153-155 °C (lit.¹). ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, *J* = 7.8 Hz, 1H), 8.12 (d, *J* = 7.7 Hz, 2H), 7.94 (d, *J* = 8.0 Hz, 3H), 7.81 (d, *J* = 7.8 Hz, 1H), 7.71 (d, *J* = 6.9 Hz, 1H), 7.60-7.43 (m, 7H); ¹³C NMR (125 MHz, CDCl₃) δ 159.0, 156.9, 139.2, 138.6, 137.3, 134.1, 131.3, 129.1, 129.0, 128.8, 128.4, 127.7, 127.2, 126.4, 125.9, 125.9, 125.3, 123.5, 118.7.

2-([1,1'-biphenyl]-4-yl)-6-phenylpyridine (4j); White solid (51.0 mg, 83%), mp 151-153 °C (lit.¹¹ 149-150 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, *J* = 8.1 Hz, 2H), 8.19 (d, *J* = 7.6 Hz, 2H), 7.86-7.82 (t, *J* = 7.7 Hz, 1H), 7.76-7.68 (m, 6H), 7.54-7.44 (m, 5H), 7.41-7.38 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 156.9, 156.4, 141.8, 140.7, 139.4, 138.3, 137.6, 129.1, 128.9, 128.7, 127.5, 127.5, 127.4, 127.1, 127.1, 118.7, 118.6.

2-(4-fluorophenyl)-6-phenylpyridine (4k); White solid (28.9 mg, 58%), mp 91-93 °C (lit.¹¹ 94-95 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, *J* = 7.1 Hz, 4H), 7.83-7.79 (m, 1H), 7.70-7.64 (m, 2H), 7.51 (t, *J* = 7.1 Hz, 2H), 7.45 (d, *J* = 6.6 Hz, 1H), 7.21-7.16 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 163.6 (d, *J*_{C-F} = 248.3 Hz), 156.9, 155.8, 139.4, 137.6, 135.6 (d, *J*_{C-F} = 3.0 Hz), 129.1, 128.8 (d, *J*_{C-F} = 8.3 Hz), 128.7, 127.0, 118.6, 118.3, 115.6 (d, *J*_{C-F} = 21.5 Hz).

2-(4-chlorophenyl)-6-phenylpyridine (4l); White solid (31.8 mg, 60%), mp 102-103 °C (lit.¹⁰ 104-105 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.14-8.09 (m, 4H), 7.85-7.82 (m, 1H), 7.72-7.66 (m, 2H), 7.53-7.46 (m, 5H); ¹³C NMR (125 MHz, CDCl₃) δ 157.0, 155.6, 139.1, 137.8, 137.7, 135.2, 129.2, 128.9, 128.8, 128.4, 127.1, 119.1, 118.6.

2-(4-bromophenyl)-6-phenylpyridine (4m); White solid (40.2 mg, 65%), mp 119-120 °C (lit.¹¹ 115-116 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, *J* = 7.1 Hz, 2H), 8.04 (d, *J* = 7.5 Hz, 2H), 7.82 (d, *J* = 7.2 Hz, 1H), 7.72 (d, *J* = 7.1 Hz, 1H), 7.68-7.61 (m, 3H), 7.53-7.49 (m, 2H), 7.47-7.43 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 157.0, 155.7, 139.2, 138.3, 137.7, 131.8, 129.2, 128.8, 128.6, 127.0, 123.5, 119.0, 118.4.

2-(4-iodophenyl)-6-phenylpyridine (4n); White solid (48.6 mg, 68%), mp 135-137°C (lit.¹¹ 139-141 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.15-8.13 (m, 2H), 7.90 (d, *J* = 8.5 Hz, 2H), 7.84-7.80 (m, 3H), 7.71 (d, *J* = 7.7 Hz, 1H), 7.66 (d, *J* = 7.7 Hz, 1H), 7.53-7.50 (m, 2H), 7.45 (d, *J* = 7.3 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 157.0, 155.8,

139.3, 139.0, 137.8, 137.6, 129.1, 128.8, 128.7, 127.0, 119.1, 118.3, 95.3.

2-(4-methoxyphenyl)-6-phenylpyridine (40); White solid (48.0 mg, 92%), mp 132-133 °C (lit.¹¹ 132-133 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.17-8.12 (m, 4H), 7.79-7.76 (m, 1H), 7.65-7.63 (m, 2H), 7.52-7.49 (m, 2H), 7.45-7.42 (m, 1H), 7.03 (d, *J* = 8.5 Hz, 2H), 3.88 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 160.6, 156.7, 156.5, 139.6, 137.4, 132.2, 128.9, 128.7, 128.3, 127.0, 118.0, 117.9, 114.1, 55.4.

