Supporting Information

Complex Mixtures of Chlorinated Paraffins Found in Hand Wipes of a Norwegian Cohort

Bo Yuan,^{1,*} Joo Hui Tay,^{1,†} Eleni Papadopoulou,² Line Småstuen Haug,² Juan Antonio Padilla-Sánchez,² and Cynthia A. de Wit¹

¹ Department of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden;

² Section for Environmental Exposure and Epidemiology, Norwegian Institute of Public Health, P.O. Box 222, Skøyen, NO-0213 Oslo, Norway

[†] Current address: Faculty of Industrial Sciences & Technology (FIST), Universiti Malaysia Pahang (UMP), Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia.

* Corresponding author:

Bo Yuan Department of Environmental Science Stockholm University Svante Arrhenius väg 8, Stockholm, SE-106 91 Sweden Tel: 0046 8 674 7315 Fax: 0046 8 674 7638 E-mail: <u>bo.yuan@aces.su.se</u>

Sample collection and storage

The participants were advised to keep their hands unwashed for at least 60 min before collecting the hand wipes. Two sterile gauze pads (3×3 in., Swift First Aid Inc. Valencia, CA, USA) were immersed in 3 mL isopropanol and then used to wipe the palm and the back of both hands, respectively, from wrist to fingertips. Left and right hands were sampled separately but extracted and analyzed together, providing one measurement per participant. Both pieces of gauze pad were stored in a 60 mL amber glass jar at -20 °C until analysis. Field blank samples were taken by soaking a gauze pad in isopropanol and placing it directly into a glass jar. After sample collection, the participants were asked to complete a questionnaire regarding indoor environment characteristics, type and number of consumer products, as well as some personal behaviors. Within a 2-day collection period, the participants collected 4 sets of hand wipes, during the first visit in Day 1, in the evening of Day 1, in the morning of Day 2 and before lunch in Day 2. The sample analyzed in the current study was the last collected sample. A total of 60 hand wipe samples and 15 field blanks (two field blanks were lost in the analytical process) were collected from 60 participants for CP analysis.

Instrumental analysis

APCI-Orbitrap-HRMS (Q Exactive, Thermo Fisher Scientific, San Jose, USA) was operated in full-scan mode (m/z 250 – 2000) with a resolution of 120 000 FWHM. The instrumental settings were optimized using a SCCP mixture (51.5% Cl, 15 ng/µL) and a LCCP mixture (Witaclor 549, 49% Cl, 5 ng/µL) as follows: injection volume 3 µL, mobile phase flow rate 0.100 mL/min, DCM flow rate 0.010 mL/min, capillary temperature 250 °C, Aux (auxiliary) gas heater temperature 250 °C, spray current 5.7 µA, maximum IT (ion time) 250 ms, AGC (automatic gain control) target 5e6, sheath gas flow rate 17 arbs, and Aux gas flow rate 1 arb.

Uncertainty analysis of profile deconvolution used for CP quantification

Quantification of CPs yield only a total concentration of the mixture as a single value. The criterion is that the reference mixture of CPs selected for quantification should have a carbonchlorine profile as similar as possible with the profile in each sample,¹ otherwise, the deviation can be up to 1000%.^{2, 3} Bogdal et al.⁴ quantified the similarity between the profiles of reference CPs and sample using the goodness of fit (R²), with R²=1 indicating a perfect fit and the least deviation. Both Bogdal et al.⁴ and Brandsma et al.⁵ defined R² = 0.50 as a cutoff threshold for quantifying CPs based on an uncertainty test using different CP reference standards with known concentrations. The uncertainty test in our study (Figure S1) showed a mean deviation of 40% in quantification difference when R² = 0.50. The deviation seems to be within a reasonable range compared with mean deviations of 49-96% of SCCPs with presence of MCCPs in a recent interlaboratory study with participants from 18 countries.⁶ Therefore, we continued using the criterion of R²>0.50 as the threshold of a valid quantification of CPs using profile deconvolution.

