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1. Basic characteristic of the polymer particles.

 
Table S1. Basic physicochemical parameters of the polymer particles used in this work:
 pH 4.0, I = 10-2 M, NaCl, T = 298 K.

Particle 
suspension

dp [nm]

DLS

dp  [nm]

AFM

dp [nm]

diffr.

 [mV]

LDV

A20 26±2 25±4 - 71±2

L40 39±3 39±3 - -82±3

A70 67±5 73±7 73±7 74±2

A140 140±10 140±12 140±12 79±3

Footnotes: particle density p = 1.05 g cm-3, dp - particle diameter (DLS - dynamic light 
scattering, AFM - atomic force microscopy, diffr. - laser diffractometry),  - zeta potential 
derived from LDV (electrophoresis).
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a)                                                                              b)                  

    

c)                                                                       d) 

  

Figure S1. Monolayers of different particles used in this work adsorbed on the silica sensor, acquired 
by AFM, part a) the A20 particles, surface coverage 0.15, b) the L40 particles surface coverage 0.18 
c) the A70 particles, surface coverage 0.25 d) the A140 particles surface coverage 0.25

200 nm

200 nm

200 nm



S-4

2. The primary QCM adsorption runs.

a)
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b)

            
Figure S2. The primary adsorption runs for polymer particles derived from QCM-D measurements and 
expressed in terms of the frequency change f/no and the ratio of dissipation to frequency change 
ΔD/(-f/no)  for various overtones 1,3,5,7; silica sensor, ionic strength 0.01 M, pH 4, volumetric flow 
rate 2.5x10-3 cm3 s-1, Part a) the A70 suspension, bulk concentration 20 mg L-1. Part b) the A140 
suspension, bulk concentration 100 mg L-1.



S-6

3. The hydrodynamic boundary layer over an oscillating plate  

The fluid velocity distribution over a plate undergoing harmonic oscillations in the 

tangential direction characterized by the angular velocity =2πf (where f is the oscillation 

frequency) in a Newtonian liquid is given by1
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where V0 is the amplitude of plate velocity oscillations, v is the kinematic viscosity of the 

fluid, z is the vertical distance from the plate.

Eq.(S1) indicates that the fluid velocity exponentially decreases with the distance z 

proportionally to the square root of the angular velocity. 

Let us calculate the distance where the flow amplitude decreases (compared to the 

plate velocity) by the factor denoted by fv. Using Eq.(S1) this factor can be expressed as 
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hydrodynamic boundary layer thickness1.  

In Table S2 the distances and the hydrodynamic boundary layer thickness for the 

fundamental frequency of 5 106 s-1 (Hz) pertinent to our QCM-D measurements are collected 

for various overtones. One can notice that the flow amplitude decreases to 0.5 of the maximum 

plate amplitude at the distance equal to 165 nm for the fundamental frequency. For the 7th 

overtone this distance is equal to 62.4 nm. Analogously, one can notice that the amplitude 

decreases to only 0.1 of the plate amplitude at the distance of 548 and 207 nm for the 

fundamental frequency and the 7th overtone, respectively. Thus, at distances larger than those 

mentioned there appears a stagnant core region, where the flow vanishes. 
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Table S2. Hydrodynamic boundary layer thickness for oscillating solid plates (sensors) in 
aqueous media for the fundamental frequency 5 106 s-1 (Hz). 

overtone
number, n0

02 f n 
[s-1]

δ0.5
[nm]

δh
[nm]

δ0.1
[nm]

1 3.14 107 165 238 548

3 9.42 107 95.3 137 316

5 1.57 108 73.8 106 245

7 2.2 108 62.4 90.0 207

11 3.45 108 49.7 71.6 165

Footnotes: temperature 298 K, kinematic viscosity 0.00893 cm2 s-1  
δ0.5 - the distance where the amplitude decreases to 0.5 of the plate amplitude
δh - the hydrodynamic boundary layer thickness 

(the amplitude decreases to 1/e = 0.3679)
δ0.1 - the distance where the amplitude decreases to 0.1 of the plate amplitude 
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A graphical comparison of the comparison of the polymer particle sizes used in this 

work with the hydrodynamic boundary layer thickness for the 1st and the 7th overtone is 

presented in Figure S4. 