2-(3-methoxyphenyl)-6-phenylpyridine (4p); White solid (44.9 mg, 86%), mp 127-128 °C (lit.¹). ¹H NMR (400 MHz, CDCl₃) δ 8.74 (s, 1H), 8.43 (d, *J* = 7.4 Hz, 1H), 8.16-8.11 (m, 3H), 7.88 (d, *J* = 7.5 Hz, 1H), 7.78-7.74 (m, 2H), 7.61-7.58 (m, 1H), 7.53-7.51 (m, 2H), 7.47-7.44 (m, 1H), 3.98 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 167.1, 157.0, 155.8, 139.4, 138.9, 138.0, 131.8, 130.7, 130.2, 129.3, 128.9, 128.8, 128.1, 127.2, 119.4, 119.1, 52.3.

2-(4-phenoxyphenyl)-6-phenylpyridine (4q); White solid (58.2 mg, 90%), mp 155-157 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, *J* = 6.5 Hz, 4H), 7.81 (d, *J* = 7.6 Hz, 1H), 7.69-7.65 (m, 2H), 7.52-7.49 (m, 2H), 7.44 (d, *J* = 7.1 Hz, 1H), 7.39-7.36 (m, 2H), 7.16-7.12 (m, 3H), 7.08 (d, *J* = 7.9 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 158.6, 157.3, 156.9, 156.8, 156.2, 138.0, 129.9, 129.7, 129.3, 128.8, 128.7, 127.3, 123.6, 123.2, 119.3, 118.9, 118.8. HRMS (ESI) calcd for C₂₃H₁₈NO [M + H]⁺: 324.1383, found 324.1388.

4-(6-phenylpyridin-2-yl)benzaldehyde (4r); White solid (30.6 mg, 59%), mp 112-113 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.10 (s, 1H), 8.33 (d, *J* = 8.0 Hz, 2H), 8.15 (d, *J* = 7.7 Hz, 2H), 8.02 (d, *J* = 7.9 Hz, 2H), 7.90-7.87 (m, 1H), 7.78 (d, *J* = 7.7 Hz, 2H), 7.54-7.51 (m, 2H), 7.47 (d, *J* = 7.1 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 192.1, 157.3, 155.3, 145.0, 139.0, 137.8, 136.5, 130.2, 129.3, 128.8, 127.6, 127.0, 119.8, 119.4. HRMS (ESI) calcd for C₁₈H₁₄NO [M + Na]⁺: 282.0895, found 282.0900.

2-(4-nitrophenyl)-6-phenylpyridine (4s); White solid (32.6 mg, 59%), mp 128–129 °C (lit.¹² 127–129 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, *J* = 8.0 Hz, 2H), 8.15 (d, *J* = 7.6 Hz, 2H), 7.87 (d, *J* = 7.8 Hz, 1H), 7.77-7.62 (m, 4H), 7.53-7.44 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.2, 155.3, 142.8, 139.0, 137.8, 129.3, 128.8, 127.3, 127.1, 125.6, 125.6, 119.6, 119.0.

2-phenyl-6-(4-(trifluoromethyl)phenyl)pyridine (4t); White solid (30.5 mg, 51%), mp 115-116 °C (lit.¹¹ 117-118 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, *J* = 8.0 Hz, 2H), 8.15 (d, *J* = 7.8 Hz, 2H), 7.88-7.84 (m, 1H), 7.77-7.72 (m, 4H), 7.54-7.44 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.2, 155.3, 142.8, 139.2, 137.7, 130.8 (d, *J*_{C-F} = 32.4 Hz), 129.2, 128.8, 127.3, 127.0, 125.6 (q, *J*_{C-F} = 3.8 Hz), 124.3 (d, *J*_{C-F} = 272.2 Hz), 119.5, 118.9.