		М	ass (ng/partici	pant)	Reference	
		mean	median	min-max	Kererenee	
CPs	vSCCPs	1.3	< 0.70	< 0.70-13	Present study	
	SCCPs	280	160	22-2400	Present study	
	MCCPs	840	490	33-7400	Present study	
	LCCPs	570	150	10-8500	Present study	
	sumCPs	1700	950	43-18000	Present study	
PBDEs	sumPBDE	6.3	2.9	0.44-64	Tay et al. (2018) ⁷	
HBCDDs	sumHBCDD	680	180	49-8900	Tay et al. (2018) ⁷	
EHFRs	TBBPA	1300	570	<30-11000	Tay et al. (2018) ⁷	
	sumEHFR	1300	570	31-11000	Tay et al. $(2018)^7$	
PFAS	6:2 diPAP	3.3	0.54	-87	Poothong et al. $(2019)^8$	
	8:2 diPAP	4.7	0.41	-213	Poothong et al. $(2019)^8$	
OPEs	ΣOPEs		192	20-14100	Xu et al. (2016) ⁹	
phthalate	DEHP		5570*		Giovanoulis et al. (2018) ¹⁰	
esters	DiNP		5690*		Giovanoulis et al. (2018) ¹⁰	
	DPHP		360*		Giovanoulis et al. $(2018)^{10}$	

Table S1. Descriptive statistics for chemical contaminants measured in the same hand wipe samples.

PFAS: Perfluoroalkyl Substances; EHFRs: Emerging halogenated flame retardants; PAP: Polyfluoroalkyl phosphate ester; OPEs: Organophosphate ester. TBBPA and diPAP were the most abundant EHFRs and PFAs, respectively, found in the hand wipes, which were thus included in the table.

*unit: pg/cm²

		Relativ	e contribu	utions from	n SCCP p	products	cts Relative contributions from MCCP					P produ	cts	Relative contributions from LCCP product				roducts
Sample	R ²	Witaclor 149	SCCP 51.5% Cl	SCCP 55.5% Cl	SCCP 63% Cl	Hüls 70C	MCCP 42% Cl	MCCP 52% Cl	MCCP 57% Cl	Cloparin 49st	Cloparin 50	Cereclor S52	Hüls 52G	LCCP 36% Cl	LCCP 49% Cl	Uniclor 40	Hüls 40N	Witaclor VP549
HW01	0.58	1%	9%		5%		37%	1%	20%	15%	1%	4%	0%	2%	0%	1%	2%	0%
HW02	0.83	1%	12%		4%		20%	1%	8%	30%	2%	15%		6%	0%		1%	0%
HW03	0.70	1%	2%	0%	1%		19%			29%				38%	0%	1%	9%	0%
HW04	0.79		0%	0%	0%		0%	74%	25%	0%				0%	0%	0%	0%	0%
HW05	0.83	1%	9%		5%		30%	1%	11%	12%	1%	3%	0%	22%	0%	1%	3%	0%
HW06	0.72	1%	0%		1%		18%	1%	0%	3%	1%	2%	1%	68%	0%	1%	4%	0%
HW07	0.78	1%	3%	8%	3%		46%	1%	7%	18%	1%	0%	0%	11%	0%	0%		0%
HW08	0.85			27%	5%		24%	4%	15%		9%		12%		3%			0%
HW09	0.88	1%	5%	3%	0%	0%	25%	1%	20%	28%	1%	5%	3%	7%	0%	1%	1%	0%
HW10	0.74	1%	4%	0%	2%		58%	1%	5%	13%	1%	2%	0%	11%	0%	1%	2%	0%
HW11	0.66	1%	5%		5%		6%	1%		57%	1%	2%	0%	16%	0%	1%	2%	0%
HW12	0.85	1%	9%	1%	1%		33%	1%	8%	33%	1%	1%	0%	11%	0%	1%	0%	0%
HW13	0.87	1%	10%	3%	2%		24%	1%	13%	28%	1%	3%	0%	12%	0%	1%	1%	0%
HW14	0.65	0%	5%	0%	0%		28%		18%	37%	1%		0%	9%	0%	1%	1%	0%
HW15	0.81	1%	4%	6%	1%		5%		11%	58%	1%			8%	2%	0%	2%	0%
HW16	0.84	0%	4%	2%	1%		18%		5%	20%		20%	24%	6%		0%	1%	0%
HW17	0.80	1%	9%	4%	4%		31%	1%	20%	16%	1%	4%	0%	6%	0%	1%	2%	0%
HW18	0.75	0%	4%	0%	2%		36%	1%	2%	13%	1%	2%	27%	10%	0%	1%	1%	0%
HW19	0.88	1%	1%	4%	0%	0%	23%	1%	15%	20%	1%	4%	14%	14%	0%	1%	1%	0%
HW20	0.61	1%	4%	4%	2%		24%	1%	47%	7%	1%	6%			0%	1%	1%	0%
HW21	0.56	1%	10%		5%		34%	1%	20%	16%	1%	4%	0%	3%	0%	1%	3%	0%
HW22	0.89		13%	3%	3%		19%	7%	11%	23%	4%	3%	0%	10%	3%		1%	1%
HW23	0.74	1%	10%	0%	2%		36%	1%	15%	22%	1%	4%	0%	5%	0%	1%	1%	0%
HW24	0.64	1%	9%		5%		36%	1%	23%	15%	1%	5%			0%	1%	3%	0%
HW25	0.90			31%	2%		13%	6%	16%		7%	8%	11%	1%	3%			1%
HW26	0.68	1%			0%	0%	41%	1%	11%	23%	1%	4%	14%	0%	0%	1%	2%	0%
HW27	0.80	0%	1%	2%	1%		75%			18%			0%	3%	0%			0%
HW28	0.62	1%	9%	0%	2%		40%	1%	15%	20%	1%	4%	0%	5%	0%	1%	1%	0%

