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1. Molecular structures of model carbocatalysts

Ca7, Cs3, Cog,

Figure S1. Molecular structures of model carbocatalysts used in the study: Csg;,

Cas, Ci9, C14 and Ce.
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Figure S2. Regular Kekulé structures (Cs7Hi4, CioHio, CisHi10, CsHs) and non-Kekulé
structures (CssHig, CaoH14, CosHi2 with one of the possible allocations of unpaired electrons) of
graphene flakes. Unpaired electrons are denoted by asterisks.
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2. Acetylene trimerization with C37H14 carbene as a carbocatalyst
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Figure S3. Optimized molecular structures of the stationary points 1 to 6-TS for the
polycyclic triplet carbene-catalyzed reaction. The interatomic distances are displayed in angstroms.
For each transition state, the imaginary frequency is shown; directions of atomic movements
corresponding to imaginary frequencies are shown by red arrows; UPBE1PBE/6-31G(d) level.
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Figure S4. Optimized molecular structures of the stationary points 7 to 13-TS for the
polycyclic triplet carbene-catalyzed reaction. The interatomic distances are displayed in angstroms.
For each transition state, the imaginary frequency is shown; directions of atomic movements
corresponding to imaginary frequencies are shown by red arrows; UPBE1PBE/6-31G(d) level.
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Figure S5. Total energy profile of acetylene cyclotrimerization reaction (AE) with Cs7Hy4
carbene as a catalyst; UPBE1PBE/6-31G(d) level.
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Figure S6. Free energy profile of acetylene cyclotrimerization reaction (AG) with Cs7Hyy
carbene as a catalyst; UPBE1PBE/6-31G(d) level.
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Figure S7. Total energy profile of acetylene cyclotrimerization reaction (AE) with Cs7Hyy
carbene as a catalyst; single point calculations at UPBE1PBE/6-311++G(d,p) level for geometries
optimized at UPBE1PBE/6-31G(d) level.
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Figure S8. Free energy profiles of acetylene cyclotrimerization (green line) and linear
tetramerization (orange line) reactions with Cs;Hi4 carbene as a catalyst; UPBE1PBE/6-31G(d)

level.
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3. Acetylene trimerization with Ci14H10 carbene as a carbocatalyst
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Figure S9. Acetylene cyclotrimerization reaction with tricyclic C14H1o carbene as a catalyst.
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Figure S10. Total energy profile (AE) of acetylene cyclotrimerization reaction with Ci4H10
tricyclic carbene as a catalyst; UPBE1PBE/6-31G(d) level.
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Figure S11. Gibbs free energy profile (AG) of acetylene cyclotrimerization reaction with
Ci4H1p tricyclic carbene as a catalyst; UPBE1PBE/6-31G(d) level.
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Figure S12. Optimized molecular structures of the stationary points 1 — 6-TS for the tricyclic
triplet carbene-catalyzed reaction. The interatomic distances are in angstroms. For each transition
state, the imaginary frequency is shown; directions of atomic movements corresponding to
imaginary frequencies are shown by red arrows; UPBE1PBE/6-31G(d) level.
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Figure S13. Optimized molecular structures of the stationary points 7 to 13-TS for the
tricyclic triplet carbene-catalyzed reaction. The interatomic distances are in angstroms. For each
transition state, the imaginary frequency is shown; directions of atomic movements corresponding
to imaginary frequencies are shown by red arrows; UPBE1PBE/6-31G(d) level.
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Figure S14. Spin density distributions in the stationary points 1 — 8-TS for CisHio
carbocatalyst; UPBE1PBE/6-31G(d) level.
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Figure S15. Spin density distributions in the stationary points 9 — 13-TS for Ci4Hip
carbocatalyst; UPBE1PBE/6-31G(d) level.
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4. Acetylene trimerization with C37H1s and CisH11 (olympicenyl)
monoradical carbocatalysts
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Figure S16. Free energy profile of acetylene cyclotrimerization reaction (AG) with Cz7Hss
polyaromatic hydrocarbon as a catalyst; single point calculations at UPBE1PBE/6-311++G(d,p)
level for geometries optimized at UPBE1PBE/6-31G(d) level.
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Figure S17. Free energy profile of acetylene cyclotrimerization reaction (AG) with Ci9H13
polyaromatic hydrocarbon (olympicenyl radical) as a catalyst; single point calculations at
UPBE1PBE/6-311++G(d,p) level for geometries optimized at UPBE1PBE/6-31G(d) level.
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Figure S18. Spin density distributions in the stationary points 1 — 13-TS for CijgHi;
carbocatalyst; UPBE1PBE/6-31G(d) level.
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5. Acetylene trimerization with non-Kekulé Cz;H12 carbocatalyst
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Figure S19. Free energy profile of acetylene cyclotrimerization reaction (AG) with CysHi»
polyaromatic hydrocarbon as a catalyst in triplet and quintet spin states; UPBE1PBE/6-31G(d)

