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Figure S1. Molecular structures of model carbocatalysts used in the study: C361, C37, C33, C29, 

C25, C19, C14 and C6. 
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Figure S2. Regular Kekulé structures (C37H14, C19H10, C14H10, C6H6) and non-Kekulé 

structures (C33H16, C29H14, C25H12 with one of the possible allocations of unpaired electrons) of 

graphene flakes. Unpaired electrons are denoted by asterisks. 
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Figure S3. Optimized molecular structures of the stationary points 1 to 6-TS for the 

polycyclic triplet carbene-catalyzed reaction. The interatomic distances are displayed in angstroms. 

For each transition state, the imaginary frequency is shown; directions of atomic movements 

corresponding to imaginary frequencies are shown by red arrows; UPBE1PBE/6-31G(d) level. 
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Figure S4. Optimized molecular structures of the stationary points 7 to 13-TS for the 

polycyclic triplet carbene-catalyzed reaction. The interatomic distances are displayed in angstroms. 

For each transition state, the imaginary frequency is shown; directions of atomic movements 

corresponding to imaginary frequencies are shown by red arrows; UPBE1PBE/6-31G(d) level. 
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Figure S5. Total energy profile of acetylene cyclotrimerization reaction ( E) with C37H14 

carbene as a catalyst; UPBE1PBE/6-31G(d) level. 
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Figure S6. Free energy profile of acetylene cyclotrimerization reaction ( G) with C37H14 

carbene as a catalyst; UPBE1PBE/6-31G(d) level. 
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Figure S7. Total energy profile of acetylene cyclotrimerization reaction ( E) with C37H14 

carbene as a catalyst; single point calculations at UPBE1PBE/6-311++G(d,p) level for geometries 

optimized at UPBE1PBE/6-31G(d) level. 
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Figure S8. Free energy profiles of acetylene cyclotrimerization (green line) and linear 

tetramerization (orange line) reactions with C37H14 carbene as a catalyst; UPBE1PBE/6-31G(d) 

level. 
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Figure S9. Acetylene cyclotrimerization reaction with tricyclic C14H10 carbene as a catalyst. 
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Figure S10. Total energy profile ( E) of acetylene cyclotrimerization reaction with C14H10 

tricyclic carbene as a catalyst; UPBE1PBE/6-31G(d) level. 
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Figure S11. Gibbs free energy profile ( G) of acetylene cyclotrimerization reaction with 

C14H10 tricyclic carbene as a catalyst; UPBE1PBE/6-31G(d) level. 
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Figure S12. Optimized molecular structures of the stationary points 1  6-TS for the tricyclic 

triplet carbene-catalyzed reaction. The interatomic distances are in angstroms. For each transition 

state, the imaginary frequency is shown; directions of atomic movements corresponding to 

imaginary frequencies are shown by red arrows; UPBE1PBE/6-31G(d) level. 
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Figure S13. Optimized molecular structures of the stationary points 7 to 13-TS for the 

tricyclic triplet carbene-catalyzed reaction. The interatomic distances are in angstroms. For each 

transition state, the imaginary frequency is shown; directions of atomic movements corresponding 

to imaginary frequencies are shown by red arrows; UPBE1PBE/6-31G(d) level. 
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Figure S14. Spin density distributions in the stationary points 1  8-TS for C14H10 

carbocatalyst; UPBE1PBE/6-31G(d) level. 
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Figure S15. Spin density distributions in the stationary points 9  13-TS for C14H10 

carbocatalyst; UPBE1PBE/6-31G(d) level. 
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Figure S16. Free energy profile of acetylene cyclotrimerization reaction ( G) with C37H15 

polyaromatic hydrocarbon as a catalyst; single point calculations at UPBE1PBE/6-311++G(d,p) 

level for geometries optimized at UPBE1PBE/6-31G(d) level.  
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Figure S17. Free energy profile of acetylene cyclotrimerization reaction ( G) with C19H11 

polyaromatic hydrocarbon (olympicenyl radical) as a catalyst; single point calculations at 