2-(4-chlorophenyl)-6-(p-tolyl)pyridine (4u); White solid (36.8 mg, 66%), mp 113-115 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.10-8.03 (m, 4H), 7.79 (d, *J* = 7.7 Hz, 1H), 7.69-762 (m, 2H), 7.46 (d, *J* = 8.2 Hz, 2H), 7.31 (d, *J* = 7.8 Hz, 2H), 2.43 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.0, 155.5, 139.2, 138.0, 137.6, 136.5, 135.1, 129.5, 128.9, 128.3, 126.9, 118.7, 118.1, 21.3. HRMS (ESI) calcd for C₁₈H₁₅ClN₂ [M + H]⁺: 280.0888, found 280.0892.

2-(4-bromophenyl)-6-(p-tolyl)pyridine (4v); White solid (29.1 mg, 45%), mp 124-126 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.04-8.02 (m, 4H), 7.81-7.78 (m, 1H), 7.68 (d, J = 7.8 Hz, 1H), 7.64-7.61 (m, 3H), 7.31 (d, J = 8.0 Hz, 2H), 2.43 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.0, 155.5, 139.2, 138.4, 137.6, 136.5, 131.8, 129.5, 128.6, 126.9, 123.4, 118.7, 118.1, 21.3. HRMS (ESI) calcd for C₁₈H₁₅BrN [M + H]⁺: 324.0383 and 326.0362 found 324.0386 and 326.0364.

2-(4-fluorophenyl)-6-(p-tolyl)pyridine (4w); White solid (24.7 mg, 47%), mp 117-118 °C (lit.¹⁴ 116-118 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.16-8.13 (m, 2H), 8.05 (d, *J* = 8.0 Hz, 2H), 7.80-7.77 (m, 1H), 7.66 (d, *J* = 7.8 Hz, 1H), 7.61 (d, *J* = 7.8 Hz, 1H), 7.31 (d, *J* = 7.9 Hz, 2H), 7.20-7.17 (m, 2H), 2.43 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 163.6 (d, *J*_{C-F} = 248.1 Hz), 156.9, 155.7, 139.1, 137.5, 136.6, 135.7 (d, *J*_{C-F} = 2.9 Hz), 129.5, 128.8 (d, *J*_{C-F} = 8.3 Hz), 126.9, 128.2 (d, *J*_{C-F} = 35.6 Hz), 115.6 (d, *J*_{C-F} = 21.5 Hz), 21.3.

2-(p-tolyl)-6-(4-(trifluoromethyl)phenyl)pyridine (4x); White solid (23.8 mg, 38%), mp 120-122 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, *J* = 8.1 Hz, 2H), 8.05 (d, *J* = 8.1 Hz, 2H), 7.85-7.82 (m, 1H), 7.76-7.69 (m, 4H), 7.32 (d, *J* = 7.9 Hz, 2H), 2.44 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.2, 155.2, 139.3, 137.6, 136.4, 130.7 (d, *J*_{C-F} = 32.5 Hz), 129.5, 127.3, 126.9, 125.6 (q, *J*_{C-F} = 3.8 Hz), 124.3 (d, *J*_{C-F} = 272.1 Hz), 119.2, 118.6, 100.0, 21.3. HRMS (ESI) calcd for C₁₉H₁₅F₃N [M + H]⁺: 314.1151, found 314.1156.

2-(4-methoxyphenyl)-6-(p-tolyl)pyridine (4y); White solid (48.4 mg, 88%), mp 129-132 °C (lit.¹⁵). ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 8.7 Hz, 2H), 8.04 (d, *J* = 8.1 Hz, 2H), 7.79-7.76 (m, 1H), 7.62-7.60 (m, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 7.02 (d, *J* = 8.7 Hz, 2H), 3.88 (s, 3H), 2.42 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 160.6, 156.6, 156.3, 139.1, 137.6, 129.4, 128.4, 127.0, 117.9, 114.1, 55.4, 21.3.

Analytical data for reactants

5-oxo-5-phenylpentanenitrile (1b); colorless oil (30.0 mg, 86%) (lit.¹⁶ 32-33 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 7.7 Hz, 2H), 7.60-7.57 (m, 1H), 7.50-7.47 (m, 2H), 3.18 (t, *J* = 6.8 Hz, 2H), 2.53 (t, *J* = 7.0 Hz, 2H), 2.15-2.09 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 198.2, 136.5, 133.5, 128.8, 128.0, 119.4, 36.3, 19.7, 16.7.