Figure S3. The polymer particle size compared with the hydrodynamic boundary layer thickness 
calculated for the 1-st and the 7th overtones, and equal to 238 and 90 nm, respectively. 

From Eq.(S1) one can deduce that the flow shear rate is given by1
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Consequently, the shear rate amplitude attains the maximum value of  at the plate 
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surface and exponentially decreases with the distance from the surface with the characteristic 

decay rate equal to the hydrodynamic boundary layer thickness. At the distance equal to 

particle radius ap the shear rate amplitude normalized by the surface amplitude is given ShaG

by
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where fSh is the dimensionless correction factor, which only depends on the ratio of the particle 

to the hydrodynamic boundary layer thickness. This correction factor calculated for various 

particle sizes as a function of the overtone number are collected in Table S3.

Table S3. The correction factor to the shear rate fSh calculated for various particle sizes as a 
function of the overtone number in aqueous media, for the fundamental frequency equal to 
5 106 s-1  (Hz). 

               Particle

Overtone
Number n0

A20
dp= 26 nm

L40
dp= 39 nm

A70
dp= 73 nm

A140
dp= 140 nm

1 0.95 0.92 0.86 0.75

3 0.91 0.87 0.77 0.60

5 0.88 0.83 0.71 0.52

7 0.86 0.80 0.67 0.46

9 0.85 0.78 0.63 0.41

11 0.83 0.76 0.60 0.38

Footnotes: the temperature 298 K, the kinematic viscosity 0.00893 cm2 s-1, δh = 238 nm, 
correction calculated from Eq.(S4). 

4. Estimation of the adhesion hydrodynamic and inertia forces on particles. 

The basic assumption of the DLVO theory2,3 is that the net interaction energy of 

particle with interfaces is a sum the electrostatic double-layer and the van der Waals 

contributions. Therefore, approximating the electrostatic component by the linear 

superposition approach (LSA)2 one can formulate this postulate as follows

             (S5)123/
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where  is the not energy, Le is the double layer thickness  is the electrostatic energy, DLVO e

 is the van der Waals energy, A123 is the Hamaker constant for the interactions of the vdW

particle with the interface through the solvent (electrolyte), ap = dp /2 is the particle radius.
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is the permittivity of the medium, k is the Boltzmann constant, T is the absolute temperature, 

ζp, ζi are the zeta potentials of the particle and the interface, respectively, h= z – ap  is the 

surface to surface distance between the particle and the interface. 

It should also be mentioned that the expression for the van der Waals component in 

Eq.(S5)  remains accurate for h <<ap.

The interaction force can be directly obtained from Eq.(S5) by taking the first derive 

in respect to the distance h 
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The hydrodynamic shear force on a particle attached to the interface (sensor) is given 

by the formula2
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where F8 is the universal hydrodynamic correction function4  and GSh is the shear rate given 

by Eq.(S3).

Considering Eqs.(S3, S6) on can derive the following expression for the amplitude of 

the shearing force 

            (S9)

1/22
1/2

22
8 06 (0)

pa

Sh pF a F V e





 
 
 
    

 



S-11

On the other hand, the amplitude of the inertia force exerted on an attached particle 

due to the sensor oscillation is given by 
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Comparing Eq.(S7) and Eq.(S10) one can deduce that for a given system the ratio of 

the shearing to the DLVO force scales up as the particle size, whereas the ratio of the 

acceleration to the DLVO force scales up as the square of the particle size. One can, therefore, 

expect that the acceleration force will dominate over the DLVO and over the shearing forces 

for larger particle sizes. In order to quantitatively analyze this behavior, in Table S4 these 

forces are compared for particle sizes used in this work. 

Table S4. The interaction energy and force for the particle/silica sensor system predicted from 
the DLVO theory compared with the shearing and the acceleration forces.