Tuble 54 Relative contributions of emornated paramin standards in pattern reconstruction of marviadar nana wipe samples
--

HW29	0.80		12%		2%		28%	0%	15%	28%				14%	0%		0%	0%
HW30	0.82	1%	9%		5%		15%	1%	15%	14%	1%	4%	0%	29%	0%	1%	4%	0%
HW31	0.74	1%	5%	8%	9%	1%	26%		13%	27%	1%		1%	5%	1%	4%		0%
HW32	0.82		9%	5%	7%		17%	7%	16%	2%	7%	15%		7%	5%			1%
HW33	0.54	1%	7%		5%		35%	1%	22%	15%	1%	4%	0%	5%	0%	1%	2%	0%
HW34	0.71	1%	7%	0%	0%		14%	2%	9%	20%	2%	9%		31%	1%	1%	3%	0%
HW35	0.79	1%	11%		4%		27%	1%	19%	18%	1%	5%	0%	9%	0%	1%	3%	0%
HW36	0.70	1%	9%		4%		18%	1%	17%	34%	1%	6%	0%	6%	0%	1%	2%	0%
HW37	0.85		16%		1%		14%	1%	8%	38%	4%			6%	8%	2%	1%	0%
HW38	0.92		5%	15%	7%		19%	27%	18%		4%			1%	4%		0%	1%
HW39	0.71	1%	9%	3%	6%		29%	1%	21%	15%	1%	4%		5%	0%	1%	2%	0%
HW40	0.81	1%	6%	2%	4%		9%	1%	18%	28%	1%	3%	0%	25%	0%	0%	1%	0%
HW41	0.72	1%	8%	4%	6%		26%	2%	26%	15%	1%	6%	0%	2%	0%	1%	1%	0%
HW42	0.51	3%	1%	1%	0%		31%	3%	9%	14%	3%	2%	0%	22%	1%	2%	5%	0%
HW43	0.66	8%	3%	5%	2%		24%	6%	3%	38%	1%	4%		2%	3%		0%	
HW44	0.72	2%	1%	0%		0%	46%	3%		11%	2%	26%		5%	1%	1%	0%	0%
HW45	0.88		8%	4%	2%		19%	5%	16%	29%		3%		5%	1%	2%	5%	
HW46	0.60	1%	8%		5%		38%	1%	13%	13%	1%	4%	0%	11%	0%	1%	2%	0%
HW47	0.59	1%	16%		4%		17%	1%	27%	16%	1%	5%	6%		0%	1%	2%	0%
HW48	0.68	1%	10%		4%		35%	1%	18%	19%	1%	4%	0%	3%	0%	1%	2%	0%
HW49	0.73	1%	6%	13%	4%		24%	1%	11%	9%	1%	3%	14%	10%	0%	1%	2%	0%
HW50	0.77	0%	1%	0%	1%		35%			27%				35%	0%	0%	0%	0%
HW51	0.60	1%		0%	0%	1%	19%	2%	10%	54%	2%	9%	0%		0%	1%	1%	0%
HW52	0.81	1%	10%	3%	3%		13%	1%	17%	38%	2%	6%		2%	0%	1%	2%	0%
HW53	0.69	1%	12%	0%	3%		38%	2%	12%	16%	1%	9%		4%	0%	2%	0%	0%
HW54	0.88	1%	7%	2%	2%		15%	2%	12%	34%	2%	13%		8%	1%	2%	0%	0%
HW55	0.78	1%	7%	0%	4%		35%	1%	9%	14%	1%	3%	14%	8%	0%	1%	2%	0%
HW56	0.69	1%	10%		6%		30%	1%	21%	14%	1%	4%	0%	7%	0%	1%	3%	0%
HW57	0.53	1%	4%	2%		1%	42%	1%	23%	15%	1%	7%			0%	1%	1%	0%
HW58	0.78	0%	5%		3%	0%	32%	1%	13%	11%	1%	3%	25%	6%	0%	1%	1%	0%
HW59	0.69	5%	2%	2%	0%	0%	0%	5%	18%		5%	18%			1%	15%	27%	1%
HW60	0.72	1%	7%	0%	3%	0%	20%	2%	18%	30%	1%	10%		4%	0%	2%	1%	0%

