Supporting Information

Reversible Nontoxic Thermochromic Microcapsules

Bingxin Liu†, Alicia Rasines Mazo†, Paul A. Gurr†, Greg G. Qiao†*

†Polymer Science Group, Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia

*Corresponding author: gregghq@unimelb.edu.au

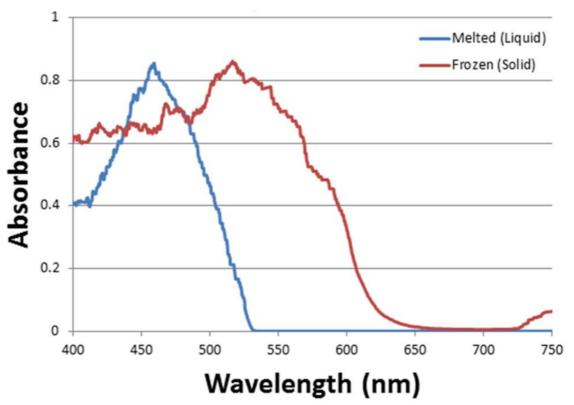

Content

Figure S1. The UV-Vis spectra of w/o emulsion of CPR aqueous solution (10⁻³M) in toluene (volume ratio of 1:10) at melted (25 °C) and frozen states (-196 °C).

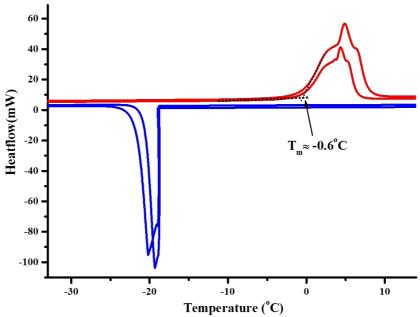

Figure S2. The DSC heat flow curve of CPR aqueous solution (0.001M) in heating and cooling processes between -60 °C and 20 °C (5 °C/min).

Figure S3. Optical microscopy images of NIH-3T3 fibroblast cells (A) control, (B) incubated with 2 mg/mL microcapsules after 24h and (C) incubated with films (20 wt.% microcapsules in film) after 24h.

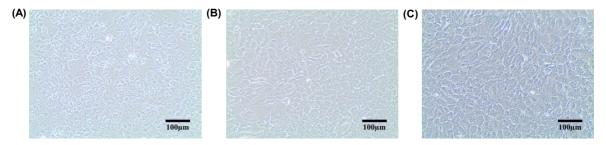

Table S1. Thermal parameters of core solution, microcapsules and incorporated film.

Figure S1. The UV-Vis spectra of w/o emulsion of CPR aqueous solution (10⁻³M) in toluene (volume ratio of 1:10) at melted (25 °C) and frozen states (-196 °C).

Figure S2. The DSC heat flow curve of CPR aqueous solution (0.001M) in heating and cooling processes between -60 °C and 20 °C (5 °C/min).

Figure S3. Optical microscopy images of NIH-3T3 fibroblast cells (A) control, (B) incubated with 2 mg/mL microcapsules after 24h and (C) incubated with films (20 wt.% microcapsules in film) after 24h.

Table S1. Thermal parameters of core solution, microcapsules and incorporated film.

Samples	T_m (°C)	Deviation (°C)
Core CPR solution	-0.6	0.2
Microcapsules	-2.8	0.3
Film	-3.0	0.3