 Particle
size
[nm]

p
[mV]

e
[kT]

vdw
[kT]

FDLVO

[dyn]
FSh

[dyn]
Fin

[dyn]

A20
[26] 71 -33 -15 -1.0 10-5 1.6 10-7 2.0 10-11

L40
[41] -83* -110 -23 -2.5 10-5 2.8 10-7 1.8 10-11

A70
[73] 74 -97 -41 -3.0 10-5 1.2 10-6 4.6 10-10

A140
[140] 79 -200 -80 -5.9 10-5 2.8 10-6 3.2 10-9

Footnotes: the temperature 298 K, kinematic viscosity 0.00893 cm2  s-1, δh = 238 nm, zeta 
potential of the sensor equal to -20 mV for pH 4 and 40 mV for PAH modified sensor in the 
case of the L40 particles (at pH 5.7), A123 = 1.4 10-20 kT,   V0 = 6 cm s-1, frequency 
5 106 s-1  (first overtone), F8 =1.70. 
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5. Modeling Adsorption Kinetics of Particles  in the QCM cell. 

 

As discussed in Ref.2 particle deposition kinetics under convective-diffusion transport 

conditions under solid substrates (for example QCM sensor) can be theoretically described 

using a hybrid approach exploiting the convective-diffusion equation

          (S11) n DD n n n
t kT


      


F V

where n is the number concentration of particles, t is the time, D is the translation diffusion 

coefficient, F is the external force vector (e.g. the gravitation force) rand V is the unperturbed 

(macroscopic) fluid velocity vector.

Eq.(S11) is coupled with the surface layer transport equation where the fluid convection 

effects are neglected1  
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where ja is the net adsorption/desorption flux,   is the characteristic cross-section of the gS

particle,  is the macromolecule coverage, Np  is the particle surface concentration, g pΘ S N

ka, kd are the adsorption and desorption constants, n(a) is the number concentration of 

particles at the adsorption boundary layer of the thickness a  and  is the generalized  B 

blocking function (more appropriately referred to as the available surface function).  

Eq.(S12) is used as the boundary condition for the bulk mass transfer equations, 

Eq.(S11).

Under convective transport, where the particle concentration n(a) remains in a local 

equilibrium with the surface coverage, the constitutive expression for the adsorption flux, 

Eq.(S12) becomes2
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where K = ka / kc is  the dimensionless coupling constants, Kd = kd/(Sgkcnb ) is the dimensionless 

desorption constant, and kc is the bulk transfer rate constant, known in analytical form for 

many types of flows and nb  is the bulk number concentration of particles.

Eq.(S3) can be integrated, which yields the following dependence  
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where  is the initial coverage of particles.

Eq.(S14) represents a general solution for particle  deposition kinetics under convection 

driven transport. However, it can only be evaluated by numerical integration methods if the 

blocking function is known in an analytical form. 

It is interesting to mention that in the case of particle desorption run where the bulk 

concentration nb vanishes, Eq.(S14) simplifies to the form 

0
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assuming that the blocking function does not change much during the desorption run and is 

equal to B0 one can integrate Eq.(S15) to the useful form 

0 (1 / )
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where Ka = ka/kd is the equilibrium adsorption constant.

Hence, the characteristic desorption time is given by 

0 (1 / ) /d a c a ct K B k k k                                                               (S17)
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It is useful to express Eq.(S14) in terms of the mass coverage of particles connected 

with the dimensionless coverage by 

                     (S18) 1( ) gΘ / S m 

where m1 is the mass of a single particle.

It should be mentioned that in terms of the QCM nomenclature, the coverage Γ is the 

so called ‘dry’ mass. 

Using this definition one can express Eq.(S14) in the form 
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where cb  = m1 nb  is the mass concentration of particles in the bulk.

In a general case Eq. (S19) can be solved by numerical integration if the kinetic 

constants, the blocking function and the maximum coverage are known5. However, for bulk 

transport controlled regime characterized by the condition ka>>kc and a lower coverage range, 

Eq. (S19) simplifies to the linear form 

           (S20)c bk c t 

The adsorption and the desorption constants appearing in Eq.(S19) are given in the 

general case by the expressions2
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where  is the specific interaction energy of the particle with the interface evaluated at  m 

the distance δm (the primary minimum distance), is the specific interaction energy of  a 
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the particle with the interface evaluated at the distance δa and D(z) is the diffusion coefficient 

of the particles (a scalar quantity), which depends on the distance from the substrate surface.   