UPBE1PBE/6-311++G(d,p) level for geometries optimized at UPBE1PBE/6-31G(d) level. 
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Figure S18. Spin density distributions in the stationary points 1  13-TS for C19H11 

carbocatalyst; UPBE1PBE/6-31G(d) level. 
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Figure S19. Free energy profile of acetylene cyclotrimerization reaction ( G) with C25H12 

polyaromatic hydrocarbon as a catalyst in triplet and quintet spin states; UPBE1PBE/6-31G(d) 

level. 
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Figure S20. Optimized molecular structures of stationary points 1  13-TS for the C25H12 

polyaromatic hydrocarbon in triplet spin state. For each transition state, the imaginary frequency is 

shown; directions of atomic movements corresponding to imaginary frequencies are shown by red 

arrows; UPBE1PBE/6-31G(d) level. 
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Figure S21. Optimized molecular structures of stationary points 1  13-TS for the C25H12 

polyaromatic hydrocarbon in quintet spin state. For each transition state, the imaginary frequency is 

shown; directions of atomic movements corresponding to imaginary frequencies are shown by red 

arrows; UPBE1PBE/6-31G(d) level. 
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Figure S22. Total energy profile ( E) of acetylene cyclotrimerization reaction with C6H5 

monoradical as a catalyst; UPBE1PBE/6-31G(d) level. 
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Figure S23. Free energy profile ( G) of acetylene cyclotrimerization reaction with C6H5 

monoradical as a catalyst; UPBE1PBE/6-31G(d) level. 
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Figure S24. Free energy profile ( G) of acetylene cyclotrimerization reaction with C6H5 

monoradical as a catalyst; single point calculations at UPBE1PBE/6-311++G(d,p) level for 

geometries optimized at UPBE1PBE/6-31G(d) level. 
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Figure S25. Spin density distributions in the stationary points 1  13-TS for C6H5 

carbocatalyst; UPBE1PBE/6-31G(d) level. 
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Table S1. Total energy values ( E) calculated for each stage of acetylene cyclotrimerization 

process with C14H10 carbene as a carbocatalyst at the different levels of theory.  

Level of theory 1 2-TS 3 4-TS 5 6-TS 7 8-TS 9 10-TS 11 12-TS 13-TS 1+C6H6 

UPBE1PBE/6-31G(d) 0.0 1.2 -52.0 -49.8 -108.9 -107.2 -160.9 -159.8 -208.3 -187.4 -219.4 -210.9 -182.3 -188.5 

UPBE1PBE/6-311++G(d,p)† 0.0 3.0 -47.0 -43.4 -98.8 -95.0 -145.4 -144.3 -191.6 -168.5 -198.3 -190.2 -165.8 -172.9 

UM062X/6-311++G(d,p) † 0.0 2.4 -43.5 -39.8 -89.7 -86.2 -130.8 -130.1 -175.4 -156.0 -185.2 -176.5 -151.9 -156.8 

† - single point calculations of molecular structures optimized at the UPBE1PBE/6-31G(d) level. 

Table S2. Total energy values ( E) of (9  10-TS  11  12-TS; 13-TS  1) potential 

energy profile segments (see Figures 1 and 2) for C6 carbocatalyst at the different theory levels. 

Level of theory 1 9 10-TS 11 12-TS 13-TS 1+benzene 

UPBE1PBE/6-31G(d) 0.0 -213.5 -194.0 -216.8 -213.0 -184.6 -188.5 

UB3LYP/6-31G(d) 
†
 0.0 -190.3 -167.0 -185.5 -183.9 -165.0 -170.5 

UPBE1PBE/6-311+G(2d,p) 
†
 0.0 -197.6 -176.2 -197.0 -193.7 -169.3 -174.1 

UPBE1PBE/6-311+G(2d,p) GD3BJ 
†
 0.0 -205.4 -188.6 -209.4 -205.8 -176.9 -178.0 

UCCSD/6-31G(d)
 †
 0.0 -178.3 -155.1 -180.1 -171.5 -148.1 -155.5 

UCCSD(T)/6-31G(d)
 †
 0.0 -179.5 -158.8 -182.5 -175.4 -150.9 -157.0 

† 
- single point calculations for geometries optimized at the UPBE1PBE/6-31G(d) level. 