level.
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Figure S20. Optimized molecular structures of stationary points 1 — 13-TS for the CysHi»
polyaromatic hydrocarbon in triplet spin state. For each transition state, the imaginary frequency is
shown; directions of atomic movements corresponding to imaginary frequencies are shown by red

arrows; UPBE1PBE/6-31G(d) level.
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Figure S21. Optimized molecular structures of stationary points 1 — 13-TS for the CysH1»
polyaromatic hydrocarbon in quintet spin state. For each transition state, the imaginary frequency is
shown; directions of atomic movements corresponding to imaginary frequencies are shown by red

arrows; UPBE1PBE/6-31G(d) level.

S22



AE, kcal/mol

6. Acetylene trimerization with phenyl monoradical
as a carbocatalyst
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Figure S22. Total energy profile (AE) of acetylene cyclotrimerization reaction with CgHs
monoradical as a catalyst; UPBE1PBE/6-31G(d) level.
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Figure S23. Free energy profile (AG) of acetylene cyclotrimerization reaction with CgHs
monoradical as a catalyst; UPBE1PBE/6-31G(d) level.
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Figure S24. Free energy profile (AG) of acetylene cyclotrimerization reaction with CgHs
monoradical as a catalyst; single point calculations at UPBE1PBE/6-311++G(d,p) level for
geometries optimized at UPBE1PBE/6-31G(d) level.
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Figure S25. Spin density distributions in the stationary points 1 — 13-TS for CgHs
carbocatalyst; UPBE1PBE/6-31G(d) level.
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7. Evaluation of the theoretical calculations accuracy for different
basis sets and theory levels

Table S1. Total energy values (AE) calculated for each stage of acetylene cyclotrimerization
process with Cy14H1o carbene as a carbocatalyst at the different levels of theory.

Level of theory 1)2-TS| 3 |4-TS| 5 |6-TS| 7 |8TS| 9 [10-TS| 11 |12-TS|13-TS|1+C¢Hs

UPBE1PBE/6-31G(d) 0.0 1.2 |-52.0{-49.8|-108.9|-107.2|-160.9|-159.8|-208.3|-187.4|-219.4|-210.9|-182.3| -188.5
UPBE1PBE/6-311++G(d,p)" [0.0[ 3.0 [-47.0[-43.4] -98.8 | -95.0 |-145.4|-144.3|-191.6|-168.5|-198.3/-190.2|-165.8| -172.9
UMO062X/6-311++G(d,p) ©  [0.0[ 2.4 [-43.5[-39.8] -89.7 | -86.2 [-130.8]-130.1|-175.4]-156.0]-185.2|-176.5|-151.9] -156.8

T~ single point calculations of molecular structures optimized at the UPBE1PBE/6-31G(d) level.

Table S2. Total energy values (AE) of (9 — 10-TS —» 11 — 12-TS; 13-TS — 1) potential
energy profile segments (see Figures 1 and 2) for Cg carbocatalyst at the different theory levels.

