Direct Comparison of (N)-Methanocarba and Ribose-Containing 2-Arylalkynyladenosine Derivatives as A_{3} Receptor Agonists

Dilip K. Tosh, Veronica Salmaso, Harsha Rao, Ryan Campbell, Amelia Bitant, Zhan-Guo Gao, John A. Auchampach, Kenneth A. Jacobson
Contents Pages
Synthetic Methods S2-S9
Pharmacological Methods S10
Off-target interactions for selected compounds (Table S1, Figure S1) S11-S15
ADME-tox Results, including rat PK (Figure S2, Table S2) S16-S21
Molecular Modeling Methods S22-S24
Molecular Modeling Results (Table S3, Figures S3-S7, legends for Videos S1 and S2) S25-S30
GPCR and kinase screens (DiscoverX, Table S4 and Figure S8) S31-S36
Representative NMR and Mass Spectra and HPLC Analysis S37-S51

Chemical synthesis

Scheme S1. Synthesis of compounds $\mathbf{1 6}$ - 19. Reagents and conditions: (i) $\mathrm{R}^{1} \mathrm{NH}_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{MeOH}$, rt; (ii) $\mathrm{R}^{1} \mathrm{NH}_{2}$, DIPEA, i-PrOH, $150{ }^{\circ} \mathrm{C}$, MW; (iii) $40 \% \mathrm{MeNH}_{2}$, MeOH, rt; (iv) 5-fluoro-2ethynylthiophene, $\mathrm{PdCl}_{2}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}, \mathrm{CuI}, \mathrm{Et}_{3} \mathrm{~N}$, DMF; (v) $10 \% \mathrm{TFA} \mathrm{MeOH}, 70^{\circ} \mathrm{C}$.

Scheme S2. Synthesis of compounds $\mathbf{8}$ and 9 . Reagents and conditions: (i) 5-fluoro-2ethynylthiophene, $\mathrm{PdCl}_{2}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}, \mathrm{CuI}, \mathrm{Et}_{3} \mathrm{~N}$, DMF; (ii) $10 \% \mathrm{TFA} \mathrm{MeOH}, 70^{\circ} \mathrm{C}$.

Scheme S3. Synthesis of compound 10. Reagents and conditions: (i) 1-deaza-2-amino-6-chloro purine, BSA, TMSOTf, $\mathrm{CH}_{3} \mathrm{CN}, 60^{\circ} \mathrm{C}$; (ii) isoamyl nitrite, $\mathrm{CH}_{2} \mathrm{I}_{2}, \mathrm{CuI}, \mathrm{I}_{2}, \mathrm{THF}, 90^{\circ} \mathrm{C}$; (iii) 40% $\mathrm{MeNH}_{2}, \mathrm{MeOH}$, rt; (iv) 2,2-dimethoxy propane, conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$, acetone, rt (v) TEMPO-BIAB, $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$; (vi) MeNH_{2}. HCl , HATU, DIPEA, DMF; (vii) MeNH_{2}. HCl , DIPEA, i - $\mathrm{PrOH}, 150$ ${ }^{\circ} \mathrm{C}$, MW; (viii) 5-fluoro-2-ethynylthiophene, $\mathrm{PdCl}_{2}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}, \mathrm{CuI}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMF}$; (ix) 10% TFA, $\mathrm{MeOH} 70{ }^{\circ} \mathrm{C}$.

Scheme S1

Scheme S2

Scheme S3

Chemical synthesis

Materials and instrumentation

All reagents and solvents were purchased from Sigma-Aldrich (St. Louis, MO). ${ }^{1} \mathrm{H}$ NMR spectra were obtained with a Bruker 400 spectrometer using $\mathrm{CDCl}_{3}, \mathrm{CD}_{3} \mathrm{OD}$ and DMSO as solvents. Chemical shifts are expressed in δ values (ppm) with tetramethylsilane ($\delta 0.00$) for CDCl_{3} and water ($\delta 3.30$) for $\mathrm{CD}_{3} \mathrm{OD}$. NMR spectra were collected with a Bruker AV spectrometer equipped with a z-gradient $\left[{ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{15} \mathrm{~N}\right]$-cryoprobe. TLC analysis was carried out on glass sheets precoated with silica gel F254 $(0.2 \mathrm{~mm})$ from Aldrich. The purity of final nucleoside derivatives was checked using a Hewlett-Packard 1100 HPLC equipped with a Zorbax SB-Aq 5 $\mu \mathrm{m}$ analytical column ($50 \times 4.6 \mathrm{~mm}$; Agilent Technologies Inc., Palo Alto, CA). Mobile phase: linear gradient solvent system, 5 mM TBAP (tetrabutylammonium dihydrogen phosphate) $-\mathrm{CH}_{3} \mathrm{CN}$ from 80:20 to $0: 100$ in 13 min ; the flow rate was $0.5 \mathrm{~mL} / \mathrm{min}$. Peaks were detected by UV absorption with a diode array detector at 230,254 , and 280 nm . All derivatives tested for biological activity showed $>95 \%$ purity by HPLC analysis (detection at 254 nm). Low-resolution mass spectrometry was performed with a JEOL SX102 spectrometer with $6-\mathrm{kV}$ Xe atoms following desorption from a glycerol matrix or on an Agilent LC/MS 1100 MSD, with a Waters (Milford, MA) Atlantis C18 column. High resolution mass spectroscopic (HRMS) measurements were performed on a proteomics optimized Q-TOF-2 (Micromass-Waters) using external calibration with polyalanine, unless noted. Observed mass accuracies are those expected based on known performance of the instrument as well as trends in masses of standard compounds observed at intervals during the series of measurements. Reported masses are observed masses uncorrected for this time-dependent drift in mass accuracy. All of the monosubstituted alkyne intermediates were purchased from Sigma-Aldrich (St. Louis, MO), Small Molecules, Inc. (Hoboken, NJ), Anichem (North Brunswick, NJ), PharmaBlock, Inc. (Sunnyvale, CA), Frontier Scientific (Logan, UT) and Tractus (Perrineville, NJ).
(2S,3S,4R,5R)-5-(2-((5-Fluorothiophen-2-yl)ethynyl)-6-(methylamino)-9H-purin-9-yl)-3,4-dihydroxy-N-methyltetrahydrofuran-2-carboxamide (8)
Compound 8 (92%) was prepared from compound 44 following the same method as for compound 17. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 8.26(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.65-6.63(\mathrm{~m}$, $1 \mathrm{H}), 6.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.77-4.74(\mathrm{~m}, 1 \mathrm{H}), 4.50(1 \mathrm{H}), 4.33(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{br} \mathrm{s}$, $3 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H})$. HRMS calculated for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{FS}(\mathrm{M}+\mathrm{H})^{+}$: 433.1094; found 433.1096.
(2S,3S,4R,5R)-5-(2-((5-Fluorothiophen-2-yl)ethynyl)-6-(propylamino)-9H-purin-9-yl)-3,4-dihydroxy- N-methyltetrahydrofuran-2-carboxamide (9)
Compound $\mathbf{8}(89 \%)$ was prepared from compound 45 following the same method as for compound 17. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 8.25(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.65-6.63(\mathrm{~m}$, $1 \mathrm{H}), 6.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.78-4.75(\mathrm{~m}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 1 \mathrm{H}), 4.33\left(\mathrm{dd}, J_{1}=1.2 \mathrm{~Hz}, J_{2}=4.8 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 3.59(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}), 1.77-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.06(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$. HRMS calculated for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{FS}(\mathrm{M}+\mathrm{H})^{+}$: 461.1407; found 461.1404.
(2S,3S,4R,5R)-5-(5-((5-Fluorothiophen-2-yl)ethynyl)-7-(methylamino)-3H-imidazo[4,5-blpyridin-3-yl)-3,4-dihydroxy-N-methyltetrahydrofuran-2-carboxamide (10)
Compound 10 (92%) was prepared from compound 54 following the same method as for compound 17. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}$) $\delta 8.32(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 6.67$ (s,
$1 \mathrm{H}), 6.06(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.68-4.61(\mathrm{~m}, 2 \mathrm{H}), 4.28(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H}), 2.97(\mathrm{~s}$, $3 \mathrm{H})$. HRMS calculated for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{FS}(\mathrm{M}+\mathrm{H})^{+}: 432.1142$; found 432.1141 .
(1S,2R,3S,4R,5S)-4-(2-((5-Fluorothiophen-2-yl)ethynyl)-6-(methylamino)-9H-purin-9-yl)-2,3-dihydroxy- N-methylbicyclo[3.1.0]hexane-1-carboxamide (16)
$40 \% \mathrm{MeNH}_{2}(1.5 \mathrm{~mL})$ solution was added to a solution of compound $23(50 \mathrm{mg}, 0.1 \mathrm{mmol})$ in $\mathrm{MeOH}(1.5 \mathrm{~mL})$ and stirred at room temperature for overnight. Solvent was evaporated and the residue was purified on flash silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=20: 1\right)$ to give the compound $16(36 \mathrm{mg}, 75 \%)$ as a colorless syrup. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 8.09(\mathrm{~s}$, $1 \mathrm{H}), 7.19(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.64-6.62(\mathrm{~m}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J$ $=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 2.12-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.88(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.41-1.38(\mathrm{~m}, 1 \mathrm{H})$. HRMS calculated for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{FS}(\mathrm{M}+\mathrm{H})^{+}$: 443.1302; found 443.1295 .
(1S,2R,3S,4R,5S)-4-(2-((5-Fluorothiophen-2-yl)ethynyl)-6-(propylamino)-9H-purin-9-yl)-2,3-dihydroxy- N-methylbicyclo[3.1.0]hexane-1-carboxamide (17)
A solution of compound $39(36 \mathrm{mg}, 0.07 \mathrm{mmol})$ in methanol $(1.5 \mathrm{~mL})$ and 10% trifluoromethanesulfonic acid (1.5 mL) was heated at $70^{\circ} \mathrm{C}$ for 3 h . Solvent was evaporated under vacuum, and the residue was purified on flash silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=30: 1\right)$ to give the compound $\mathbf{1 7}(30 \mathrm{mg}, 91 \%)$ as colorless syrup. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.64-6.62(\mathrm{~m}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.86(\mathrm{~s}, 3 \mathrm{H}), 2.12-2.09(\mathrm{~m}, 1 \mathrm{H})$, $1.88(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.75-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$. HRMS calculated for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{FS}(\mathrm{M}+\mathrm{H})^{+}$: 471.1615 ; found 471.1623 .
(1S,2R,3S,4R,5S)-4-(5-((5-Fluorothiophen-2-yl)ethynyl)-7-(methylamino)-3H-imidazo[4,5-b]pyridin-3-yl)-2,3-dihydroxy-N-methylbicyclo[3.1.0]hexane-1-carboxamide (18)
Compound $18(91 \%)$ was prepared from compound 40 following the same method as for compound 17. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 8.35(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H})$, 6.63-6.61 (m, 1H), $4.98(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~s}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H})$, $2.86(\mathrm{~s}, 3 \mathrm{H}), 2.15-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.42-1.38(\mathrm{~m}, 1 \mathrm{H})$. HRMS calculated for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{FS}(\mathrm{M}+\mathrm{H})^{+}$: 442.1349 Found 442.1349 .
(1S,2R,3S,4R,5S)-4-(7-(Ethylamino)-5-((5-fluorothiophen-2-yl)ethynyl)-3H-imidazo[4,5-b]pyridin-3-yl)-2,3-dihydroxy-N-methylbicyclo[3.1.0]hexane-1-carboxamide (19)
Compound $19(90 \%)$ was prepared from compound 41 following the same method as for compound 17. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 8.41(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H})$, 6.63-6.61 (m, 1H), 4.98 (d, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 4.01$ (d, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.51-3.46$ (m, $2 \mathrm{H}), 2.86(\mathrm{~s}, 3 \mathrm{H}), 2.15-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.42-1.34(\mathrm{~m}, 4 \mathrm{H})$. HRMS calculated for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{FS}(\mathrm{M}+\mathrm{H})^{+}: 456.1506$; found 456.1508 .

Ethyl (1S,2R,3S,4R,5S)-4-(2-((5-Fluorothiophen-2-yl)ethynyl)-6-(methylamino)-9H-purin-9-yl)-2,3-dihydroxybicyclo[3.1.0]hexane-1-carboxylate (23)
Compound 23 (84%) was prepared from compound 38 following the same method for compound 39. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.64-6.62(\mathrm{~m}, 1 \mathrm{H}), 5.22$ $(\mathrm{d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~s}, 1 \mathrm{H}), 4.27-4.22(\mathrm{~m}, 2 \mathrm{H}), 4.12(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{br} \mathrm{s}, 3 \mathrm{H})$,
2.23-2.19 (m, 1H), $1.92(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.67-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$. HRMS calculated for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{FS}(\mathrm{M}+\mathrm{H})^{+}$: 458.1298; found 458.1298.