Often the interaction energy around the primary minimum and the barrier region can 

be approximated by a parabolic distribution. Consequently the kinetic adsorption constants 

can be approximated by2
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and D(b) is the value of the diffusion coefficient approximated within the barrier region 

according to the lubrication theory by the formula .   /b bD a D  

It should be mentioned that for a barrier-less adsorption regime the kinetic adsorption 

constant can be calculated from the dependence2 
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It is interesting to calculate the characteristic desorption times for the above DLVO 

energy minima listed in Table S4. Considering that for the A20 particles  = -45 kT,DLVO

kc = 8.48x10-5  cm s-1 and calculating ka, kd  from Eq.(S23) one can predict Eq.(S19) that the 

desorption time is equal to 3x1015 s (for B0 = 0.5), which is an infinite value from the practical 

point of view. Obviously, for larger particles, the desorption time becomes many orders of 

magnitude larger. 

Moreover, in order to explicitly calculate particle deposition kinetics from Eq.(S14) one 

should know the blocking function, which can be conveniently acquired from the random 

sequential adsorption (RSA) modeling2,6,7. For not too large coverage range, one can 

approximate the blocking function by the second order series expansion  
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          (S26)   2 3
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The analytical results calculated from Eq.(S16) agree with exact data derived from RSA 

simulations for the lower coverage range, where B( ) > 0.3. 

On the other hand, for coverages approaching the jamming coverage , the blocking Θ

function for spheres can be approximated by the expression
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In the case of spheres, one can also formulate an analytical expression fitting well the 

exact numerical data for the entire range of coverage7
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It was shown in Ref.1 that the above results obtained pertinent to hard particles can also 

be extended to the case of particles interacting via the short- range Yukawa potential. For 

electrostatic double-layer interactions the characteristic range of this potential is given by 
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where is electrostatic energy at contact and  is the characteristic interaction energy. o ch

Consequently, one can calculate the jamming coverage for interacting particles referred 

to as the maximum coverage) from the relationship 
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Upon calculating Θmx one can use Eq.(S28) to calculate the blocking function substituting 

.
mx

 


6. Definitions of solvation functions 

In this section main factors and functions used for expressing the amount of a solvent 

hydrodynamically coupled with particles deposited on the QCM sensor are defined. 

The solvent mass factor, in the case of aqueous solutions referred to as the water factor 

is defined as  

           (S31)s p Q

p

m m
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m

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where ms is the solvent mass associated with one particle of the mass mp and is the ‘wet’ Q

coverage determined by QCM. 

The commonly used hydration function H, which represents the ratio of the coupled 

mass to the QCM wet mass is given by8-9 
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Another useful function is defined as the ratio of the associated solvent volume to the 

particle volume10
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where vs is the coupled solvent volume, vp is the particle volume, ρp is the particle  density and 

ρs is the solvent (water) density. 

It should be mentioned that in contrast to H, the v function (also denoted as , vH

φv 8,10) is more unique since it does not depend on the particle and solvent densities. 

Except for the above functions commonly used in the literature we should define in 

this work a more specific function, giving the average coupled solvent level in the particle 

monolayer, see Figure S5. 
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Figure S4. A schematic representation of the average coupled solvent level in the particle 

monolayer. 

The starting point is the coupled water balance expressed as 

          (S34) ( )p p s p pi sN v v S h N v h  

where ΔS is the substrate (sensor) area, hs  is the  average level of coupled water and vpi(hs) is 

the volume of the particle immersed in the stagnant solvent. 

Considering that Np  = , Eq.(S34) becomes 
g

S
S
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Additionally, defining the scaled solvent level function 

          (S36)s
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where ap  is the particle radius, one  can transform Eq.(S35) to the implicit dependence 
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For spheres one has 
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Therefore, Eq.(S37) can be explicitly expressed in terms of , in the following form h
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For a small coverage range where θ < < 1, Eq.(S36) yields the explicit expression

for h
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where  is the limiting value of  for Θ = 0.0v v

Eq.(S40) indicates that for Θ << 1 the average solvent level  linearly increases with the 

particle coverage.

In the general case, the third order (in respect to ) equation, Eq.(S39) has the h

following real solution 

                      (S41)
1/3 1/3

1/2 1/21 11
2 2

h Q q Q q             
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
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