5-oxo-5-(o-tolyl)pentanenitrile (1c); colorless oil (26.9 mg, 72%) (lit.¹⁷). ¹H NMR (400 MHz, CDCl₃) δ 7.64-7.62 (m, 1H), 7.36-7.32 (m, 1H), 7.25-7.20 (m, 2H), 3.03 (t, *J* = 6.9 Hz, 2H), 2.46 (s, 3H), 2.45-2.43 (m, 2H) 2.05-1.98 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 201.9, 138.2, 137.2, 132.1, 131.7, 128.6, 125.8, 119.4, 39.1, 21.4, 19.9, 16.5.

5-oxo-5-(m-tolyl)pentanenitrile (1d); yellow solid (30.3 mg, 81%) mp 59-61 °C (lit.¹⁸ 164–170 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.77-7.70 (m, 2H), 7.35-7.29 (m, 2H), 3.09 (t, *J* = 6.8 Hz, 2H), 2.45 (t, *J* = 7.0 Hz, 2H), 2.36 (s, 3H), 2.07-2.01 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 198.3, 138.5, 136.6, 134.1, 128.6, 128.5, 125.2, 119.4, 36.4, 21.3, 19.8, 16.6.

5-oxo-5-(p-tolyl)pentanenitrile (1e); yellow solid (31.4 mg, 84%) mp 58-59 °C (lit.¹⁶ 58-59 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 8.0 Hz, 2H), 7.21 (d, *J* = 7.8 Hz, 2H), 3.08 (t, *J* = 6.8 Hz, 2H), 2.45 (t, *J* = 7.0 Hz, 2H), 2.36 (s, 3H), 2.06-1.98 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 197.8, 144.2, 134.1, 129.4, 128.1, 119.5, 36.3, 21.6, 19.9, 16.6.

5-(4-(tert-butyl)phenyl)-5-oxopentanenitrile (1f); yellow solid (39.9 mg, 87%) mp 53-55 °C (lit.¹⁶ 55-57 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 7.9 Hz, 2H), 7.44 (d, *J* = 8.0 Hz, 2H), 3.09 (t, *J* = 6.7 Hz, 2H), 2.45 (t, *J* = 6.9 Hz, 2H), 2.05-2.01 (m, 2H), 1.40-1.20 (m, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 197.7, 157.1, 134.0, 127.9, 125.6, 119.4, 36.3, 35.1, 31.0, 19.9, 16.6.

5-(4-fluorophenyl)-5-oxopentanenitrile (1g); yellow solid (22.5 mg, 59%) mp 71-73 °C (lit.¹⁶ 72-73 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.99-7.97 (m, 2H), 7.15-7.11 (m, 2H), 3.14 (t, *J* = 6.7 Hz, 2H), 2.51 (t, *J* = 6.9 Hz, 2H), 2.12-2.07 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 196.5, 165.9 (d, *J*_{C-F} = 255.4 Hz), 133.0 (d, *J*_{C-F} = 2.9 Hz), 130.6 (d, *J*_{C-F} = 9.4 Hz), 119.2, 115.8 (d, *J*_{C-F} = 21.9 Hz), 36.24, 19.73, 16.60.

5-(4-chlorophenyl)-5-oxopentanenitrile (1h); yellow solid (29.0 mg, 70%) mp 63-65 °C (lit.¹⁶ 61-62 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, *J* = 8.2 Hz, 2H), 7.47-7.43 (m, 2H), 3.15 (t, *J* = 6.6 Hz, 2H), 2.53 (t, *J* = 6.8 Hz, 2H), 2.13-2.10 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 196.9, 140.1, 134.9, 129.4, 129.1, 119.2, 36.3, 19.7, 16.7.

5-(4-bromophenyl)-5-oxopentanenitrile (1i); yellow solid (26.1 mg, 52%) mp 57-58 °C (lit.¹⁶ 53-54 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.77-7.74 (m, 2H), 7.55-7.51 (m, 2H), 3.07 (t, *J* = 6.8 Hz, 2H), 2.46 (t, *J* = 7.0 Hz, 2H), 2.07-2.00 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 197.1, 135.2, 132.0, 129.5, 128.5, 119.3, 36.4, 19.7, 16.6.

5-(4-iodophenyl)-5-oxopentanenitrile (1j); White oil (28.7 mg, 48%). ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.1 Hz, 2H), 7.59 (d, *J* = 8.2 Hz, 2H), 3.06 (t, *J* = 6.8 Hz, 2H), 2.46 (t, *J* = 7.0 Hz, 2H), 2.06-2.00 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 197.4, 138.0, 135.7, 129.3, 119.3, 101.4, 36.3, 19.7, 16.6. HRMS (ESI) calcd for C₁₁H₁₁INO

[M + H]⁺: 299.9880, found 299.9884.