Ethyl (3aR,3bS,4aS,5R,5aS)-5-(2-((5-fluorothiophen-2-yl)ethynyl)-6-(propylamino)-9H-purin-9-yl)-2,2-dimethyltetrahydrocyclopropa[3,4]cyclopenta[1,2-d][1,3]dioxole-3b(3aH)carboxylate (39)
$\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(12.32 \mathrm{mg}, 0.01 \mathrm{mmol}), \mathrm{CuI}(1.6 \mathrm{mg}, 0.008 \mathrm{mmol})$, 2-ethynyl-5-fluorothiophene ($66 \mathrm{mg}, 0.52 \mathrm{mmol}$) and triethylamine ($0.12 \mathrm{~mL}, 0.87 \mathrm{mmol}$) were added to a solution of compound $35(45 \mathrm{mg}, 0.08 \mathrm{mmol})$ in anhydrous DMF (1.0 mL), and the mixture heated at $66^{\circ} \mathrm{C}$ for 2 h . Solvent was evaporated under vacuum, and the residue was purified on flash silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=35: 1\right)$ to give the compound $39(36 \mathrm{mg}, 82 \%)$ as a brown syrup. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 8.14(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.64-6.63(\mathrm{~m}$, $1 \mathrm{H}), 5.80(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 3.57(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.82(\mathrm{~s}, 3 \mathrm{H}), 2.16-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.75-$ $1.71(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$. HRMS calculated for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{FS}(\mathrm{M}+\mathrm{H})^{+}$: 511.1928 ; found 511.1929.
(3aR,3bS,4aS,5R,5aS)-5-(5-((5-Fluorothiophen-2-yl)ethynyl)-7-(methylamino)-3H-imidazo[4,5-b]pyridin-3-yl)-N,2,2-trimethyltetrahydrocyclopropa[3,4]cyclopenta[1,2d] [1,3]dioxole-3b(3aH)-carboxamide (40)
Compound 40 (82%) was prepared from compound 36 following the same method as for compound 39. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 8.17(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H})$, 6.61-6.60 (m, 1H), $5.77(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H})$, $2.81(\mathrm{~s}, 3 \mathrm{H}), 2.15-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.53(\mathrm{~m}, 4 \mathrm{H}), 1.42(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H})$. HRMS calculated for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{FS}(\mathrm{M}+\mathrm{H})^{+}$: 482.1662 ; found 482.1667 .
(3aR,3bS,4aS,5R,5aS)-5-(7-(Ethylamino)-5-((5-fluorothiophen-2-yl)ethynyl)-3H-imidazo[4,5-b]pyridin-3-yl)-N,2,2-trimethyltetrahydrocyclopropa[3,4]cyclopenta[1,2d] [1,3]dioxole-3b(3aH)-carboxamide (41)
Compound 41 (81%) was prepared from compound 37 following the same method for compound 39. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 8.15(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 6.62-6.60$ $(\mathrm{m}, 1 \mathrm{H}), 5.77(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.44-3.39(\mathrm{~m}, 2 \mathrm{H}), 2.82$ (s, 3H), 2.15-2.11 (m, 1H), 1.56-1.53 (m, 4H), $1.42(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.29(\mathrm{~s}, 3 \mathrm{H})$. HRMS calculated for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{FS}(\mathrm{M}+\mathrm{H})^{+}$: 496.1819; found 496.1826.
(3aS,4S,6R,6aR)-6-(2-((5-Fluorothiophen-2-yl)ethynyl)-6-(methylamino)-9H-purin-9-yl)-N,2,2-trimethyltetrahydrofuro[3,4-d][1,3]dioxole-4-carboxamide (44)
Compound 44 (80%) was prepared from compound 42 following the same method as for compound 39. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{t}, J=$ $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~d}, J=1.6,1 \mathrm{H}), 5.51(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~s}$, $1 \mathrm{H}), 3.12(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H})$. HRMS calculated for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{FS}$ $(\mathrm{M}+\mathrm{H})^{+}: 473.1407$; found 473.1411.
(3aS,4S,6R,6aR)-6-(2-((5-Fluorothiophen-2-yl)ethynyl)-6-(propylamino)-9H-purin-9-yl)-N,2,2-trimethyltetrahydrofuro[3,4-d][1,3]dioxole-4-carboxamide (45)
Compound 45 (82%) was prepared from compound 43 following the same method as for compound 39. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.63-6.64$
$(\mathrm{m}, 1 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 4.66(\mathrm{~s}, 1 \mathrm{H}), 3.56(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 1.75-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H})$, $1.42(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$. HRMS calculated for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{FS}(\mathrm{M}+\mathrm{H})^{+}: 501.1720$; found 501.1723.

(2R,3R,4R,5R)-2-(Acetoxymethyl)-5-(5-amino-7-chloro-3H-imidazo[4,5-b]pyridin-3-

 yl)tetrahydrofuran-3,4-diyl diacetate (47)BSA ($0.76 \mathrm{~mL}, 3.14 \mathrm{mmol}$) was added to a suspension of 1-deaza-2-amino-6-chloro-purine (317 $\mathrm{mg}, 1.88 \mathrm{mmol})$ in dry $\mathrm{CH}_{3} \mathrm{CN}(35 \mathrm{~mL})$ and heated at $60^{\circ} \mathrm{C}$ for 1 h until it became clear. A solution of tetraacetate riboside ($500 \mathrm{mg}, 1.57 \mathrm{mmol}$) in dry $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ followed by TMSOTf $(0.14 \mathrm{~mL}, 0.78 \mathrm{mmol})$ were added into the reaction mixture and continued heating at $60^{\circ} \mathrm{C}$ for overnight. The reaction mixture was cooled down to room temperature and quenched with saturated NaHCO_{3} solution and stirred for 15 min . Aqueous layer was extracted with ethyl acetate (3 times) and combined organic layer was washed with brine, filtered and evaporated. The residue was purified on flash silica gel column chromatography (hexane:ethyl acetate $=1: 2$) to give the compound $48(445 \mathrm{mg}, 66 \%)$ as foamy solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 8.12$ (s, $1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.48-4.47 (m, 1H), 4.44-4.35 (m, 2H), $2.14(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H})$. HRMS calculated for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{Cl}(\mathrm{M}+\mathrm{H})^{+}$: 427.1021; found 427.1016.
(2R,3R,4R,5R)-2-(Acetoxymethyl)-5-(7-chloro-5-iodo-3H-imidazo[4,5-b]pyridin-3-yl)tetrahydrofuran-3,4-diyl diacetate (48)
$\mathrm{CuI}(218 \mathrm{mg}, 1.14 \mathrm{mmol})$, iodine ($264 \mathrm{mg}, 1.04 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{I}_{2}(0.84 \mathrm{~mL}, 10.4 \mathrm{mmol})$ and isoamyl nitrite $(0.42 \mathrm{~mL}, 3.13 \mathrm{mmol})$ were added to a solution of compound $47(445 \mathrm{mg}, 1.04$ mmol) in dry THF (15 mL) and refluxed at $90^{\circ} \mathrm{C}$ for 2 h . After cooling down the reaction mixture to room temperature, water was added into the reaction mixture and the aqueous layer was extracted with ethyl acetate. The combined organic layer was washed with saturated sodium bisulfite solution followed by brine, dried, filtered and evaporated under vacuum. The residue was purified on flash silica gel column chromatography (hexane:ethyl acetate $=2: 1$) to give the compound $48(296 \mathrm{mg}, 53 \%)$ as a brownish syrup. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 8.54(\mathrm{~s}, 1 \mathrm{H})$, $7.87(\mathrm{~s}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.48-4.38$ $(\mathrm{m}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{HRMS}$ calculated for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{ClI}(\mathrm{M}+\mathrm{H})^{+}$: 537.9878; found 537.9875.
(2R,3R,4S,5R)-2-(7-Chloro-5-iodo-3H-imidazo[4,5-b]pyridin-3-yl)-5-(hydroxymethyl) tetrahydrofuran-3,4-diol (49)
A solution of compound $48(142 \mathrm{mg}, 0.26 \mathrm{mmol})$ in $\mathrm{MeOH}(4 \mathrm{~mL})$ and $40 \% \mathrm{MeNH}_{2}(4 \mathrm{~mL})$ were stirred at room temperature for 5 h . Solvent was evaporated and the residue was purified on flash silica gel chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=15: 1\right)$ to give the compound $49(91 \mathrm{mg}, 84 \%)$ as a colorless syrup. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 8.70(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~s}, 1 \mathrm{H}), 6.12(\mathrm{~d}, J=5.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.15(\mathrm{~m}, 1 \mathrm{H}), 4.93\left(\mathrm{dd}, J_{I}=3.2\right.$ $\left.\mathrm{Hz}, J_{2}=12.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.81\left(\mathrm{dd}, J_{1}=3.2 \mathrm{~Hz}, J_{2}=12.4 \mathrm{~Hz}, 1 \mathrm{H}\right)$. HRMS calculated for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{ClI}(\mathrm{M}+\mathrm{H})^{+}: 411.9483$; found 411.9487 .

2,2-Dimethoxypropane ($0.2 \mathrm{~mL}, 1.65 \mathrm{mmol}$) and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(10.2 \mu \mathrm{~L})$, were added to a solution of compound $49(68 \mathrm{mg}, 0.16 \mathrm{mmol})$ in acetone $(2 \mathrm{~mL})$ and stirred at room temperature for overnight. Reaction mixture was neutralized with NaHCO_{3} and evaporated under vacuum. The residue was partition with water and ethyl acetate, the combined organic layer was dried, filtered and evaporated. The residue was purified on flash silica gel column chromatography (hexane:ethyl acetate $=1: 2$) to give the compound $\mathbf{5 0}(55 \mathrm{mg}, 74 \%)$ as a colorless syrup. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 8.66(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~s}, 1 \mathrm{H}), 6.29(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.36-5.33(\mathrm{~m}$, $1 \mathrm{H}), 5.07-5.03(\mathrm{~m}, 1 \mathrm{H}), 4.41-4.36(\mathrm{~m}, 1 \mathrm{H}), 3.82-3.72(\mathrm{~m}, 2 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H})$. HRMS calculated for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{ClI}(\mathrm{M}+\mathrm{H})^{+}$: 451.9874 ; found 451.9870 .
(3aS,4S,6R,6aR)-6-(7-Chloro-5-iodo-3H-imidazo[4,5-b]pyridin-3-yl)-2,2dimethyltetrahydro furo[3,4-d][1,3]dioxole-4-carboxylic acid (51)
TEMPO ($19 \mathrm{mg}, 0.24 \mathrm{mmol}$), BAIB ($98 \mathrm{mg}, 0.3 \mathrm{mmol}$) were added to a solution of compound $50(55 \mathrm{mg}, 0.12 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ and water $(1 \mathrm{~mL})$ and stirred at room temperature for 2 days. Aqueous layer was extracted with ethyl acetate (3 times) and the combined organic layer was dried, filtered and evaporated. The residue was purified on flash silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=15: 1\right)$ to give the compound $51(28 \mathrm{mg}, 50 \%)$ as a colorless syrup. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 8.57(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 5.68(\mathrm{~d}, J=5.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.57(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~s}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H})$. HRMS calculated for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{ClI}(\mathrm{M}+\mathrm{H})^{+}: 465.9667$; found 465.9665 .
(3aS,4S,6R,6aR)-6-(7-chloro-5-iodo-3H-imidazo[4,5-b]pyridin-3-yl)-N,2,2-trimethyltetrahydrofuro[3,4-d][1,3]dioxole-4-carboxamide (52)
$\mathrm{MeNH}_{2} . \mathrm{HCl}(4.8 \mathrm{mg}, 0.072 \mathrm{mmol})$, $\mathrm{HATU}(29.7 \mathrm{mg}, 0.078 \mathrm{mmol})$ and DIPEA ($13 \mu \mathrm{~L}, 0.078$ mmol) were added to a solution of compound $51(28 \mathrm{mg}, 0.06 \mathrm{mmol})$ in DMF (1 mL) and stirred at room temperature for overnight. Solvent was evaporated under vacuum and the residue was purified on flash silica gel column chromatography (hexane:ethyl acetate $=1: 3$) to give the compound $52(26 \mathrm{mg}, 93 \%)$ as colorless syrup. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 8.54(\mathrm{~s}, 1 \mathrm{H})$, $7.83(\mathrm{~s}, 1 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 5.64-5.62\left(\mathrm{dd}, J_{I}=2.4 \mathrm{~Hz}, J_{2}=6.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.47(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.69(\mathrm{~s}, 1 \mathrm{H}), 2.35(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H})$. HRMS calculated for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{ClI}(\mathrm{M}+\mathrm{H})^{+}: 478.9983$; found 478.9978 .
(3aS,4S,6R,6aR)-6-(5-Iodo-7-(methylamino)-3H-imidazo[4,5-b]pyridin-3-yl)-N,2,2-trimethyltetrahydrofuro[3,4-d][1,3]dioxole-4-carboxamide (53)
To a solution of compound $\mathbf{5 2}(33 \mathrm{mg}, 0.069 \mathrm{mmol})$ in DMF $(1 \mathrm{~mL}) \mathrm{MeNH}_{2} . \mathrm{HCl}(23.2 \mathrm{mg}, 0.34$ mmol) and DIPEA ($0.12 \mathrm{~mL}, 0.69 \mathrm{mmol}$) were heated at $150^{\circ} \mathrm{C}$ for 3 h under microwave condition. Solvent was evaporated under vacuum and the residue was purified on flash silica gel column chromatography (Ethyl acetate: $\mathrm{MeOH}=60: 1$) to give the compound $53(21 \mathrm{mg}, 65 \%)$ as colorless syrup. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 8.08(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 5.57(\mathrm{~d}$, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 1 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H})$, $1.41(\mathrm{~s}, 3 \mathrm{H})$. HRMS calculated for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{I}(\mathrm{M}+\mathrm{H})^{+}$: 474.0638; found 474.0642.
(3aS,4S,6R,6aR)-6-(5-((5-Fluorothiophen-2-yl)ethynyl)-7-(methylamino)-3H-imidazo[4,5-blpyridin-3-yl)-N,2,2-trimethyltetrahydrofuro[3,4-d][1,3]dioxole-4-carboxamide (54)
$\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(6.22 \mathrm{mg}, 0.008 \mathrm{mmol}), \mathrm{CuI}(1.0 \mathrm{mg}, 0.004 \mathrm{mmol})$, 2-ethynyl-5-fluorothiophene ($34 \mathrm{mg}, 0.52 \mathrm{mmol}$) and triethylamine ($61 \mu \mathrm{~L}, 0.44 \mathrm{mmol}$) were added to a solution of
compound 53 ($21 \mathrm{mg}, 0.044 \mathrm{mmol}$) in anhydrous DMF (1.0 mL), and the mixture heated at 70 ${ }^{\circ} \mathrm{C}$ for 2 h . Solvent was evaporated under vacuum, and the residue was purified on flash silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=45: 1\right)$ to give the compound $54(17 \mathrm{mg}, 84 \%)$ as a brown syrup. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.68-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.55(\mathrm{~m}, 1 \mathrm{H})$, $7.12(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 6.60(\mathrm{t}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.45-5.39$ $(\mathrm{m}, 2 \mathrm{H}), 4.65(\mathrm{~s}, 1 \mathrm{H}), 3.03(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H})$. HRMS calculated for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{FS}(\mathrm{M}+\mathrm{H})^{+}: 472.1455$; found 472.1464 .

