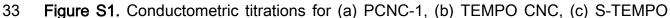
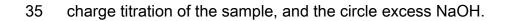
1	SUPPORTING INFORMATION FOR
2	Heparin Mimic Material Derived from Cellulose Nanocrystals
4	Zahra J. Gallagher ¹ , Sara Fleetwood ¹ , Terence L. Kirley ² , Maureen A. Shaw ³ , Eric S.
5	Mullins ³ , Neil Ayres ⁴ , E. Johan Foster ^{1*}
6	¹ Macromolecules Innovation Institute, Department of Materials Science and
7	Engineering, Virginia Tech, Blacksburg, VA 24060
8	² Department of Pharmacology and Cell Biophysics, College of Medicine, The University
9	of Cincinnati, Cincinnati, OH, 45267
10	³ Division of Hematology, Cancer and Blood Diseases Institute, Cincinnati Children's
11	Research Foundation, Cincinnati, Ohio 45229
12	⁴ Department of Chemistry, The University of Cincinnati, Cincinnati, OH, 45221

13 ^{*}To whom correspondence should be addressed. E-mail: johanf@vt.edu

15 CONDUCTOMETRIC TITRATIONS


16	Surface charge density of the CNCs was determined using titration. This titration can
17	be viewed in Figure S1. Within the graph the curve was divided into three parts: HCI
18	titration, CNC surface charge titration and excess NaOH. This partitioning of the
19	graphical data assists the calculation of the surface charge variables. Equation S1 was
20	used to calculate the concentration of negatively charged functional groups:
21	
22	$\frac{mmolnegativlychargedfunctionalgroups}{V_{NaOH}} = \frac{C_{NaOH} * V_{NaOH}}{V_{NaOH}}$
	kg cellulose – W _{CNC}
23	Equation S1: Surface charge density calculation used to measure the amount of
24	negatively charged functional groups on the surface of CNCs.
25	$C_{\mbox{\tiny NaOH}}$ is the molar concentration of base used in the titration, $V_{\mbox{\tiny NaOH}}$ is the volume
26	used to get the change in curve during the titration, and $W_{\mbox{CNC}}$ is the weight in grams of
27	the CNCs added to the titration.
28	Sodium chloride was added to the solution because the phase behavior of CNCs is
29	
	sensitive to electrolytes. By adding an electrolyte, the phase shifts from being

30 predominantly anisotropic to isotropic.¹⁹ An isotropic solution is favorable because the



31 conductivity values are more precise.

34 CNC, and (d) S-CNC. The diamond shape shows the HCI titration portion, X-shape the