5-oxo-5-(4-(trifluoromethyl)phenyl)pentanenitrile (1k); yellow oil (20.7 mg, 43%) (lit.¹⁶). ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* = 8.3 Hz, 2H), 7.73 (d, *J* = 8.4 Hz, 2H), 3.19 (t, *J* = 6.8 Hz, 2H), 2.53 (t, *J* = 7.0 Hz, 2H), 2.15-2.08 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 197.2, 139.1, 134.7 (q, *J*_{C-F} = 32.7 Hz), 128.3, 125.8 (q, *J*_{C-F} = 3.7 Hz), 123.5 (q, *J*_{C-F} = 272.8 Hz), 119.2, 36.7, 19.5, 16.5.

Reference

- Guo, B.; Yu, T.; Li, H.; Zhang, S.; Braunstein, P.; Young, D.; Li, H.; Lang J. Phosphine Ligand-Free Ruthenium Complexes as Efficient Catalysts for the Synthesis of Quinolines and Pyridines by Acceptorless Dehydrogenative Coupling Reactions. *ChemCatChem* 2019, *11*, 2500.
- (2) Markovic, T.; Murray, P.; Rocke, B.; Shavn ya, A.; Blakemore, D.; Willis, M. Heterocyclic Allylsulfones as Latent Heteroaryl Nucleophiles in Palladium-Catalyzed Cross-Coupling Reactions. J. Am. Chem. Soc. 2018, 140, 15916.

- (3) Kita, Y.; Iimuro, A.; Hida, S.; Mashima, K. Iridium-catalyzed Asymmetric Hydrogenation of Pyridinium Salts for Constructing Multiple Stereogenic Centers on Piperidines. *Chem. Lett.* **2014**, *43*, 284.
- (4) Li, Y.; Teng, Y.; Feng, F.; Hu, Q.; Yuan, Z. Aqueous Suzuki-Miyaura Reaction with 0.6 Equiv. of Base: Green and Efficient Access to Biaryls and Unsymmetrical Terphenyls. *ChemistrySelect*, **2018**, *3*, 6022.
- (5) Zheng, M.; Chen, P.; Wu W.; Jiang H. Palladium-catalyzed Heck-type reaction of oximes with allylic alcohols: synthesis of pyridines and azafluorenones. *Chem. Commun.* 2016, 52, 84.
- (6) Zhu, J.; Su, Y.; Chan, Y.; Chen, I.; Liao C. Studies on the Amino-Heck Reactions of Unsaturated Ketones O-Phosphinyloximes for the Preparation of Substituted Pyridines. *Heterocycles*, 2009, 78, 369.
- (7) Shields, b.; Doyle A. Direct C(sp3)–H Cross Coupling Enabled by Catalytic Generation of Chlorine Radicals. J. Am. Chem. Soc. 2016, 138, 12719.
- (8) Addlaa, D.; Kantevari, S. J. Heterocyclic. Chem. 2014, 51, 384-388.
- (9) So, C.; Lau, C.; Kwong, F. Easily Accessible and Highly Tunable Indolyl Phosphine Ligands for Suzuki-Miyaura Coupling of Aryl Chlorides. Org. Lett. 2007, 9, 2795.
- (10)Gujjarappa, R.; Vodnala, N.; Kumar, M,; Malakar, C. Pd-Catalyzed Decarboxylation and Dual C(sp3)–H Functionalization Protocols for the Synthesis of 2,4-Diarylpyridines. *J. Org. Chem.* **2019**, *84*, 5005.
- (11)Shen, Y.; Chen, J.; Liu, M.; Ding, J.; Gao, W.; Huang, X.; Wu, H. Coppercatalyzed direct C–H arylation of pyridine N-oxides with arylboronic esters: onepot synthesis of 2-arylpyridines. *Chem. Commun.* **2014**, *50*, 4292.
- (12)Zhan, J.; Wu, M.; Wei, D.; Wei, B.; Jiang, Y.; Yu, W.; Han, B. 4-HO-TEMPO-Catalyzed Redox Annulation of Cyclopropanols with Oxime Acetates toward Pyridine Derivatives. ACS Catal. 2019, 9, 4179.
- (13) Wang, T.; Jiao, N. TEMPO-catalyzed Aerobic Oxygenation and Nitrogenation of Olefins via C=C Double-Bond Cleavage. J. Am. Chem. Soc. 2013, 135, 11692.
- (14) Yin, C.; Zhong, K.; Li, W.; Yang, X.; Sun, R.; Zhang, C.; Zheng, X.; Yuan, M.;

Li, R.; Lan, Y.; Fu, H.; Chen, H. C6-Selective Direct Arylation of 2-Phenylpyridine via an Activated N-methylpyridinium Salt: A Combined Experimental and Theoretical Study. *Adv. Synth. Catal.* **2018**, *360*, 3990.