Pharmacological Methods

The nucleoside analogues were examined in radioligand binding assays (Table 1A and 1B) at three hARs and two or three mARs as previously described. ${ }^{1-3}$
Binding affinity for human $\mathrm{A}_{1} \mathrm{AR}, \mathrm{A}_{2 \mathrm{~A}} \mathrm{AR}$, and $\mathrm{A}_{3} \mathrm{ARs}$ was measured as described using membranes from human embryonic kidney (HEK)-293 HEK293 (hA $\mathrm{h}_{1} \mathrm{AR}, \mathrm{hA}_{2 \mathrm{~A}} \mathrm{AR}$) or CHO ($\mathrm{h} \mathrm{A}_{3} \mathrm{AR}$) stably expressing individual recombinant mouse adenosine receptors and using the agonists radioligands. The binding affinity for $\mathrm{hA}_{1}, \mathrm{~A}_{2 \mathrm{~A}}$ and $\mathrm{A}_{3} \mathrm{ARs}$ was expressed as K_{i} values using agonists $\left[{ }^{3} \mathrm{H}\right] N^{6}$-R-phenylisopropyladenosine 55, $\left[{ }^{3} \mathrm{H}\right] 2$ - $[\mathrm{p}$-(2-carboxyethyl)phenyl-ethylamino]-5'- N-ethylcarboxamidoadenosine 56, or [${ }^{125}$ I] N^{6}-(4-amino-3-iodobenzyl)adenosine-$5^{\prime}-N$-methyluronamide 57, respectively. A percent in italics refers to inhibition of binding at 10 $\mu \mathrm{M}$. Nonspecific binding was determined using $10 \mu \mathrm{M}$ adenosine $5^{\prime}-\mathrm{N}$-ethyluronamide 58 or N -(2-aminoethyl)-2-[4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3-dipropyl-1 H-purin-8-yl)phenoxy]acetamide (XAC, 59, hA $\mathrm{A}_{1} \mathrm{AR}, \mathrm{hA}_{2 \mathrm{~A}} \mathrm{AR}$.
Binding affinity for mouse $\mathrm{A}_{1} \mathrm{AR}, \mathrm{A}_{2 \mathrm{~A}} \mathrm{AR}$, and $\mathrm{A}_{3} \mathrm{ARs}$ was measured as described ${ }^{4}$ using membranes from human embryonic kidney (HEK)-293 cells stably expressing individual recombinant mouse adenosine receptors and using the agonists [${ }^{125}$ I] N^{6}-(4 -amino-3-iodobenzyl)adenosine-5'-methyluronamide ($\left[{ }^{125} \mathrm{I}\right] \mathrm{AB}-\mathrm{MECA} ; \mathrm{A}_{1} \mathrm{AR}$ and $\mathrm{A}_{3} \mathrm{AR}$) and $\left[{ }^{3} \mathrm{H}\right]$ CGS21680 ($\mathrm{A}_{2 \mathrm{~A}} \mathrm{AR}$) as radioligands. Nonspecific binding was defined using $100 \mu \mathrm{M}$ adenosine- 5 '- N-ethylcarboxamide (NECA).
K_{i} values were obtained using the Cheng-Prusoff equation ${ }^{5}$ from IC_{50} values calculated by nonlinear regression analysis of specific binding data using GraphPad Prism software (San Diego, CA). In cases where there was only $\sim 50 \%$ AR binding inhibition at $10 \mu \mathrm{M}$, an estimated K_{i} of $\sim 10 \mu \mathrm{M}$ was used in approximating the selectivity ratio.
For one compound, activation of the Gs-coupled human $\mathrm{A}_{2 \mathrm{~B}} \mathrm{AR}$ stably expressed in CHO cells was measured as described. ${ }^{6}$

References:

1. Carlin, J. L.; Jain, S.; Gizewski, E.; Wan, T. C.; Tosh, D. K.; Xiao, C.; Auchampach, J. A.; Jacobson, K. A.; Gavrilova, O.; Reitman, M. L. Hypothermia in mouse is caused by adenosine A_{1} and A_{3} receptor agonists and AMP via three distinct mechanisms. Neuropharmacology 2017, 114, 101-113.
2. Tosh, D. K.; Paoletta, S.; Deflorian, F.; Phan, K.; Moss, S. M.; Gao, Z. G.; Jiang, X.; Jacobson, K. A. Structural sweet spot for A_{1} adenosine receptor activation by truncated (N)-methanocarba nucleosides: Receptor docking and potent anticonvulsant activity. J. Med. Chem. 2012, 55, 8075-8090.
3. Tosh, D. K.; Ciancetta, A.; Warnick, E.; Crane, S.; Gao, Z. G.; Jacobson, K. A. Structure-based scaffold repurposing for G protein-coupled receptors: Transformation of adenosine derivatives into $5 \mathrm{HT}_{2 \mathrm{~B}} / 5 \mathrm{HT}_{2 \mathrm{C}}$ serotonin receptor antagonists. J. Med. Chem. 2016, 59, 11006-11026.
4. Kreckler, L.M.; Wan, T.C.; Ge, Z.D.; Auchampach, J.A. Adenosine inhibits tumor necrosis factoralpha release from mouse peritoneal macrophages via $\mathrm{A}_{2 \mathrm{~A}}$ and $\mathrm{A}_{2 \mathrm{~B}}$ but not the A_{3} adenosine receptor. J. Pharmacol. Exp. Ther. 2006, 317 (1), 172e180.
5. Cheng, Y. C.; Prusoff, W. H. Relationship between the inhibition constant (K_{I}) and the concentration of inhibitor which causes 50 per cent inhibition (I_{50}) of an enzymatic reaction. Biochem. Pharmacol. 1973, 22, 3099-3108.
6. Jacobson, K.A.; Ohno, M.; Duong, H.T.; Kim, S.K.; Tchilibon, S.; Cesnek, M.; Holy, A.; Gao, Z.G. A neoceptor approach to unraveling microscopic interactions between the human $\mathrm{A}_{2 \mathrm{~A}}$ adenosine receptor and its agonists. Chemistry and Biology 2005, 12, 237-247.

Table S1. PDSP Off-target screening (human, unless noted, gp = guinea pig)

Compd. (MRS\#, PDSP\#)	$\mathrm{R}^{2}, \mathrm{R}^{3}, \mathrm{X}$	Off-target binding, $\mathrm{K}_{\mathrm{i}}, \mu \mathrm{M}\left(\right.$ or $\mathrm{IC}_{50}{ }^{\mathrm{f}}$), or $\%$ inhibition ${ }^{a}$
$\begin{gathered} \mathbf{6} \\ \text { MRS7294 } \\ 42206 \end{gathered}$	$\mathrm{Me}, \mathrm{Cl}, \mathrm{N}$	DAT-134\%
$\begin{gathered} 7 \\ \text { MRS7295 } \\ 42207 \end{gathered}$	$n-\mathrm{Pr}, \mathrm{Cl}, \mathrm{N}$	DAT -41\%
$\begin{gathered} \mathbf{8} \\ \text { MRS7432 } \\ 49028 \end{gathered}$	Me, F, N	$\begin{gathered} \text { DAT - } 234 \%, \\ \sigma_{2} 1.83 \end{gathered}$
$\begin{gathered} \mathbf{9} \\ \text { MRS7433 } \\ 49029 \end{gathered}$	$n-\mathrm{Pr}, \mathrm{F}, \mathrm{N}$	$\begin{gathered} \text { DAT }-40 \%, \\ \sigma_{1} 3.26(\mathrm{gp}), \sigma_{2} 0.98 \end{gathered}$
$\begin{gathered} \mathbf{1 0} \\ \text { MRS7424 } \\ 48846 \end{gathered}$	Me, F, CH	$\sigma_{2} 2.22$
$\begin{gathered} 4 \\ \text { MRS5980 } \end{gathered}$	$\mathrm{Me}, \mathrm{Cl}, \mathrm{N}$	DAT -556%, TSPO 0.68 ± 0.18, $\sigma_{1} 1.40(\mathrm{gp})$, $\sigma_{2} 0.527 \pm 0.088$
11 MRS7135	Et, Cl, N	DAT -329\%
12 MRS7154	$n-\mathrm{Pr}, \mathrm{Cl}, \mathrm{N}$	$\begin{gathered} \text { DAT }-159 \% \text {, TSPO } \\ 1.31 \pm 0.21, \beta_{3} 1.44 \end{gathered}$
$\begin{gathered} \mathbf{1 3} \\ \text { MRS7140 } \end{gathered}$	$\mathrm{Me}, \mathrm{Cl}, \mathrm{CH}$	$\sigma_{2} 3.11$ (gp), $\beta_{3} 1.96$
14 MRS7144	Et, Cl, CH	$\begin{gathered} 5 \mathrm{HT}_{2 \mathrm{~B}} 2.21 \pm 0.34, \mathrm{TSPO} \\ 3.21, \beta_{3} 1.44 \end{gathered}$
$\mathbf{1 5}$ MRS7161 48644	$\begin{gathered} n-\mathrm{Pr}, \mathrm{Cl}, \\ \mathrm{CH} \end{gathered}$	$\begin{gathered} 5 \mathrm{HT}_{2 \mathrm{~B}} 0.76, \beta_{3} 1.68, \\ \text { DAT 3.94, TSPO 4.83, } \\ \sigma_{2}, 1.27 \end{gathered}$

$\begin{array}{\|c\|} \hline \mathbf{1 6} \\ \text { MRS7334 } \\ 44294 \\ \hline \end{array}$	Me, F, N	DAT -144\%, TSPO, 3.38
$\begin{gathered} \mathbf{1 7} \\ \text { MRS7426 } \\ 48994 \\ \hline \end{gathered}$	$n-\mathrm{Pr}, \mathrm{F}, \mathrm{N}$	$\sigma_{2} 1.87$, DAT - 212%
$\begin{gathered} \hline \mathbf{1 8} \\ \text { MRS7345 } \\ 44510 \end{gathered}$	Me, F, CH	$\beta_{3} 1.96$
$\begin{gathered} 19 \\ \text { MRS7346 } \\ 44511 \end{gathered}$	Et, F, CH	$\beta_{3} 3.34$
$\begin{array}{\|c\|} \hline \mathbf{2 0} \\ \text { MRS7296 } \\ 42208 \\ \hline \end{array}$	5'-ester, See Table 1	$\begin{gathered} 5 \mathrm{HT}_{2 \mathrm{C}} 3.24 \pm 1.05 \\ \text { DAT }-99 \% \end{gathered}$
$\mathbf{2 1}^{\text {b }}$ MRS7292 42073	5'-ester, See Table 1	KOR 3.13 ± 0.53, DAT -240\%
$\begin{gathered} \mathbf{2 2}^{\mathrm{b}} \\ \text { MRS7332 } \\ 44512 \end{gathered}$	5'-ester, See Table 1	$\begin{gathered} \text { KOR } 0.806 \pm 0.263 \\ \text { TSPO } 4.13 \pm 0.33 \\ \sigma_{2} 1.66 \pm 0.38 \end{gathered}$
$\mathbf{2 3}$ MRS7333 44293	5'-ester, See Table 1	KOR 2.65 ± 0.37, DAT - $228 \%, \sigma_{1} 4.04$ (gp)

Figure S1. PDSP Off-target screening, representative binding curves (human, unless noted).
Unless noted in the text, no significant interactions ($<50 \%$ inhibition at $10 \mu \mathrm{M}$) for any of the nucleosides were found at the following sites (human unless noted): $5 \mathrm{HT}_{1 \mathrm{~A}}, 5 \mathrm{HT}_{1 \mathrm{~B}}, 5 \mathrm{HT}_{1 \mathrm{D}}, 5 \mathrm{HT}_{1 \mathrm{E}}$, $5 \mathrm{HT}_{2 \mathrm{~A}}, 5 \mathrm{HT}_{2 \mathrm{~B}}, 5 \mathrm{HT}_{2 \mathrm{C}}, 5 \mathrm{HT}_{3}, 5 \mathrm{HT}_{5 \mathrm{~A}}, 5 \mathrm{HT}_{6}, 5 \mathrm{HT}_{7}, \alpha_{1 \mathrm{~A}}, \alpha_{1 \mathrm{~B}}, \alpha_{1 \mathrm{D}}, \alpha_{2 \mathrm{~A}}, \alpha_{2 \mathrm{~B}}, \alpha_{2 \mathrm{C}}, \beta_{1}, \beta_{2}, \beta_{3}, \mathrm{BZP}^{2}$ rat brain site, $\mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{D}_{3}, \mathrm{D}_{4}, \mathrm{D}_{5}$, delta opioid receptor (DOR), GABA $, \mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{H}_{3}, \mathrm{H}_{4}, \mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M}_{5}$, mu opioid receptor (MOR), σ_{1}, σ_{2}, DAT, NET, SERT. Representative curves are shown.

DAT inhibition by compound 8 (MRS7432, 49028).

$\sigma_{1} R(\mathrm{gp})$ inhibition by compound 9 (MRS7433, 49029).

$\sigma_{2} \mathrm{R}$ inhibition by compound 9 (MRS7433, 49029).

DAT inhibition by compound 15 (MRS7161, 48644).

$5 \mathrm{HT}_{2 \mathrm{~B}} \mathrm{R}$ inhibition by compound $\mathbf{1 5}$ (MRS7161, 48644).

$\beta_{3} \mathrm{R}$ inhibition by compound 19 (MRS7346, 44511).