Level of theory 1 9 10-TS | 11 | 12-TS | 13-TS | 1+benzene
UPBE1PBE/6-31G(d) 0.0 | -213.5 | -194.0 | -216.8 | -213.0 | -184.6 -188.5
UB3LYP/6-31G(d) | 0.0 | -190.3 | -167.0 | -185.5 | -183.9 | -165.0 -170.5
UPBE1PBE/6-311+G(2d,p) ' 0.0 | -197.6 | -176.2 | -197.0 | -193.7 | -169.3 -174.1
UPBE1PBE/6-311+G(2d,p) GD3BJ " | 0.0 | -205.4 | -188.6 | -209.4 | -205.8 | -176.9 -178.0
UCCSD/6-31(3(d)T 0.0]-178.3|-155.1]-180.1 | -171.5 | -148.1 -155.5
UCCSD(T)/6-31G(d) * 0.0 | -179.5 [ -158.8 | -182.5 | -175.4 | -150.9 | -157.0

T single point calculations for geometries optimized at the UPBE1PBE/6-31G(d) level.
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Figure S26. Segments of the total energy profile (9 —» 10-TS — 11 —» 12-TSand 9 —» 13-TS
— 1+C¢Hg see Figures 1 and 2) for Cg carbocatalyst calculated by different theory levels.
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Figure S27. Spin density distributions in stationary points 9, 10-TS, 11 and 12-TS for the Cg
model carbocatalyst calculated at the different theory levels.
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8. Evaluation of graphene systems of different sizes
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Figure S28. Comparative representation of (9 — 10-TS — 11 — 12-TS) PES segments for
Cs61 and Cg; carbocatalyst models. The Cgs; structures were optimized at the UPBE1PBE/6-31G(d)

level, and single point calculations were performed for the Csg; Structures at the UPBE1PBE/6-

31G(d) level.
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Figure S29. Spin density distributions in the stationary points 9, 10-TS, 11 and 12-TS for
different model carbocatalysts; UPBE1PBE/6-31G(d) level.
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Figure S30. Spin density distributions in the stationary points 9, 10-TS, 11 and 12-TS for
Css1 model carbocatalyst; single point calculations at the UPBE1PBE/6-31G(d) level.



9. Experimental benzene synthesis
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Figure S31. *H NMR spectrum of the products after completion of the reaction (DMSO-ds,
300.1 MHz).
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Figure $32. *C NMR spectrum of the products after completion of the reaction (DMSO-ds,

75 MHz).
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Figure S33. HSQC (*H-*C) spectrum of the products after completion of the reaction. The

signal at 128.21 ppm in **C spectrum corresponds to the carbon atoms of benzene; the signals at
125.80 ppm and 127.65 ppm in **C spectrum correspond to the carbon atoms of naphthalene.
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Figure S34. COSY (*H-'H) spectrum of the products after completion of the reaction. The
signals at 7.51 ppm and 7.91 ppm in *H spectrum correspond to the protons of naphthalene.
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Figure S35. Gas chromatogram and mass spectrum of the reaction products after completion
of the reaction.
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Figure S36. Mass spectrum of the fraction (retention time 2.2 — 2.4 min) corresponding to
benzene.
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Figure S37. Mass spectrum of the fraction (retention time 7.1 — 7.9 min) corresponding to
naphthalene.
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Figure S38. Mass spectrum of the fraction (retention time 11.2 — 12.6 min) corresponding to
anthracene or phenanthrene.
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Figure S39. Mass spectrum of the fraction (retention time 12.7 — 12.8 min) corresponding to
fluoranthene or pyrene.
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Figure S40. Mass spectrum of the fraction (retention time 12.9 — 13.3 min) corresponding to
pyrene or fluoranthene.
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Figure S41. Mass spectrum of the fraction (retention time 9.1 — 9.4 min) corresponding to
acenaphthylene.
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Figure S42. TEM image of a carbon flake formed on glass fiber surface during the reaction.
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Figure S43. TEM image of a carbon flake formed on glass fiber surface during the reaction.
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Figure S44. TEM image of a carbon flake formed on glass fiber surface during the reaction.
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Figure S45. TEM image of a carbon flake formed on glass fiber surface during the reaction
and an example of interlayer distance estimation.
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Figure S46. Raman spectrum of a carbon flake formed on glass fiber surface during the
reaction; D and G modes at 1326 cm™ and 1594 cm™ are marked in the spectrum.
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