(15) Rao, M.; Dhanorkar, R. Eur. J. Org. Chem. 2014, 24, 5214-5228.

- (16)Ren, R.; Wu, Z.; Xu, Y.; Zhu C. C-C Bond-Forming Strategy by Manganese-Catalyzed Oxidative Ring-Opening Cyanation and Ethynylation of Cyclobutanol Derivatives. *Angew. Chem. Int. Ed.*, **2016**, *55*, 2866.
- (17)Zhao, B.; Tan, H.; Chen, C.; Jiao, N.; Shi, Z. Photoinduced C-C Bond Cleavage and Oxidation of Cycloketoxime Esters. *Chin. J. Chem.* **2018**, *36*, 995.
- (18)Streuff, J.; Feurer, M.; Bichovski, P.; Frey, G.; Gellrich U. Enantioselective Titanium(III)-Catalyzed Reductive Cyclization of Ketonitriles. *Angew. Chem. Int. Ed.*, 2012, 51, 8661.

NMR spectra for all products

Figure S1. ¹H NMR of 3a (400 MHz, CDCl₃) and ¹³C NMR of 3a (125 MHz, CDCl₃)

Figure S2. ¹H NMR of 3b (400 MHz, CDCl₃) and ¹³C NMR of 3b (125 MHz, CDCl₃)

Figure S3. ¹H NMR of 3c (400 MHz, CDCl₃) and ¹³C NMR of 3c (125 MHz, CDCl₃)

Figure S4. ¹H NMR of 3d (400 MHz, CDCl₃) and ¹³C NMR of 3d (125 MHz, CDCl₃)

Figure S5. ¹H NMR of 3e (400 MHz, CDCl₃) and ¹³C NMR of 3e (125 MHz, CDCl₃)

Figure S6. ¹H NMR of 3f (400 MHz, CDCl₃) and ¹³C NMR of 3f (125 MHz, CDCl₃)

Figure S7. ¹H NMR of 3g (400 MHz, CDCl₃) and ¹³C NMR of 3g (125 MHz, CDCl₃)

Figure S8. ¹H NMR of 3h (400 MHz, CDCl₃) and ¹³C NMR of 3h (125 MHz, CDCl₃)

Figure S9. ¹H NMR of 3i (400 MHz, CDCl₃) and ¹³C NMR of 3i (125 MHz, CDCl₃)

Figure S10. ¹H NMR of 3j (400 MHz, CDCl₃) and ¹³C NMR of 3j (125 MHz, CDCl₃)

Figure S11. ¹H NMR of 3k (400 MHz, CDCl₃) and ¹³C NMR of 3k (125 MHz, CDCl₃)

Figure S12. ¹H NMR of 3I (400 MHz, CDCl₃) and ¹³C NMR of 3I (125 MHz, CDCl₃)

Figure S13. ¹H NMR of 3m (400 MHz, CDCl₃) and ¹³C NMR of 3m (125 MHz, CDCl₃)

Figure S14. ¹H NMR of 3n (400 MHz, CDCl₃) and ¹³C NMR of 3n (125 MHz, CDCl₃)

Figure S15. ¹H NMR of 30 (400 MHz, CDCl₃) and ¹³C NMR of 30 (125 MHz, CDCl₃)

Figure S16. ¹H NMR of 3p (400 MHz, CDCl₃) and ¹³C NMR of 3p (125 MHz, CDCl₃)

Figure S17. ¹H NMR of 4a (400 MHz, CDCl₃) and ¹³C NMR of 4a (125 MHz, CDCl₃)

Figure S18. 1 H NMR of 4b (400 MHz, CDCl₃) and 13 C NMR of 4b (125 MHz, CDCl₃)

Figure S19. ¹H NMR of 4c (400 MHz, CDCl₃) and ¹³C NMR of 4c (125 MHz, CDCl₃)