Figure S2. Rat PK of A_{3} AR selective nucleosides 4 (A), 11 (B), 14 (C), $\mathbf{1 6}$ (D) and 17 (E) (GVK Biosciences, Hyderabad, India.).

	i.v.		p.o.	
	$1 \mathrm{mg} / \mathrm{kg}$	$1 \mathrm{mg} / \mathrm{kg}$	$3 \mathrm{mg} / \mathrm{kg}$	$10 \mathrm{mg} / \mathrm{kg}$
Bioavailability		22 ± 0.3	19 ± 3.5	33 ± 2.2
$\mathrm{t}_{1 / 2}(\mathrm{~h})$	0.7 ± 0.3	3.6 ± 0.4	5.3 ± 0.8	7.8 ± 2.0
$\mathrm{C}_{\text {max }}$				
$\mathrm{ng} / \mathrm{ml}$		29 ± 8.6	47 ± 24	326 ± 57
nM		63 ± 19	101 ± 53	711 ± 125

B

Parameter	$1 \mathrm{mg} / \mathrm{kg}$	$3 \mathrm{mg} / \mathrm{kg}$	$10 \mathrm{mg} / \mathrm{kg}$
$\mathrm{t}_{1 / 2}(\mathrm{~h})$, oral adminstration	7.07 ± 1.25	3.31 ± 0.88	5.33 ± 2.13
Bioavailability $(\% \mathrm{~F})$	22.3 ± 3.0	26.6 ± 18.1	37.9 ± 13.3

C

	$\mathrm{IV}-1 \mathrm{mg} / \mathrm{kg}$	$\mathrm{PO}-1 \mathrm{mg} / \mathrm{kg}$	$\mathrm{PO}-3 \mathrm{mg} / \mathrm{kg}$	$\mathrm{PO}-10 \mathrm{mg} / \mathrm{kg}$
$\mathrm{AUC}_{0-\text { last }}(\mathrm{ng} \cdot \mathrm{h} / \mathrm{mL})$	711.99	342.56	1331.04	5314.92
$\mathrm{AUC}_{0-\text { inf }}(\mathrm{ng} \cdot \mathrm{h} / \mathrm{mL})$	745.00	390.47	1345.65	5389.32
Bioavailability	---	52.41	60.21	72.34
$\mathrm{t}_{1 / 2}(\mathrm{hr})$		2.62 ± 0.90	2.53 ± 0.49	3.50 ± 0.04

D

Parameter (MRS7334)	Mean	St Dev	\%CV
Dose $(\mathrm{mg} / \mathrm{kg})$	$\mathbf{1 0 . 0 0}$	0.00	0.00
Cmax $(\mathrm{ng} / \mathrm{mL})$	$\mathbf{6 6 . 3 5}$	9.23	13.91
$\mathrm{~T}_{\max }(\mathrm{h})$	$\mathbf{2 . 8 3}$	4.47	157.92
$\mathrm{AUC}_{0-\text { last }}(\mathrm{ng} \cdot \mathrm{h} / \mathrm{mL})$	$\mathbf{4 0 0 . 6 0}$	120.48	30.08
$\mathrm{AUC}_{0-\text { inf }}(\mathrm{ng} \cdot \mathrm{h} / \mathrm{mL})$	$\mathbf{6 2 2 . 7 4}$	451.15	72.45
$\mathrm{AUC}_{\text {Extra }}(\%)$	$\mathbf{3 0 . 9 4}$	24.69	79.80
$\mathrm{MRT}_{\text {0-last }}(\mathrm{h})$	$\mathbf{5 . 7 8}$	0.76	13.14
$\mathrm{~F}(\%)$	$\mathbf{1 4 . 4 8}$	0.94	6.51
Rsq	$\mathbf{0 . 5 4}$	0.24	45.11

E

	IV-1 mg/kg PO-1 mg/kg		PO-3 mg/kg	PO-10 mg/kg
$\mathrm{AUC}_{0 \text {-last }}(\mathrm{ng} \cdot \mathrm{h} / \mathrm{mL})$	503.86	185.8 ± 10.5	1566さ608	- -
$\mathrm{AUC}_{0-\mathrm{inf}}(\mathrm{ng} \cdot \mathrm{h} / \mathrm{mL})$	512.53	237.3 ± 43.1	1578 ± 602	-
Bioavailability (\%F)	--	28.3 ± 1.1	98.9 ± 37.7	-
$\mathrm{t}_{\text {max }}$	-	1.33 ± 0.58	2.67 ± 1.15	-
$\mathrm{t}_{1 / 2}$	1.12 ± 0.10	-	-	

Table S2. In vitro and in vivo ADME-tox data for five representative $\mathrm{A}_{3} \mathrm{AR}(\mathrm{N})$-methanocarba agonists, determined by GVK Biosciences, Hyderbad, India.. ${ }^{\text {a }}$

Test	$\begin{gathered} 4, \\ \text { MRS5980 } \end{gathered}$	$\begin{gathered} 11, \\ \text { MRS7135b } \end{gathered}$	$\begin{gathered} 14, \\ \text { MRS7144b } \end{gathered}$	$\begin{gathered} 16, \\ \text { MRS7334 } \end{gathered}$	$\begin{gathered} 17, \\ \text { MRS7345 } \end{gathered}$
Simulated gastric fluid (\% remaining, min)	100 (120)	92.9 (240)	89.5 (240)	100 (120)	ND
Simulated intestinal fluid (\% remaining, min)	100 (120)	91.7 (240)	100 (240)	86.2 (120)	ND
CYP1A2 ($\left.\mathrm{IC}_{50}, \mu \mathrm{M}\right)$	>10	>10	>10	>30	>30
CYP2C9 ($\left.\mathrm{IC}_{50}, \mu \mathrm{M}\right)$	>10	>10	>10	>30	>30
CYP2C19 ($\left.\mathrm{IC}_{50}, \mu \mathrm{M}\right)$	>10	>10	>10	>30	>30
CYP2D6 ($\left.\mathrm{IC}_{50}, \mu \mathrm{M}\right)$	>10	>10	>10	>30	>30
CYP3A4 ($\left.\mathrm{IC}_{50}, \mu \mathrm{M}\right)$	>10	>10	>10	>30	>30
Plasma stability, 3 species $^{\mathrm{d}}$ (\% remaining at 120 min)	$\begin{gathered} \hline 97.1(\mathrm{~h}) ; \\ 100(\mathrm{r}) ; \\ 100(\mathrm{~m}) \end{gathered}$	$\begin{aligned} & 99.0(\mathrm{~h}) ; \\ & 93.9(\mathrm{r}) ; \\ & 100(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \hline 86.4(\mathrm{~h}) ; \\ & 93.2(\mathrm{r}) ; \\ & 100(\mathrm{~m}) \end{aligned}$	$\begin{gathered} 100(\mathrm{~h}) ; \\ 100(\mathrm{r}) ; \\ 97.3(\mathrm{~m}) \end{gathered}$	$\begin{aligned} & 98.1(\mathrm{~h}) ; \\ & 81.5(\mathrm{r}) ; \\ & 96.0(\mathrm{~m}) \end{aligned}$
Plasma protein binding, 3 species $^{\text {d }}$ (\%)	$\begin{aligned} & 93.8(\mathrm{~h}) ; \\ & 94.1(\mathrm{r}) ; \\ & 93.6(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & 97.0(\mathrm{~h}) ; \\ & 93.9(\mathrm{r}) ; \\ & 96.8(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & 99.64(\mathrm{~h}) ; \\ & 99.22(\mathrm{r}) ; \\ & 99.5(\mathrm{~m}) \end{aligned}$	ND	ND
$\begin{gathered} \text { CACO2 permeability } \\ \left(\mathrm{P}_{\text {app }}, \text { A to } \mathrm{B}\left(10^{-6} \mathrm{~cm} / \mathrm{sec}\right) ;\right. \\ \text { efflux ratio }) \end{gathered}$	$\begin{gathered} \hline 2.20 ; \\ 16.2 \end{gathered}$	$\begin{gathered} 0.80 \\ 40.1 \end{gathered}$	$\begin{aligned} & 2.05 \\ & 6.40 \end{aligned}$	$\begin{gathered} \hline 0.87 ; \\ 53.1 \end{gathered}$	$\begin{aligned} & 4.89 ; \\ & 9.57 \end{aligned}$
Liver microsomal stability, 3 species $^{\mathrm{d}}\left(\mathrm{t}_{1 / 2}, \mathrm{~min}\right)$	$\begin{gathered} \hline 230(\mathrm{~h}), \\ 128(\mathrm{r}), \\ 143(\mathrm{~m}) \end{gathered}$	$\begin{gathered} 203(\mathrm{~h}), \\ 155(\mathrm{r}), \\ 95.4(\mathrm{~m}) \end{gathered}$	$\begin{gathered} 145(\mathrm{~h}), \\ 104(\mathrm{r}), \\ 98.6(\mathrm{~m}) \end{gathered}$	$\begin{aligned} & 141(\mathrm{~h}), \\ & 145(\mathrm{r}), \\ & 117(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \hline 60.6(\mathrm{~h}), \\ & 41.9(\mathrm{r}), \\ & 117(\mathrm{~m}) \end{aligned}$
HEP G2 cell toxicity, CC_{50} ($\mu \mathrm{M}$)	>100	>30	ND	>30	ND
aqueous solubility ${ }^{\mathrm{c}}$ (pH 7.4 , unless noted, $\mu \mathrm{g} / \mathrm{mL})$	$\begin{gathered} \hline 16.8 \pm 1.1 ; \\ 19.7 \pm 0.5 \\ (\mathrm{pH} 4.0) \end{gathered}$	4.22	5.37 ± 0.48	ND	167 ± 5

${ }^{\text {a }}$ Procedure is in the Supporting Information of Tosh et al., J. Med. Chem., 2014, 57: 9901-9914.
${ }^{\mathrm{b}}$ Compounds previously reported in Tosh et al.: 1) J. Med. Chem., 2014, 57: 9901-9914; 2) ACS Med. Chem. Lett., 2015, 6:804-808.
${ }^{\mathrm{c}}$ Mean \pm SD, pION method.
${ }^{\mathrm{d}}$ Species tested were human, rat and mouse; species as indicated.

Molecular Modeling

Ligand-Protein Complex Preparation
A homology model of $\mathrm{hA}_{3} \mathrm{AR}$ was retrieved from a previous work, where it was built with the Prime knowledge-based method ${ }^{1,2}$, using as templates a structure of $h_{2 A} A R\left(3 Q_{2}{ }^{3}\right.$, plus $4 U^{2} H^{4}$ to model IL3) for the greater part of the receptor and a structure of $\mathrm{hA}_{1} \mathrm{AR}\left(5 \mathrm{UEN}^{5}\right)$ for TM2. The Protein Preparation Wizard tool ${ }^{6}$ of the Schrödinger suite (Maestro 2019-1) ${ }^{7}$ was used to assign the histidines protonation and tautomeric states, with His79, His95, His124 and His158 protonated at N^{ε} nitrogen (named HSE according to the CHARMM nomenclature), while His272 protonated at N^{δ} (HSD). The Ballesteros-Weinstein ${ }^{8}$ numbering was used throughout the manuscript to define the residues of the receptor.
Ligands were drawn using the Schrödinger suite (Maestro 2019-1) ${ }^{7}$ and minimized using the OPLS3 force field. ${ }^{9}$

Molecular Docking

Compounds 16 and $\mathbf{8}$ were docked to the $\mathrm{hA}_{3} \mathrm{AR}$ homology model with Glide-XP ${ }^{10}$ scoring function, on a grid of $30 \AA$ side, centered on Asn250 (Asn6.55) and Phe168 (EL2). Successively, a pose was selected for each compound by visual inspection.

Molecular Dynamics

The systems obtained from docking were prepared for MD simulations employing the HTMD ${ }^{11}$ module, adding to the system a water molecule mediating the interaction among Asn250 (Asn6.55), Ser247 (Ser6.52) and Met177 (Met5.38), as previously reported. ${ }^{12}$ Each protein-ligand complex was oriented using the Positioning of Proteins in Membrane (PPM) ${ }^{13}$ web server and inserted into a $90 \AA \times 90 \AA$ 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid bilayer generated with the VMD Membrane Plugin. ${ }^{14}$ Each system was solvated with TIP3P ${ }^{15}$ water molecules (with a positive and negative padding of $15 \AA$ on the z axis) and neutralized with $\mathrm{Na}^{+} / \mathrm{Cl}^{-}$counter-ions, added to reach a concentration of 0.154 M .
The compounds were also simulated in the free (unbound) state: they were inserted at the center of a $40 \AA$ sided water box and simulated in the conditions discussed below.
The simulations were carried out employing CHARMM36 ${ }^{16,17}$ force field for protein, lipids, water and ions, $\mathrm{CGenFF}^{18,19}$ force field for the ligand, and ACEMD ${ }^{20}$ as molecular dynamics engine.
Missing ligand parameters were assigned by analogy using the ParamChem ${ }^{21}$ web service, with few modifications on the (N)-methanocarba parameters, assigned manually according to the carbocyclic parameters present in the CGenFF.
The initial system was minimized through 5000 conjugate-gradient steps and equilibrated for 40 ns MD simulation in the NPT ensemble, where positional harmonic restraints were applied to ligand and protein atoms ($0.8 \mathrm{kcal} \mathrm{mol}^{-1} \AA^{-2}$ for ligand atoms, $0.85 \mathrm{kcal} \mathrm{mol}^{-1} \AA^{-2}$ for $\mathrm{C} \alpha$ carbon atoms, and $0.4 \mathrm{kcal} \mathrm{mol}^{-1} \AA^{-2}$ for the other protein atoms) and linearly reduced in the last 20 ns . After equilibration, three 30 ns replicates of MD simulations were run for each system in the NVT ensemble. The pressure was maintained at around 1 atm by a Berendsen barostat (relaxation time 800 fs) during equilibration and temperature was kept at around 310 K by a Langevin thermostat (damping constant $1 \mathrm{ps}^{-1}$ and $0.1 \mathrm{ps}^{-1}$ for equilibration and production, respectively). The timestep was set to 2 fs in all the simulations and the M-SHAKE ${ }^{22}$ algorithm was used to constrain bonds containing hydrogen atoms. A $9 \AA$ cutoff was employed for non-bonded interactions, with a switching distance of $7.5 \AA$, and the long-range electrostatic interactions beyond the cutoff were computed with the Particle Mesh Ewald (PME) ${ }^{23}$ method ($1 \AA$ grid spacing).

Trajectory Analysis

An in-house Tcl script employing VMD 1.9.3 was used to analyze the MD trajectories. ${ }^{14}$ The systems were aligned to their initial conformation by superposing protein C α carbon atoms. Ligand-protein electrostatic and van der Waals interactions were computed with NAMD. ${ }^{24}$ The data were plotted using the Gnuplot (version 5.0) software. ${ }^{25}$
The puckering parameters (phase angle of pseudorotation (P) and degree of deformation from the plane $\left(v_{\max }\right)$) were computed with an in-house python 2.7 script, employing the ProDy ${ }^{26}$ and matplotlib ${ }^{27}$ modules.