 

Figure S26. Segments of the total energy profile (9  10-TS  11  12-TS and 9  13-TS 

 1+C6H6 see Figures 1 and 2) for C6 carbocatalyst calculated by different theory levels. 
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Figure S27. Spin density distributions in stationary points 9, 10-TS, 11 and 12-TS for the C6 

model carbocatalyst calculated at the different theory levels. 
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Figure S28. Comparative representation of (9  10-TS  11  12-TS) PES segments for 

C361 and C37 carbocatalyst models. The C37 structures were optimized at the UPBE1PBE/6-31G(d) 

level, and single point calculations were performed for the C361 structures at the UPBE1PBE/6-

31G(d) level. 
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Figure S29. Spin density distributions in the stationary points 9, 10-TS, 11 and 12-TS for 

different model carbocatalysts; UPBE1PBE/6-31G(d) level. 
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Figure S30. Spin density distributions in the stationary points 9, 10-TS, 11 and 12-TS for 

C361 model carbocatalyst; single point calculations at the UPBE1PBE/6-31G(d) level. 
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Figure S31. 
1
H NMR spectrum of the products after completion of the reaction (DMSO-d6, 

300.1 MHz). 
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Figure S32. 

13
C NMR spectrum of the products after completion of the reaction (DMSO-d6, 

75 MHz). 

 
Figure S33. HSQC (

1
H-

13
C) spectrum of the products after completion of the reaction. The 

signal at 128.21 ppm in 
13

C spectrum corresponds to the carbon atoms of benzene; the signals at 

125.80 ppm and 127.65 ppm in 
13

C spectrum correspond to the carbon atoms of naphthalene. 
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Figure S34. COSY (

1
H-

1
H) spectrum of the products after completion of the reaction. The 

signals at 7.51 ppm and 7.91 ppm in 
1
H spectrum correspond to the protons of naphthalene. 

 

Figure S35. Gas chromatogram and mass spectrum of the reaction products after completion 

of the reaction. 
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Figure S36. Mass spectrum of the fraction (retention time 2.2 – 2.4 min) corresponding to 

benzene. 

 
Figure S37. Mass spectrum of the fraction (retention time 7.1 – 7.9 min) corresponding to 

naphthalene. 

 
Figure S38. Mass spectrum of the fraction (retention time 11.2 – 12.6 min) corresponding to 

anthracene or phenanthrene. 

 
Figure S39. Mass spectrum of the fraction (retention time 12.7 – 12.8 min) corresponding to 

fluoranthene or pyrene. 
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Figure S40. Mass spectrum of the fraction (retention time 12.9 – 13.3 min) corresponding to 

pyrene or fluoranthene. 

 
Figure S41. Mass spectrum of the fraction (retention time 9.1 – 9.4 min) corresponding to 

acenaphthylene. 
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Figure S42. TEM image of a carbon flake formed on glass fiber surface during the reaction. 
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Figure S43. TEM image of a carbon flake formed on glass fiber surface during the reaction. 
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Figure S44. TEM image of a carbon flake formed on glass fiber surface during the reaction. 



S40 

 

 

Figure S45. TEM image of a carbon flake formed on glass fiber surface during the reaction 

and an example of interlayer distance estimation. 
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Figure S46. Raman spectrum of a carbon flake formed on glass fiber surface during the 

reaction; D and G modes at 1326 cm
-1

 and 1594 cm
-1

 are marked in the spectrum. 

 