Figure S20. ¹H NMR of 4d (400 MHz, CDCl₃) and ¹³C NMR of 4d (125 MHz, CDCl₃)

Figure S21. ¹H NMR of 4e (400 MHz, CDCl₃) and ¹³C NMR of 4e (125 MHz, CDCl₃)

Figure S22. ¹H NMR of 4f (400 MHz, CDCl₃) and ¹³C NMR of 4f (125 MHz, CDCl₃)

Figure S23. ¹H NMR of 4g (400 MHz, CDCl₃) and ¹³C NMR of 4g (125 MHz, CDCl₃)

Figure S24. ¹H NMR of 4h (400 MHz, CDCl₃) and ¹³C NMR of 4h (125 MHz, CDCl₃)

Figure S25. ¹H NMR of 4i (400 MHz, CDCl₃) and ¹³C NMR of 4i (125 MHz, CDCl₃)

Figure S26. ¹H NMR of 4j (400 MHz, CDCl₃) and ¹³C NMR of 4j (125 MHz, CDCl₃)

Figure S27. ¹H NMR of 4k (400 MHz, CDCl₃) and ¹³C NMR of 4k (125 MHz, CDCl₃)

Figure S28. ¹H NMR of 4I (400 MHz, CDCl₃) and ¹³C NMR of 4I (125 MHz, CDCl₃)

Figure S29. ¹H NMR of 4m (400 MHz, CDCl₃) and ¹³C NMR of 4m (125 MHz, CDCl₃)

Figure S30. ¹H NMR of 4n (400 MHz, CDCl₃) and ¹³C NMR of 4n (125 MHz, CDCl₃)

Figure S31. ¹H NMR of 40 (400 MHz, CDCl₃) and ¹³C NMR of 40 (125 MHz, CDCl₃)

Figure S32. ¹H NMR of 4p (400 MHz, CDCl₃) and ¹³C NMR of 4p (125 MHz, CDCl₃)

Figure S33. ¹H NMR of 4q (400 MHz, CDCl₃) and ¹³C NMR of 4q (125 MHz, CDCl₃)

Figure S34. ¹H NMR of 4r (400 MHz, CDCl₃) and ¹³C NMR of 4r (125 MHz, CDCl₃)

Figure S35. ¹H NMR of 4s (400 MHz, CDCl₃) and ¹³C NMR of 4s (125 MHz, CDCl₃)

Figure S36. ¹H NMR of 4t (400 MHz, CDCl₃) and ¹³C NMR of 4t (125 MHz, CDCl₃)

Figure S37. ¹H NMR of 4u (400 MHz, CDCl₃) and ¹³C NMR of 4u (125 MHz, CDCl₃)

Figure S38. ¹H NMR of 4v (400 MHz, CDCl₃) and ¹³C NMR of 4v (125 MHz, CDCl₃)

Figure S39. ¹H NMR of 4w (400 MHz, CDCl₃) and ¹³C NMR of 4w (125 MHz, CDCl₃)

Figure S40. ¹H NMR of 4x (400 MHz, CDCl₃) and ¹³C NMR of 4x (125 MHz, CDCl₃)

NMR spectra for reactants

S62

Figure S43. ¹H NMR of 1c (400 MHz, CDCl₃) and ¹³C NMR of 1c (125 MHz, CDCl₃)

Figure S44. ¹H NMR of 1d (400 MHz, CDCl₃) and ¹³C NMR of 1d (125 MHz, CDCl₃)

Figure S45. ¹H NMR of 1e (400 MHz, CDCl₃) and ¹³C NMR of 1e (125 MHz, CDCl₃)

Figure S46. ¹H NMR of 1f (400 MHz, CDCl₃) and ¹³C NMR of 1f (125 MHz, CDCl₃)

Figure S47. 1 H NMR of 1g (400 MHz, CDCl₃) and 13 C NMR of 1g (125 MHz, CDCl₃)

Figure S48. ¹H NMR of 1h (400 MHz, CDCl₃) and ¹³C NMR of 1h (125 MHz, CDCl₃)

Figure S49. ¹H NMR of 1i (400 MHz, CDCl₃) and ¹³C NMR of 1i (125 MHz, CDCl₃)

Figure S50. ¹H NMR of 1j (400 MHz, CDCl₃) and ¹³C NMR of 1j (125 MHz, CDCl₃)

Figure S51. ¹H NMR of 1k (400 MHz, CDCl₃) and ¹³C NMR of 1k (125 MHz, CDCl₃)