References:

1. Jacobson, M. P.; Pincus, D. L.; Rapp, C. S.; Day, T. J. F.; Honig, B.; Shaw, D. E.; Friesner, R. A. A Hierarchical Approach to All-Atom Protein Loop Prediction. Proteins 2004, 55 (2), 351-367.
2. Jacobson, M. P.; Friesner, R. A.; Xiang, Z.; Honig, B. On the Role of the Crystal Environment in Determining Protein Side-Chain Conformations. J. Mol. Biol. 2002, 320 (3), 597-608.
3. Xu, F.; Wu, H.; Katritch, V.; Han, G. W.; Jacobson, K. A.; Gao, Z.-G.; Cherezov, V.; Stevens, R. C. Structure of an Agonist-Bound Human A2A Adenosine Receptor. Science 2011, 332 (6027), 322-327.
4. Lebon, G.; Edwards, P. C.; Leslie, A. G. W.; Tate, C. G. Molecular Determinants of CGS21680 Binding to the Human Adenosine A2A Receptor. Mol. Pharmacol. 2015, 87 (6), 907-915.
5. Glukhova, A.; Thal, D. M.; Nguyen, A. T.; Vecchio, E. A.; Jörg, M.; Scammells, P. J.; May, L. T.; Sexton, P. M.; Christopoulos, A. Structure of the Adenosine A1 Receptor Reveals the Basis for Subtype Selectivity. Cell 2017, 168 (5), 867-877.e13.
6. Sastry, G. M.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and Ligand Preparation: Parameters, Protocols, and Influence on Virtual Screening Enrichments. J. Comput. Aided Mol. Des. 2013, 27 (3), 221-234.
7. Schrödinger Release 2019-3: Maestro, Schrödinger, LLC, New York, NY, 2019.
8. Ballesteros, J. A.; Weinstein, H. [19] Integrated Methods for the Construction of ThreeDimensional Models and Computational Probing of Structure-Function Relations in G Protein-Coupled Receptors. In Receptor Molecular Biology; Methods in Neurosciences; Elsevier, 1995; Vol. 25, pp 366-428.
9. Harder, E.; Damm, W.; Maple, J.; Wu, C.; Reboul, M.; Xiang, J. Y.; Wang, L.; Lupyan, D.; Dahlgren, M. K.; Knight, J. L.; et al. OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins. J. Chem. Theory Comput. 2016, 12 (1), 281-296.
10. Friesner, R. A.; Murphy, R. B.; Repasky, M. P.; Frye, L. L.; Greenwood, J. R.; Halgren, T. A.; Sanschagrin, P. C.; Mainz, D. T. Extra Precision Glide: Docking and Scoring Incorporating a Model of Hydrophobic Enclosure for Protein-Ligand Complexes. J. Med. Chem. 2006, 49 (21), 6177-6196.
11. Tosh, D. K.; Salmaso, V.; Rao, H.; Bitant, A.; Fisher, C. L.; Lieberman, D. I.; Vorbrüggen, H.; Reitman, M. L.; Gavrilova, O.; Gao, Z. G.; Auchampach, J. A.; Jacobson, K. A. Truncated (N)-methanocarba nucleosides as partial agonists at mouse and human A_{3} adenosine receptors: Affinity enhancement by N^{6}-(2-phenylethyl) substitution. J. Med. Chem., ACS Spring 2020 National Meeting \& Exposition, Philadelphia, PA, Abstr. MEDI150.
12. Doerr, S.; Harvey, M. J.; Noé, F.; De Fabritiis, G. HTMD: High-Throughput Molecular Dynamics for Molecular Discovery. J. Chem. Theory Comput. 2016, 12 (4), 1845-1852.
13. Lomize, M. A.; Pogozheva, I. D.; Joo, H.; Mosberg, H. I.; Lomize, A. L. OPM Database and PPM Web Server: Resources for Positioning of Proteins in Membranes. Nucleic Acids Res. 2012, 40 (Database issue), D370-6.
14. Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14 (1), 33-38, 27.
15. Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79 (2), 926.
16. Best, R. B.; Zhu, X.; Shim, J.; Lopes, P. E. M.; Mittal, J.; Feig, M.; Mackerell, A. D. Optimization of the Additive CHARMM All-Atom Protein Force Field Targeting Improved Sampling of the Backbone φ, ψ and Side-Chain $\chi(1)$ and $\chi(2)$ Dihedral Angles. J. Chem. Theory Comput. 2012, 8 (9), 3257-3273.
17. Klauda, J. B.; Venable, R. M.; Freites, J. A.; O’Connor, J. W.; Tobias, D. J.; MondragonRamirez, C.; Vorobyov, I.; MacKerell, A. D.; Pastor, R. W. Update of the CHARMM AllAtom Additive Force Field for Lipids: Validation on Six Lipid Types. J. Phys. Chem. B 2010, 114 (23), 7830-7843.
18. Vanommeslaeghe, K.; MacKerell, A. D. Automation of the CHARMM General Force Field (CGenFF) I: Bond Perception and Atom Typing. J. Chem. Inf. Model. 2012, 52 (12), 31443154.
19. Vanommeslaeghe, K.; Raman, E. P.; MacKerell, A. D. Automation of the CHARMM General Force Field (CGenFF) II: Assignment of Bonded Parameters and Partial Atomic Charges. J. Chem. Inf. Model. 2012, 52 (12), 3155-3168.
20. Harvey, M. J.; Giupponi, G.; Fabritiis, G. D. ACEMD: Accelerating Biomolecular Dynamics in the Microsecond Time Scale. J. Chem. Theory Comput. 2009, 5 (6), 1632-1639.
21. CHARMM General Force Field (CGenFF) program, https://cgenff.umaryland.edu/
22. Kräutler, V.; van Gunsteren, W. F.; Hünenberger, P. H. A Fast SHAKE Algorithm to Solve Distance Constraint Equations for Small Molecules in Molecular Dynamics Simulations. J. Comput. Chem. 2001, 22 (5), 501-508.
23. Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. A Smooth Particle Mesh Ewald Method. J. Chem. Phys. 1995, 103 (19), 8577.
24. Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kalé, L.; Schulten, K. Scalable Molecular Dynamics with NAMD. J. Comput. Chem. 2005, 26 (16), 1781-1802.
25. Williams, T.; Kelley, C. Gnuplot 5.0, http://www.gnuplot.info
26. Bakan, A.; Meireles, L. M.; Bahar, I. ProDy: Protein Dynamics Inferred from Theory and Experiments. Bioinformatics 2011, 27 (11), 1575-1577.
27. Hunter, J. D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9 (3), 90-95.

Table S3

Compound Replicates		Cmp 8 (MRS7432)			Cmp 16 (MRS7334)		
		1	2	3	1	2	3
$\mathbf{R M S D}_{\text {ave }}(\AA)$		1.85	1.60	1.84	2.03	1.84	2.21
$\begin{gathered} \mathrm{En}_{\text {ave }} \\ \text { (kcal/mo } \\ \text { l) } \end{gathered}$	Ele	25.85	26.10	25.30	29.51	22.39	25.38
	vdW	38.33	39.05	38.70	46.54	42.46	42.75
	Total	64.18	65.15	64.00	76.05	64.85	68.13
Hydroge n Bonds	$\begin{gathered} \text { Thr94 } \\ 3.36 \\ \hline \end{gathered}$	88\%	82\%	86\%	69\%	69\%	43\%
	$\begin{gathered} \text { Asn250 } \\ 6.55 \\ \hline \end{gathered}$	93\%	96\%	86\%	88\%	89\%	89\%
	$\begin{gathered} \hline \text { Ser271 } \\ 7.42 \\ \hline \end{gathered}$	23\%	38\%	14\%	1\%	10\%	5\%
	$\begin{gathered} \text { His272 } \\ 7.43 \\ \hline \end{gathered}$	3\%	6\%	4\%	84\%	0\%	50\%

Table S3. Summary of the MD trajectories analysis of the complexes between $\mathrm{hA}_{3} \mathrm{AR}$ and compounds $\mathbf{8}$ and 16. The following average values are reported: the average root mean square deviation of the ligand heavy atoms relative to the docking pose $\left(\mathrm{RMSD}_{\text {ave }}\right)$, after alignment of the protein $\mathrm{C} \alpha$ atoms to the starting structure; the average ligand-receptor electrostatic (Ele), van der Waals (vdW) and sum of the two (Total) interaction energy ($\mathrm{En}_{\text {ave }}$). The percentages of frames showing hydrogen bonds between the ligand and Thr94 (3.36), Asn250 (6.55), Ser271 (7.42) and His272 (7.43) are indicated. The replicates discussed in the manuscript (selected on the basis of the lowest average total interaction energy) are highlighted in red.

Figure S3

Figure S3. Analysis of the MD simulation (replicate 1) of the complex between compound 16 and $\mathrm{hA}_{3} \mathrm{AR}$. The replicate was chosen on the basis of the lowest average total interaction energy. A) RMSD of ligand heavy atoms relative to the docking pose, after alignment of the protein $\mathrm{C} \alpha$ atoms to the starting structure. B) Electrostatic and van der Waals (and Total, as sum of the two) ligandreceptor interaction energy. C) Histograms showing the percentage of time where each protein residue is in contact (distance $<4 \AA$) with the ligand. Residues with 0 contacts during the simulations are not reported. D) Presence of hydrogen bonds during the simulation for selected residues (residues that are in contact with the ligand at least for one third of the simulation).

Figure S4

Figure S4. Analysis of the MD simulation (replicate 2) of the complex between compound $\mathbf{8}$ and $\mathrm{hA}_{3} \mathrm{AR}$. The replicate was chosen on the basis of the lowest average total interaction energy. A) RMSD of ligand heavy atoms relative to the docking pose, after alignment of the protein $\mathrm{C} \alpha$ atoms to the starting structure. B) Electrostatic and van der Waals (and Total, as sum of the two) ligandreceptor interaction energy. C) Histograms showing the percentage of time where each protein residue is in contact (distance $<4 \AA$) with the ligand. Residues with 0 contacts during the simulations are not reported. D) Presence of hydrogen bonds during the simulation for selected residues (residues that are in contact with the ligand at least for one third of the simulation).

Figure S5

Figure S5. van der Waals interaction energy during the MD simulation between \mathbf{A}) the receptor and the carbon and hydrogen atoms replacing O 4 ' in compound $\mathbf{1 6} ; \mathbf{B}$) the receptor and ${ }^{\prime} 4^{\prime}$ of compound 8 .

Figure S6
A Cmp 16 (MRS7334), bound, replicate 1

B Cmp 16 (MRS7334), bound, replicate 2
C Cmp 16 (MRS7334), bound, replicate 3

Figure S6. Conformation of the (N)-methanocarba moiety of compound $\mathbf{1 6}$ expressed as phase angle of pseudorotation (P) and degree of deformation from the plane $\left(v_{\max }\right)$, reported respectively on the polar axis and on the x / y axes of the pseudorotational cycle. The time-coordinate is
represented by a colorimetric scale going from yellow to dark purple. Plots A-B-C) represent the puckering of the (N)-methanocarba when the compound is bound to the receptor, in replicates 1 , 2 and 3, respectively. Plots D-E-F) represent the puckering of the (N)-methanocarba when the compound is simulated in an un-bound state, in solution, in three different replicates.

Figure S7

ACmp 8 (MRS7432), bound, replicate 1

DCmp 8 (MRS7432), free, replicate 1

BCmp 8 (MRS7432), bound, replicate 2

E Cmp 8 (MRS7432), free, replicate 2

C Cmp 8 (MRS7432), bound, replicate 3

F Cmp 8 (MRS7432), free, replicate 3

Figure S7. Conformation of the ribose-like ring of compound $\mathbf{8}$ expressed as phase angle of pseudorotation (P) and degree of deformation from the plane $\left(v_{\max }\right)$, reported respectively on the polar axis and on the x / y axes of the pseudorotational cycle. The time-coordinate is represented by a colorimetric scale going from yellow to dark purple. Plots A-B-C) represent the puckering of ribose-like ring when the compound is bound to the receptor, in replicates 1,2 and 3, respectively. Plots D-E-F) represent the puckering of the ribose-like ring when the compound is simulated in an un-bound state, in solution, in three different replicates.

Video S1. MD trajectory (replicate 1) of the complex between compound $\mathbf{1 6}$ (MRS7334) and $\mathrm{hA}_{3} \mathrm{AR}$, after superposition of receptor $\mathrm{C} \alpha$ atoms to the initial frame. The receptor is depicted by a grey ribbon and the ligand by green sticks. The transparency of TM7 tip was increased to enable the visualization of the ligand. Key receptor residues are highlighted by sticks. Hydrogen bonds are shown by dashed lines.

Video S2. MD trajectory (replicate 2) of the complex between compound 8 (MRS7432) and $\mathrm{hA}_{3} \mathrm{AR}$, after superposition of receptor $\mathrm{C} \alpha$ atoms to the initial frame. The receptor is depicted by a grey ribbon and the ligand by orange sticks. The transparency of TM7 tip was increased to enable the visualization of the ligand. Key receptor residues are highlighted by sticks. Hydrogen bonds are shown by dashed lines.

Table S4. Screening of compound 4 (MRS5980) by DiscoverX (Eurofins DiscoverX Corporation, Fremont, CA 94538 USA) broadly at G protein-coupled receptors (GPCRs) and at kinases.
A. Compound $4(10 \mu \mathrm{M})$ tested as agonist in GPCRMax screen (167 known GPCRs). ADORA3 $\left(A_{3} A R\right)$ is the only hit.

craid	Cutane	comporalo	ascey mose	Conc (MM)	Masmu	Sadinit
GP28	NH	MEST88	Agsonit	10	9280	2%
¢R1	NH	M65s90	Asponit	10	79650	28
Grios	NH	MES5980	Aspont	10	7736	5\%
griosa	NH	меร9980	Agonit	10	33440	3\%
Grease	NH	masses	Aspoiz	10	30330	-18
Grat	NH	messse	Agonit	10	213880	2%
GPer20	NH	messse	Aspoist	10	31650	4%
¢гз3	NH	мк5s90	Asponit	10	396380	9\%
GRe9	NH	мкรsso	Agonit	10	281580	3\%
Ger	NH	MEssso	4 Asprit	10	52550	0%
hCITR1	NH	ME5988	Aspoit	10	10832	0%
hGITR2	NH	ме5s980	Agonit	10	61740	es
ня\%1	NH	ME5980	Agonit	10	377500	\%
НलН2	NH	мкรs90	Agniat	10	99920	3\%
нкн3	NH	м<5s90	Aspoit	10	40320	-15
нent	NH	MEssso	Agonit	10	1021580	13\%
HTR1a	NH	messso	Aspont	10	1303500	2%
HTR18	NH	messes	Asponit	10	1133250	48
hTR1E	NH	Mcssse	Aspoit	10	32500	\%
HTR1F	NH	messse	Asponit	10	33830	28
нTr2a	NH	ME5sso	Aspriat	10	400380	2%
нтге	NH	messes	Aspoit	10	457240	os
нारSa	NH	Mc5sso	Agonit	10	1173200	2%
kSSIR	NH	ME59980	Aspoist	10	4970	3\%
WCGR	NH	MES5980	Aspoist	10	27300	1%
Lteze	NH	messem	Aspoist	10	177400	0%
MC1R	NH	messso	Agmist	10	11900	0\%
MGR	NH	мร5sso	Aspois	10	15120	-28
мсав	NH	мк5989	Agonit	10	32050	-15
MCR	NH	Messse	Aspoist	10	114180	-28
MCH1	NH	ME5s98	Aspoist	10	40740	6\%
MCH2	NH	Mร5980	Agonit	10	43400	-15
MVR	NH	ME5980	Aspoit	10	232850	15
mfgrax 1	NH	м<5sso	Aspoit	10	633340	4s
mRGPrx2	NH	Mร53s\%	Aspoit	10	12820	-15
minta	NH	Messem	Asponit	10	61130	25
MMER	NH	Mร59s\%	Agniat	10	6020	-25
mulir	NH	MR5s9s	Asponit	10	98540	15
neswra	NH	мк5sso	Agonit	10	6240	25
Neswre	NH	messes	Agonit	10	198180	1\%
nefra	NH	MEكsso	${ }_{\text {Agonit }}$	10	199240	\%
nsshis	NH	ME5s90	Aspoit	10	36420	\%
nerim	NH	мк5ss	Agonit	10	56230	-3\%
Neriz	NH	MEssse	4 Aspoit	10	311820	18
NTSR1	NH	ME5980	Asmis	10	333540	35
Omor	NH	ME59s\%	Asponit	10	103360	os
Ofaxi	NH	ME5980	Asponit	10	45220	0%
оma	NH	мร5990	Agonit	10	16750	os
овma	NH	м<ร5980	Asponit	10	99350	os
OLER1	NH	ME5980	Asponit	10	7430	15
OTR	NH	Mร59s\%	Aspoist	10	29320	15
P2891	NH	ME5980	Aspoist	10	88200	os
P28\%11	NH	мк5sso	Agmiat	10	59050	2%
P2812	NH	Messso	Asponit	10	43820	\%
P2R/2	NH	ME5998	Aspoist	10	281580	0%
P22\%4	NH	мร5980	Aspoist	10	421880	9\%
P2RY6	NH	Mร59s\%	Asponit	10	317800	\%
perni	NH	messes	Aspoist	10	33140	15
prur	NH	м<รsso	Agnist	10	3940	25
mroks	NH	messso	Asonit	10	3080	0%
prokr	NH	м<كsso	Agonia	10	10730	15
ptafr	NH	Mร59so	Aspoiz	10	663230	-3\%
PTGER2	NH	messem	Aspoiz	10	22400	0%
¢TGE3	NH	ME59880	Asponit	10	281120	3\%
¢TGEa	NH	Mร5989	Aspois	10	13950	28
PTGFR	NH	ME5980	Aspoit	10	3400	0%
FTIR	NH	ME5sso	Aspoist	10	141580	3\%
FHHR1	NH	messso	Aspont	10	100850	1\%
PTHR2	NH	Messso	Agniat	10	105120	1%
mexis	NH	м<كsso	Asponit	10	36230	8\%
Sctr	NH	MEssso	Agnit	10	398200	28
צsma	NH	ME5980	${ }^{\text {asgonit }}$	10	30520	6\%
SडाR2	NH	мкร5s\%	Agonit	10	3800	0%
צ𠃊ाr3	NH	м<كsse	Agonit	10	3150	1\%
डsTE	NH	MEss980	Aspois	10	195140	1\%
thicra	NH	мร5980	Aspoit	10	422240	-15
ThCr	NH	мร5980	Asponit	10	41960	2%
thas	NH	MEss980	Aspoit	10	111380	0%
TзЗС28	NH	Mc5sso	Agonit	10	13250	1%
THR	NH	мк5980	Aspoit	10	16520	15
Tsar(4)	NH	Messse	Aspoist	10	4520	-35
Un2	NH	мк5990	Agonit	10	34150	4%
vpra	NH	MEs5980	Asponit	10	421580	0%
vpR2	NH	messso	Agnit	10	30772	0%

B．Compound $4(10 \mu \mathrm{M})$ tested as antagonist in GPCRMax screen（167 known GPCRs）．No antagonist hits were found．

Grarid	Cutaner	Compound 10	Assaj Mecte	Conce（104）	Mam Ril	Sintition	GPGRID	astomer	Comporad ID	Assy Mode	$\operatorname{Cosc}(\mathrm{M} M)$	Mamerev	\％intitition
ADCAPIR1	NH	MRSJsso	Antaganist	10	1289700	21\％	GP2R	NH	MRS5930	Artagonist	10	723540	\％
ADORN	NiH	Mrssseo	Antaganist	10	339300	－111\％	GPRL	NH	MRSssso	Artagonist	10	973880	－2\％
ADRAAB	NH	MRS3980	Antaganist	10	1276320	－3\％	GFR103	NH	messsso	Artognist	10	148120	1\％
ADRAEA	NH	mrsssso	Antaganist	10	1091160	15\％	GPricas	NH	MRSs9so	Artagonist	10	1302700	3\％
aDRA2S	NiH	MRS3980	Antaganist	10	618940	\％	$\mathrm{GrPL}_{\text {cese }}$	NH	messeso	Antagonist	10	2364040	－7\％
adPALC	NH	MRS3980	Antaganit	10	659120	13\％	GPR119	NH	messeso	Artagonist	10	311780	9\％
ADRE1	NH	MRS5980	Antuganist	10	904400	－6\％	GFP120	NH	Mrsssso	Antagonist	10	119840	20\％
ADRE2	NH	mrssseo	Antaganist	10	760200	－1\％	Gras	NH	Mrss930	Artagonist	10	1074350	－7\％
AGTR1	NH	MRS5980	Antaganis	10	2631720	1\％	GP92	NH	MRS59s0	Artagonist	10	745220	26\％
AGTRL1	NH	Mrssseo	Antaganist	10	2088240	－2\％	Gepr	NH	Mrsssso	Artagonist	10	1145960	2%
AVPRIA	NHH	MRS5sso	Antaganis	10	343360	9\％	HCRTR 1	NH	MRS9930	Artagonist	10	3115420	2\％
AVPR18	NiH	MRSSseo	Antaganis	10	238840	\％	HCTRT2	NH	MRSs9so	Artagonist	10	2979520	2%
avpri	NiH	MRSS980	Antaganist	10	2917880	3\％	Herl 1	NH	MRSssso	Artagonist	10	1859200	－3\％
B0K8B1	NiH	MRSSSs0	Antaganis	10	121380	－\％	Hehz	NH	MRSssso	Artagonist	10	295250	145\％
B0KRB2	NiH	MRS5980	Antaganist	10	2505040	20\％	HEN3	NH	mRS9sso	Artagonist	10	299040	－11\％
8853	NiH	Mrssse	Antaganist	10	2688850	－11\％	HFW4	NH	Mrsssso	Artagonist	10	2034450	3\％
C3ast	NH	MRS5980	Antaganist	10	187440	8\％	HTR1A	NH	MRS5980	Artagonist	10	2051230	2%
Cast	NH	Mrsssso	Antaganist	10	147232	－\％	HTR18	NH	MRSs9s0	Artagonist	10	2161500	9\％
$\mathrm{Cl2}$	NH	MRSSSso	Antaganist	10	814380	－17\％	HTR1E	NH	MRS9sso	Artagonist	10	61320	12%
calcr	NiH	MRSS980	Antaganist	10	281120	115\％	HTR1F	NH	MRSssso	Artagenist	10	72340	16\％
CACCR－RAMPI	NiH	MRSSSSO	Antuganist	10	Sc0000	12\％	HTR2A	NH	MRS59so	Artagonist	10	1747050	1\％
Calch－rampl	NH	mrsssso	Antaganist	10	1054000	－7\％	HTR2C	NH	Mrssse	Artagonist	10	1965900	11\％
CALCRL－RAMP3	NH	MRSS980	Antaganist	10	1608300	11\％	HTRSA	NH	MRS5930	Artagenist	10	3366150	11%
Calchramp2	NH	Mrssseo	Antuganist	10	71156	－11\％	nssir	NH	MrSs9so	Artagonist	10	222450	－3\％
CALCR－RAMP3	NiH	MRSS980	Antaganist	10	32480	－27\％	HICGR	NH	MrSs9so	Artagonist	10	157820	－1\％
cocar	NiH	Mrssseo	Antaganist	10	1086300	3\％	LTEAR	NH	mrssse	Artagonist	10	1501450	0%
CCKBR	NiH	MRS5980	Antaganis	10	2899260	12\％	MC1R	NH	MRS5930	Artagonist	10	41720	－6\％
CCR10	NiH	Mrssseo	Antaganist	10	876960	－6\％	MC3R	NH	Mrssaso	Artagonit	10	83020	15\％
CCR1	NH	MrSsseo	Antaganist	10	1194200	1\％	MCAR	NH	MrSssso	Antagonist	10	191380	－1\％
CCR2	NH	mrssseo	Antaganist	10	835660	－7\％	MCR	NH	mrsseso	Artagonist	10	356020	0%
CCR3	NIH	MRSSSEO	Antaganis	10	309120	－1\％	MCHR1	NH	MRS59s0	Artagonist	10	125000	－\％
CCR4	NH	mrssseo	Antuganist	10	1439140	\％$\%$	MCHR2	NH	messsso	Artagonist	10	266540	22\％
CCRS	NH	MRS5980	Antagonis	10	1087240	\％	MNR	NH	MRS59s0	Artagonist	10	2167620	－1\％
CCR6	NH	MRSS980	Antagonis	10	1416240	0\％	MRGPRX1	NH	MRS99s0	Artagonist	10	2476850	6\％
CCR7	NiH	MRSSS80	Antagroist	10	3297140	\％	MRGPRX2	NH	MRS99so	Artagonist	10	741020	2\％
CCR8	NH	Mrssseo	Antaganist	10	612080	\％	minela	NH	messsse	Artagonist	10	135850	－16\％
CCR9	NH	MRSS980	Antaganis	10	838340	－2\％	MMER	NH	MRS99s0	Artagonist	10	757820	9\％
CHRM	NH	MRSSSEO	Antuganist	10	2299320	23\％	mulir	NH	MRSssso	Artagonist	10	1184540	3\％
CHRM2	NH	MRSS980	Antuganist	10	687820	17\％	NPSWR	NH	MRS99so	Artagonist	10	167850	10\％
CHRM	NH	MRS5980	Antaganis	10	500220	19\％	NFSWR2	NH	Mrsssso	Artagonist	10	1378900	4\％
CHRM4	NIH	MRSS980	Antaganis	10	992600	\％	neffr	NH	MRS93so	Artagonist	10	386260	－8\％
CHRM	NH	Mrssseo	Antuganist	10	2344850	13\％	NESR18	NH	Mrsssso	Artagonist	10	428400	3\％
CMIRI	NiH	MRSS980	Antuganist	10	2542820	－3\％	NPIR	NH	MRS59s0	Artagonist	10	582820	12%
CNR1	NH	MRSS980	Antaganist	10	280980	1\％	nerir	NH	MRS59s0	Antagonist	10	2774340	－2\％
CNR2	NH	Mrsssso	Antagonist	10	468440	15\％	NTSR1	NH	MRS9930	Artagonist	10	1710350	－1\％
CRHR1	NiH	MRSS980	Antaganist	10	3184160	14\％）	opron	NH	Mrsssso	Artagonist	10	582880	\％
CRHR2	NiH	MRSS980	Antaganist	10	2724850	8%	oprki	NH	MRS99s0	Artagonist	10	227220	－10\％
CRTH2	NH	Mrsssso	Antaganist	10	734920	4\％	OPRL	NH	mrsssso	Artagonist	10	885380	26\％
O3CR1	NH	MRSS980	Antaganist	10	3324440	－6\％	OpRM1	NH	Mrss9so	Artagonist	10	2381350	0%
OCR1	NH	Mrssseo	Antuganist	10	2163700	5\％	OXEFI	NH	Mrsssso	Artagonist	10	222180	－15\％
人CR2	NH	Mrssseo	Antaganist	10	903700	9\％	OXTR	NH	MRS53s0	Artagonist	10	431540	－5\％
人ССя	NH	Mrssseo	Antaganit	10	1182160	0%	P2RY1	NH	Mrss9so	Artagonist	10	322580	6\％
OCR4	NH	MRSSsso	Antaganist	10	131040	\％	P28711	NH	MrSssso	Artagonist	10	377360	28
CCRS	NH	mrssseo	Antaganit	10	1051540	15\％	P2FY12	NH	Mrsssso	Artagonist	10	1568140	22\％
OCR6	NH	Mrssseo	Antaganit	10	116760	12\％	P2RV2	NH	MRS5930	Artagonist	10	1186350	－6\％
人CR7	NiH	Mrssseo	Antaganist	10	1840150	13\％	P2RY4	NH	MrSssso	Artagmist	10	1128250	4\％
DROI	NH	MRSS980	Antaganist	10	873460	－3\％	P2RY6	NH	MRS99so	Artagonist	10	1599850	8\％
DRD2L	NH	Mrssseo	Antuganit	10	399340	\％	PPYR1	NH	MRS9980	Artagonist	10	523460	－2\％
DRO2S	NiH	MRS5980	Antaganis	10	1432880	－16\％	prur	NH	MRS59so	Artagonist	10	160720	\％
DRD3	NiH	Mrssse	Antuganis	10	108232	－3\％	procki	NH	MrSssso	Artagonit	10	490560	165
DRD4	NiH	MRSS980	Antaganist	10	44500	－8\％	phokr	NH	MRS59s0	Artagonist	10	177380	－12\％
DRDS	NiH	MRSSsso	Antaganist	10	366940	2%	PTAFR	NH	MRSssso	Artagenist	10	3483200	10%
EBI2	NH	MRSSSs0	Antaganist	10	1572380	16\％	PTGER2	NH	MRS99s0	Artagonist	10	108780	－3\％
EDG1	NH	Mrssseo	Antuganist	10	822840	21\％	PTGER	NH	MrSs9se	Artagonist	10	1172540	1\％
EDG3	NiH	MRSTsso	Antaganist	10	4289900	－25\％	PTGER	NH	MRS5930	Artagonist	10	771540	2%
EDG4	NH	MRSSSs0	Antaganist	10	380640	2%	PTGFR	NH	messsso	Artagonist	10	323400	3\％
EDGs	NH	Mrssseo	Antaganist	10	1712900	11\％	PTGIR	NH	MRS93s0	Antagonist	10	500220	－1\％
EDG6	NHH	MRSS980	Antuganit	10	786800	\％	PTHR1	NH	MRS99s0	Artagonist	10	2466350	3\％
EDG7	NH	Mrsssso	Antaganist	10	680960	13\％	PTHR2	NH	MRS9930	Artagonist	10	2638450	1\％
EDNRA	NH	Mrssseo	Antaganist	10	424760	\％	RXPP3	NH	MrSsseo	Artagonist	10	195020	-21%
EDNFS	NH	Mrssseo	Antaganist	10	1435340	4\％	SCTR	NH	MRSs9so	Artagonist	10	2167050	6\％
F2R	NiH	MRSS980	Antuganis	10	1291600	－7\％	Ssma	NH	Mrsssso	Antugnist	10	60200	－8\％
F2RL1	NH	Mrsssso	Antaganist	10	2717680	0%	SSTR2	NH	messsso	Artagonist	10	593180	－16\％
F2013	NH	Mrssseo	Antaganit	10	2660340	－\％	SSTR3	NH	mrsseso	Artagonist	10	617850	6\％
fFAR1	NIH	MrSs9eo	Antaganist	10	420420	21\％	STRS	NH	Mrsssso	Antagonist	10	858480	4\％
FPR1	NiH	Mrssseo	Antaganist	10	3265920	－2\％	thicri	NH	MrSs9so	Artagonit	10	3467500	3\％
FPRLI	NiH	Mrssseo	Antaganis	10	2497880	13，	thicre	NH	Mrsssso	Antagonist	10	1940400	－8\％
FSHR	NH	Mrssseo	Antuganis	10	333700	－11\％	TAC3	NH	MRSssso	Artagonit	10	2195720	3\％
galre	NH	MRSSsso	Antagonist	10	2150020	2%	TEXC2R	NH	masssso	Artagonist	10	921340	－6\％
Galre	NiH	MrSsseo	Antaganist	10	1271620	13\％	TTHR	NH	masssso	Artagonist	10	349720	－1\％
GCGR	NiH	MRSS980	Antaganis	10	2070180	8\％	TSMR／4	NH	Mrss9so	Artagonist	10	49950	－1\％
GHER	NiH	MRSSsso	Antaganist	10	1450900	4\％	UTR2	NH	messsso	Artagonist	10	131180	－8\％
GPR	NiH	MRSSsso	Antaganist	10	77980	－\％	VPRi	NH	MrSssso	Artagonist	10	325440	－5\％
GP18	NH	MRSSS80	Antagonist	10	2057720	－\％	vpR2	NH	messsso	Artagonist	10	3501240	1\％

C. Compound $4(10 \mu \mathrm{M})$ tested as agonist in a screen of 73 orphan GPCRs (OrphanMAX). No agonist hits were found. Compounds were tested at the concentration shown in the table. Basal control activity is given. Raw activity (RLU units) of individual replicates and mean RLU and percentage activity are shown. Percentage activity was calculated relative to the basal activity for each orphan GPCR target.

GPCR ID	Customer	Baseline Vehicle	Mean RLU	SD	\%CV	Compound ID	Assay Mode	Test Conc ($\mu \mathrm{M}$)	Rep 1 RLU	Rep 2 RLU	Mean RLU	SD	\%CV	\% Activity
BAI1	NIH	DMSO	119665	12304	10\%	MRS5980	Agonist	10	116760	118160	117460	990	1\%	-2\%
BAI2	NIH	DMSO	206710	9061	4\%	MRS5980	Agonist	10	211400	206080	208740	3762	2\%	1\%
BAl3	NIH	DMSO	133823	9532	7\%	MRS5980	Agonist	10	127400	122360	124880	3564	3\%	-7\%
CCRL2	NIH	DMSO	17815	1942	11\%	MRS5980	Agonist	10	15120	15400	15260	198	1\%	-14\%
DARC	NIH	DMSO	226135	17207	8\%	MRS5980	Agonist	10	199080	193200	196140	4158	2\%	-13\%
GHSR1B	NIH	DMSO	161595	2641	2\%	MRS5980	Agonist	10	151200	144200	147700	4950	3\%	-9\%
GPR101	NIH	DMSO	169733	11857	7\%	MRS5980	Agonist	10	148680	149520	149100	594	0\%	-12\%
GPR107	NIH	DMSO	1621900	89951	6\%	MRS5980	Agonist	10	1423800	1483720	1453760	42370	3\%	-10\%
GPR12	NIH	DMSO	85190	4063	5\%	MRS5980	Agonist	10	81760	83440	82600	1188	1\%	-3\%
GPR123	NIH	DMSO	3536540	143811	4\%	MRS5980	Agonist	10	3592120	3557960	3575040	24155	1\%	1\%
GPR132	NIH	DMSO	1586900	178177	11\%	MRS5980	Agonist	10	1206240	1182160	1194200	17027	1\%	-25\%
GPR135	NIH	DMSO	36383	2710	7\%	MRS5980	Agonist	10	36400	37800	37100	990	3\%	2\%
GPR137	NIH	DMSO	75968	4795	6\%	MRS5980	Agonist	10	72800	78120	75460	3762	5\%	-1\%
GPR139	NiH	DMSO	1166480	55521	5\%	MRS5980	Agonist	10	1168720	1086680	1127700	58011	5\%	-3\%
GPR141	NIH	DMSO	24378	2630	11\%	MRS5980	Agonist	10	30800	24360	27580	4554	17\%	13\%
GPR142	NIH	DMSO	166268	16839	10\%	MRS5980	Agonist	10	144760	150920	147840	4356	3\%	-11\%
GPR143	NIH	DMSO	172410	11103	6\%	MRS5980	Agonist	10	169960	199080	184520	20591	11\%	7\%
GPR146	NIH	DMSO	35945	1451	4\%	MRS5980	Agonist	10	38080	39200	38640	792	2\%	7\%
GPR148	NIH	DMSO	129133	12473	10\%	MRS5980	Agonist	10	135520	118720	127120	11879	9\%	-2\%
GPR149	NIH	DMSO	42893	3872	9\%	MRS5980	Agonist	10	38920	33040	35980	4158	12\%	-16\%
GPR15	NIH	DMSO	27510	2853	10\%	MRS5980	Agonist	10	26040	24920	25480	792	3\%	-7\%
GPR150	NIH	DMSO	617610	35895	6\%	MRS5980	Agonist	10	614880	579880	597380	24749	4\%	-3\%
GPR151	NIH	DMSO	482685	25111	5\%	MRS5980	Agonist	10	455840	432040	443940	16829	4\%	-8\%
GPR152	NIH	DMSO	360658	16188	4\%	MRS5980	Agonist	10	343280	345800	344540	1782	1\%	-4\%
GPR157	NIH	DMSO	2059365	181944	9\%	MRS5980	Agonist	10	1662080	1601320	1631700	42964	3\%	-21\%
GPR161	NIH	DMSO	18130	5045	28\%	MRS5980	Agonist	10	16240	14560	15400	1188	8\%	-15\%
GPR162	NIH	DMSO	53253	5824	11\%	MRS5980	Agonist	10	45640	47880	46760	1584	3\%	-12\%
GPR17	NIH	DMSO	74393	5109	7\%	MRS5980	Agonist	10	67200	70280	68740	2178	3\%	-8\%
GPR171	NIH	DMSO	259963	46637	18\%	MRS5980	Agonist	10	220080	225680	222880	3960	2\%	-14\%
GPR173	NIH	DMSO	93660	6903	7\%	MRS5980	Agonist	10	91000	82880	86940	5742	7\%	-7\%
GPR176	NIH	DMSO	1042825	67715	6\%	MRS5980	Agonist	10	989240	978880	984060	7326	1\%	-6\%
GPR18	NIH	DMSO	95305	19705	21\%	MRS5980	Agonist	10	81760	90440	86100	6138	7\%	-10\%
GPR182	NIH	DMSO	2403800	81460	3\%	MRS5980	Agonist	10	2394560	2211720	2303140	129287	6\%	-4\%
GPR20	NIH	DMSO	48983	4320	9\%	MRS5980	Agonist	10	52920	48160	50540	3366	7\%	3\%
GPR23	NIH	DMSO	2058823	81290	4\%	MRS5980	Agonist	10	2025240	1825880	1925560	140969	7\%	-6\%
GPR25	NIH	DMSO	160213	8225	5\%	MRS5980	Agonist	10	159880	150080	154980	6930	4\%	-3\%
GPR26	NIH	DMSO	147193	17454	12\%	MRS5980	Agonist	10	119840	129360	124600	6732	5\%	-15\%
GPR27	NIH	DMSO	145723	10909	7\%	MRS5980	Agonist	10	146720	141960	144340	3366	2\%	-1\%
GPR3	NIH	DMSO	1949430	122326	6\%	MRS5980	Agonist	10	2020200	1867880	1944040	107707	6\%	0\%
GPR30	NIH	DMSO	749420	45689	6\%	MRS5980	Agonist	10	732480	714560	723520	12671	2\%	-3\%
GPR31	NIH	DMSO	25200	1838	7\%	MRS5980	Agonist	10	27440	23800	25620	2574	10\%	2\%
GPR32	NH	DMSO	169890	7335	4\%	MRS5980	Agonist	10	168000	164360	166180	2574	2\%	-2\%
GPR37	NIH	DMSO	2048288	164658	8\%	MRS5980	Agonist	10	1756720	1648640	1702680	76424	4\%	-17\%
GPR37L1	NIH	DMSO	58783	5826	10\%	MRS5980	Agonist	10	57680	63280	60480	3960	7\%	3\%
GPR39	NIH	DMSO	1036805	80353	8\%	MRS5980	Agonist	10	1039920	1168720	1104320	91075	8\%	7\%
GPR4	NIH	DMSO	527328	78090	15\%	MRS5980	Agonist	10	494200	472640	483420	15245	3\%	-8\%
GPR45	NIH	DMSO	1098615	59665	5\%	MRS5980	Agonist	10	1142960	1061480	1102220	57615	5\%	0\%
GPR50	NIH	DMSO	3523503	99560	3\%	MRS5980	Agonist	10	3359440	3365320	3362380	4158	0\%	-5\%
GPR52	NIH	DMSO	289958	22877	8\%	MRS5980	Agonist	10	307720	298760	303240	6336	2\%	5\%
GPR55	NIH	DMSO	1709838	86214	5\%	MRS5980	Agonist	10	1638560	1557080	1597820	57615	4\%	-7\%
GPR6	NH	DMSO	38868	2486	6\%	MRS5980	Agonist	10	41440	36680	39060	3366	9\%	0\%
GPR61	NIH	DMSO	352888	16556	5\%	MRS5980	Agonist	10	340760	345800	343280	3564	1\%	-3\%
GPR65	NIH	DMSO	151060	10637	7\%	MRS5980	Agonist	10	143920	122640	133280	15047	11\%	-12\%
GPR75	NIH	DMSO	116253	8115	7\%	MRS5980	Agonist	10	96320	106400	101360	7128	7\%	-13\%
GPR78	NIH	DMSO	85663	5624	7\%	MRS5980	Agonist	10	75600	77280	76440	1188	2\%	-11\%
GPR79	NIH	DMSO	138723	12178	9\%	MRS5980	Agonist	10	136920	133000	134960	2772	2\%	-3\%
GPR83	NIH	DMSO	942183	60023	6\%	MRS5980	Agonist	10	895440	821520	858480	52269	6\%	-9\%
GPR84	NIH	DMSO	205065	27138	13\%	MRS5980	Agonist	10	213640	216440	215040	1980	1\%	5\%
GPR85	NIH	DMSO	433755	47056	11\%	MRS5980	Agonist	10	376600	415240	395920	27323	7\%	-9\%
GPR88	NIH	DMSO	46130	4637	10\%	MRS5980	Agonist	10	44520	40040	42280	3168	7\%	-8\%
GPR91	NIH	DMSO	807940	101237	13\%	MRS5980	Agonist	10	798000	632520	715260	117012	16\%	-11\%
GPR97	NIH	DMSO	3703228	120664	3\%	MRS5980	Agonist	10	3598560	3627120	3612840	20195	1\%	-2\%
LGR4	NIH	DMSO	28683	3564	12\%	MRS5980	Agonist	10	24080	19040	21560	3564	17\%	-25\%
LGR5	NH	DMSO	144165	8030	6\%	MRS5980	Agonist	10	151200	135800	143500	10889	8\%	0\%
LGR6	NIH	DMSO	33250	4670	14\%	MRS5980	Agonist	10	24360	23240	23800	792	3\%	-28\%
MRGPRD	NIH	DMSO	130095	7913	6\%	MRS5980	Agonist	10	122640	103880	113260	13265	12\%	-13\%
MRGPRE	NIH	DMSO	393593	20992	5\%	MRS5980	Agonist	10	384720	392560	388640	5544	1\%	-1\%
MRGPRF	NIH	DMSO	2059068	82876	4\%	MRS5980	Agonist	10	2066120	2168880	2117500	72662	3\%	3\%
MRGPRX4	NIH	DMSO	221515	22553	10\%	MRS5980	Agonist	10	215880	242200	229040	18611	8\%	3\%
OPN5	NIH	DMSO	635635	35710	6\%	MRS5980	Agonist	10	604520	628600	616560	17027	3\%	-3\%
OXGR1	NIH	DMSO	395693	23786	6\%	MRS5980	Agonist	10	401520	370160	385840	22175	6\%	-2\%
P2RY8	NIH	DMSO	3050040	110986	4\%	MRS5980	Agonist	10	2866360	2902200	2884280	25343	1\%	-5\%
TAAR5	NIH	DMSO	189175	8393	4\%	MRS5980	Agonist	10	172480	178920	175700	4554	3\%	-7\%

D. Compound $4(10 \mu \mathrm{M})$ tested as antagonist in a screen of 73 orphan GPCRs (OrphanMAX).

No antagonist hits were found.

GPCR ID	Customer	Baseline Vehicle	Mean RLU	SD	*cV	Compound ID	Assay Mode	Test Conc ($\mu \mathrm{M}$)	Rep 1 RLU	Rep 2 Rtu	Mean RLU	SD	\%CV	\% Activity
BAI1	NIH	DMSO	119665	12304	10\%	MRS7154	Agonist	10	109480	113680	111580	2970	3\%	-7\%
BAI2	NIH	DMSO	206710	9061	4\%	MRS7154	Agonist	10	194040	186760	190400	5148	3\%	-8\%
BAl3	NIH	DMSO	133823	9532	7\%	MRS7154	Agonist	10	105280	100800	103040	3168	3\%	-23\%
CCRL2	NIH	DMSO	17815	1942	11\%	MRS7154	Agonist	10	15680	14280	14980	990	7\%	-16\%
DARC	NIH	DMSO	226135	17207	8\%	MRS7154	Agonist	10	199360	194320	196840	3564	2\%	-13\%
GHSR1B	NIH	DMSO	161595	2641	2\%	MRS7154	Agonist	10	132720	127680	130200	3564	3\%	-19\%
GPR101	NIH	DMSO	169733	11857	7\%	MRS7154	Agonist	10	159320	153440	156380	4158	3\%	-8\%
GPR107	NIH	DMSO	1621900	89951	6\%	MRS7154	Agonist	10	1527400	1667960	1597680	99391	6\%	-1\%
GPR12	NIH	DMSO	85190	4063	5\%	MRS7154	Agonist	10	86800	77840	82320	6336	8\%	-3\%
GPR123	NIH	DMSO	3536540	143811	4\%	MRS7154	Agonist	10	3665480	3863440	3764460	139979	4\%	6\%
GPR132	NIH	DMSO	1586900	178177	11\%	MRS7154	Agonist	10	929320	875280	902300	38212	4\%	-43\%
GPR135	NIH	DMSO	36383	2710	7\%	MRS7154	Agonist	10	48160	42560	45360	3960	9\%	25\%
GPR137	NIH	DMSO	75968	4795	6\%	MRS7154	Agonist	10	65240	67760	66500	1782	3\%	-12\%
GPR139	NIH	DMSO	1166480	55521	5\%	MRS7154	Agonist	10	1081640	1052240	1066940	20789	2\%	-9\%
GPR141	NIH	DMSO	24378	2630	11\%	MRS7154	Agonist	10	24920	21560	23240	2376	10\%	-5\%
GPR142	NIH	DMSO	166268	16839	10\%	MRS7154	Agonist	10	167720	150920	159320	11879	7\%	-4\%
GPR143	NIH	DMSO	172410	11103	6\%	MRS7154	Agonist	10	163800	191240	177520	19403	11\%	3\%
GPR146	NIH	DMSO	35945	1451	4\%	MRS7154	Agonist	10	32480	35280	33880	1980	6\%	-6\%
GPR148	NIH	DMSO	129133	12473	10\%	MRS7154	Agonist	10	97160	106960	102060	6930	7\%	-21\%
GPR149	NIH	DMSO	42893	3872	9\%	MRS7154	Agonist	10	48160	35560	41860	8910	21\%	-2\%
GPR15	NIH	DMSO	27510	2853	10\%	MRS7154	Agonist	10	22680	23800	23240	792	3\%	-16\%
GPR150	NIH	DMSO	617610	35895	6\%	MRS7154	Agonist	10	638120	566720	602420	50487	8\%	-2\%
GPR151	NIH	DMSO	482685	25111	5\%	MRS7154	Agonist	10	397600	423920	410760	18611	5\%	-15\%
GPR152	NIH	DMSO	360658	16188	4\%	MRS7154	Agonist	10	333480	357280	345380	16829	5\%	-4\%
GPR157	NIH	DMSO	2059365	181944	9\%	MRS7154	Agonist	10	1741880	1624560	1683220	82958	5\%	-18\%
GPR161	NIH	DMSO	18130	5045	28\%	MRS7154	Agonist	10	16520	15400	15960	792	5\%	-12\%
GPR162	NIH	DMSO	53253	5824	11\%	MRS7154	Agonist	10	45920	42000	43960	2772	6\%	-17\%
GPR17	NIH	DMSO	74393	5109	7\%	MRS7154	Agonist	10	72240	69440	70840	1980	3\%	-5\%
GPR171	NIH	DMSO	259963	46637	18\%	MRS7154	Agonist	10	218120	199360	208740	13265	6\%	-20\%
GPR173	NIH	DMSO	93660	6903	7\%	MRS7154	Agonist	10	83440	78400	80920	3564	4\%	-14\%
GPR176	NIH	DMSO	1042825	67715	6\%	MRS7154	Agonist	10	976080	983080	979580	4950	1\%	-6\%
GPR18	NIH	DMSO	95305	19705	21\%	MRS7154	Agonist	10	87080	82600	84840	3168	4\%	-11\%
GPR182	NIH	DMSO	2403800	81460	3\%	MRS7154	Agonist	10	2230480	2479400	2354940	176013	7\%	-2\%
GPR20	NIH	DMSO	48983	4320	9\%	MRS7154	Agonist	10	41720	42560	42140	594	1\%	-14\%
GPR23	NH	DMSO	2058823	81290	4\%	MRS7154	Agonist	10	1841280	1820560	1830920	14651	1\%	-11\%
GPR25	NIH	DMSO	160213	8225	5\%	MRS7154	Agonist	10	151200	136920	144060	10097	7\%	-10\%
GPR26	NIH	DMSO	147193	17454	12\%	MRS7154	Agonist	10	127960	129920	128940	1386	1\%	-12\%
GPR27	NIH	DMSO	145723	10909	7\%	MRS7154	Agonist	10	125160	127960	126560	1980	2\%	-13\%
GPR3	NIH	DMSO	1949430	122326	6\%	MRS7154	Agonist	10	1862560	1847720	1855140	10493	1\%	-5\%
GPR30	NIH	DMSO	749420	45689	6\%	MRS7154	Agonist	10	711480	738920	725200	19403	3\%	-3\%
GPR31	NIH	DMSO	25200	1838	7\%	MRS7154	Agonist	10	23240	21280	22260	1386	6\%	-12\%
GPR32	NIH	DMSO	169890	7335	4\%	MRS7154	Agonist	10	147000	145600	146300	990	1\%	-14\%
GPR37	NIH	DMSO	2048288	164658	8\%	MRS7154	Agonist	10	1803200	1319080	1561140	342325	22\%	-24\%
GPR37L1	NIH	DMSO	58783	5826	10\%	MRS7154	Agonist	10	68040	57120	62580	7722	12\%	6\%
GPR39	NIH	DMSO	1036805	80353	8\%	MRS7154	Agonist	10	1001000	1008560	1004780	5346	1\%	-3\%
GPR4	NIH	DMSO	527328	78090	15\%	MRS7154	Agonist	10	509880	602280	556080	65337	12\%	5\%
GPR45	NIH	DMSO	1098615	59665	5\%	MRS7154	Agonist	10	1071560	1091720	1081640	14255	1\%	-2\%
GPR50	NIH	DMSO	3523503	99560	3\%	MRS7154	Agonist	10	3177160	3131240	3154200	32470	1\%	-10\%
GPR52	NIH	DMSO	289958	22877	8\%	MRS7154	Agonist	10	308000	272160	290080	25343	9\%	0\%
GPR55	NIH	DMSO	1709838	86214	5\%	MRS7154	Agonist	10	1388240	1393560	1390900	3762	0\%	-19\%
GPR6	NIH	DMSO	38868	2486	6\%	MRS7154	Agonist	10	33040	34440	33740	990	3\%	-13\%
GPR61	NIH	DMSO	352888	16556	5\%	MRS7154	Agonist	10	322840	339920	331380	12077	4\%	-6\%
GPR65	NIH	DMSO	151060	10637	7\%	MRS7154	Agonist	10	148680	144200	146440	3168	2\%	-3\%
GPR75	NIH	DMSO	116253	8115	7\%	MRS7154	Agonist	10	88480	91560	90020	2178	2\%	-23\%
GPR78	NIH	DMSO	85663	5624	7\%	MRS7154	Agonist	10	75320	65240	70280	7128	10\%	-18\%
GPR79	NIH	DMSO	138723	12178	9\%	MRS7154	Agonist	10	122640	133840	128240	7920	6\%	-8\%
GPR83	NH	DMSO	942183	60023	6\%	MRS7154	Agonist	10	763840	774760	769300	7722	1\%	-18\%
GPR84	NIH	DMSO	205065	27138	13\%	MRS7154	Agonist	10	220360	201600	210980	13265	6\%	3\%
GPR85	NIH	DMSO	433755	47056	11\%	MRS7154	Agonist	10	402920	402080	402500	594	0\%	-7\%
GPR88	NIH	DMSO	46130	4637	10\%	MRS7154	Agonist	10	45640	41720	43680	2772	6\%	-5\%
GPR91	NIH	DMSO	807940	101237	13\%	MRS7154	Agonist	10	714280	696640	705460	12473	2\%	-13\%
GPR97	NIH	DMSO	3703228	120664	3\%	MRS7154	Agonist	10	3541160	3641680	3591420	71078	2\%	-3\%
LGR4	NIH	DMSO	28683	3564	12\%	MRS7154	Agonist	10	23520	22400	22960	792	3\%	-20\%
LGR5	NIH	DMSO	144165	8030	6\%	MRS7154	Agonist	10	124040	124040	124040	0	0\%	-14\%
LGR6	NIH	DMSO	33250	4670	14\%	MRS7154	Agonist	10	26040	27160	26600	792	3\%	-20\%
MRGPRD	NIH	DMSO	130095	7913	6\%	MRS7154	Agonist	10	106400	109200	107800	1980	2\%	-17\%
MRGPRE	NIH	DMSO	393593	20992	5\%	MRS7154	Agonist	10	376040	388080	382060	8514	2\%	-3\%
MRGPRF	NIH	DMSO	2059068	82876	4\%	MRS7154	Agonist	10	1794520	1973160	1883840	126318	7\%	-9\%
MRGPRX4	NIH	DMSO	221515	22553	10\%	MRS7154	Agonist	10	148400	188440	168420	28313	17\%	-24\%
OPN5	NIH	DMSO	635635	35710	6\%	MRS7154	Agonist	10	664720	698600	681660	23957	4\%	7\%
OXGR1	NIH	DMSO	395693	23786	6\%	MRS7154	Agonist	10	360360	367080	363720	4752	1\%	-8\%
P2RY8	NIH	DMSO	3050040	110986	4\%	MRS7154	Agonist	10	2687440	2846480	2766960	112458	4\%	-9\%
TAAR5	NIH	DMSO	189175	8393	4\%	MRS7154	Agonist	10	168280	148960	158620	13661	9\%	-16\%

Figure S8. Compound 4 (MRS5980, $10 \mu \mathrm{M}$) tested as inhibitor in KinomeSCAN screen (DiscoverX).

MRS5980

ATYPICAL
MUTANT

LIPID

PATHOGEN

Four weak kinase screening hits (among 403 nonmutant kinases and 63 other kinases) were detected with $<50 \%$ activity remaining ($\%$ inhibition at $10 \mu \mathrm{M} 4$): FLT3 (ITD, D835V), 70%; LATS2, 74\%; VRK2, 69\%. The overall selectivity score was 0.005 . All other kinases had $>50 \%$ activity remaining.

Representative NMR and Mass Spectra and HPLC Analysis

(All NMR spectra were measured using $\mathrm{CD}_{3} \mathrm{OD}$ as solvent.)

19-Jun-2017

Elemental Composition Report

Single Mass Analysis
Tolerance $=10.0 \mathrm{mDa} / \mathrm{DBE}: \min =-2.0, \max =1000.0$
Element prediction: Off
Number of isotope peaks used for i-FIT = 3
Monoisotopic Mass, Even Electron Ions
60 formula(e) evaluated with 3 results within limits (up to 19 closest results for each mass)
Elements Used.
$\begin{array}{llllll}\text { C: 0-40 } & \text { H: 0-200 } & \text { N: 6-6 } & \text { O: 0-40 } & \text { F: 1-1 } & 32 S: 1-1\end{array}$
9.Jun-2017 207 (3.826) Cn (Cen.5.50.00, An): Sm (SO, 3×5.00); So (12.5.00)

Minimum : $\quad 10.0 \quad-2.0$

22-May-2017
dkt-22may17-xvi-58 91 (1.683) Sm (SG, 3×5.00); Cm (91-31x3.000)
TOF MS ES+
200

```
Single Mass Analysis
Tolerance \(=10.0 \mathrm{mDa} / \mathrm{DBE}: \min =-2.0, \max =1000.0\)
Element prediction: Off
```

Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
68 formula(e) evaluated with 3 results within limits (up to 19 closest results for each mass)
Elements Used
$\begin{array}{lllllll}\text { C: } 0-100 & \text { H: 0-200 } & \text { N: 5-5 } & \text { O: 0-30 } & \text { F: 1-1 } & 32 \mathrm{~S}: ~ 1-1\end{array}$

TOF MS ESt

 $4.73 e+003$

Minimum:			-2.0
Maximum:	10.0	10.0	1000.0

Mass	Calc. Mass	mDa	PPM	DBE	i-PIT	Formula					
432.1141	432.1142	-0.1	-0.2	12.5	235.0	C19	419	N5	04	F	325
	432.1201	-6.0	-13.9	3.5	268.8	C12	H23	*5	09	F	325
	432.1048	9.3	21.5	-0.5	393.0	C8	H23	\$5	12	F	325

Elemental Composition Report
Single Mass Analysis
Tolerance $=10.0 \mathrm{mDa} / \mathrm{DBE}, \mathrm{min}=-2.0, \mathrm{mas}=1000.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=5$

Elemental Composition Report

Single Mass Analysis
Tolerance $=20.0 \mathrm{mDa} /$ DBE: $\min =-2.0, \max =1000.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
76 formula(e) evaluated with 5 results within limits (up to 19 closest results for each mass)
Elements Used:
$\begin{array}{llllll}\text { C: } 0-40 & \text { H: 0-200 } & \mathrm{N}: 6-6 & \mathrm{O}: 0-40 & \mathrm{~F}: 1-1 & 32 \mathrm{~S}: 1-1\end{array}$
14.Jun- 2017
dkt-14jun17.xvi-69 141 (2.608) Cn (Cen.5. 50.00, A): Sm (SQ. 3×5.00): So (12.5.00)
TOF MS ES+
$5.75 \mathrm{e}+003$

Minimum:
Maximan 1
Mass Calc. Mass
$471.1623 \quad 471.1615$
471.1673
471.1673
471.1767
471.1462
471.1673
471.1767
471.1462
471.1673
471.1767
471.1462

		-2.0	
20.0	10.0	1000.0	
$m D a$	PPM	DBE	$1-\mathrm{FIT}$
0.8	1.7	13.5	68.3
-5.0	-10.6	4.5	95.1
10.2	21.6	0.5	176.5
-14.4	-30.6	17.5	106.5
16.1	34.2	9.5	102.7

Formula

$$
\text { C11 H28 } \$ 6 \quad 011 \quad \% \quad 32 \mathrm{~s}
$$

$$
\begin{array}{llll}
-14.4 & -30.6 & 17.5 & 106.5 \\
16.1 & 34.2 & 9.5 & 102.7
\end{array}
$$

$$
\begin{array}{llllll}
\mathrm{C} 26 & H 24 & \mathrm{~N} & \mathrm{~F} & 32 \mathrm{~S} & \\
\mathrm{C} 18 & H 24 & \mathrm{~N} & \mathrm{O} & \mathrm{~F} & 32 \mathrm{~S}
\end{array}
$$

Elemental Composition Report

Single Mass Analysis
Tolerance $=10.0 \mathrm{mDa} / \mathrm{DBE}: \min =-2.0, \mathrm{maz}=1000 \mathrm{c}$
Element prediction: Off
Number of isotope peaks used for $1-\mathrm{F} \boldsymbol{I}=3$
Monoisotopic Mass, Even Electron Ions
67 formula(e) evaluated with 3 results within limits (up to 19 closest results for each mass)
Elements Used:
$\begin{array}{llllll}\text { C: }: 0-100 & \mathrm{H}: 0-200 & \mathrm{~N}: 5-5 & \mathrm{O}: 0-50 & \mathrm{~F}: 1-1 & 32 \mathrm{~S}: 1-1\end{array}$
01-Nov-2016
dkt-01nov16-xv-80 85 (1.572) Cn (Cen,7, 50.00, Ark Sm (SG, 1x3.00); Sb (12.5.00)