Sample	R ²	Sample	R ²	Sample	R ²
HW01	0.97	HW21	_	HW41	0.80
HW02	_ a	HW22	0.96	HW42	-
HW03	0.44 ^b	HW23	_	HW43	0.84
HW04	0.75	HW24	0.74	HW44	-
HW05	-	HW25	0.43 ^b	HW45	0.69
HW06	-	HW26	_	HW46	-
HW07	-	HW27	0.69	HW47	-
HW08	-	HW28	_	HW48	-
HW09	0.89	HW29	0.83	HW49	0.73
HW10	_	HW30	_	HW50	-
HW11	0.42 ^b	HW31	_	HW51	-
HW12	-	HW32	_	HW52	-
HW13	-	HW33	_	HW53	-
HW14	-	HW34	_	HW54	-
HW15	0.86	HW35	_	HW55	0.61
HW16	0.67	HW36	_	HW56	0.76
HW17	-	HW37	_	HW57	-
HW18	0.96	HW38	_	HW58	0.43 ^b
HW19	0.43 ^b	HW39	_	HW59	0.52
HW20	0.78	HW40	_	HW60	-

Table S3. Goodness of fit (R^2) between congener group profile of vSCCPs in CP-52 and that profile in individual hand wipe samples.

a. <LOD; b. R²<0.50.

CP mixture	spiked level (ng)		% reco experii	lg n [†]	% recovery after IS correction				
		1 st	2^{nd}	3 rd	4 th	5 th	6 th	mean	mean
SCCPs (51.5%Cl + 63.0%Cl)	300 ng + 300 ng	75	82	82	-	-	-	79	103
MCCPs (42.0%Cl + 57.0%Cl)	300 ng + 300 ng	61	82	79	-	-	-	74	96
LCCPs (49.0%Cl)	300 ng	103	71	48	-	-	-	74	96
vSCCPs (CP-52)	9.4 ng*	-	-	-	84	70	65	73	100
¹³ C-CP internal standard (IS)	10 ng	77	85	70	77	68	74	75	_

*1000 ng CP-52 was spiked, 0.94% of which was vSCCPs¹¹.

 \ddagger IS-corrected recovery = recovery of vS/S/M/LCCPs \div recovery of ¹³C-CP internal standard (IS), which was calculated in each of the spiking experiments, respectively.

Table S5. Gender-specific constants used for the estimation of hand surface area

	а	b	с
male	0.0257	0.573	-0.128
female	0.0131	0.412	0.0274

(Source: U.S. EPA Exposure Factors Handbook¹²)

Table S6: Absorption fractions used for exposure assessment

	molecular weight	Log Kow	Absorption fraction	Estimated absorption fraction
vSCCPs	335 (C9H14Cl6)	5.99 ¹³		0.27
SCCPs	363 (C11H18Cl6)	4.10-8.6714		0.27
MCCPs	405 (C ₁₄ H ₂₄ Cl ₆)	5.56-8.3814		0.34
	516 (C ₁₇ H ₂₈ Cl ₈)			
LCCPs	461 (C ₁₈ H ₃₂ Cl ₆)	6.58-11.3414		0.13
	545 (C ₂₄ H ₄₄ Cl ₆)			
	713 (C ₃₆ H ₆₈ Cl ₆)			
TBP-AE	370.8	5.80		0.27
BDE-28	406.9	5.9415	0.27^{16}	
BDE-47	485.8	6.8115	0.3316	
TBBPA	543.9	5.90	0.30 ^b	
BDE-99	564.7	7.3215	0.34^{16}	
α-HBCDD	641.7	6.78 ¹⁷	0.36 ^b	
β-HBCDD	641.7	6.78 ¹⁷	0.31 ^b	
γ-HBCDD	641.7	6.78 ¹⁷	0.27 ^b	
BDE-153	643.6	7.9015	0.37^{16}	
anti-DDC-CO	653.7	11.11^{17}	0.09 ^a	
syn-DDC-CO	653.7	11.11^{17}	0.09 ^a	
BTBPE	687.6	9.4117	0.11ª	
BEH-TEBP	706.1	11.04^{17}	0.10 ^a	
BDE-183	722.5	8.2715	0.1316	
BDE-209	959.2	9.97	0.08^{16}	
DBDPE	971.2	11.9617	0.11 ^a	

^a: Frederiksen et al. 2016,¹⁷ values were obtained by summing mean distribution of FRs in epidermis and dermis compartments

^b: Abdallah et al. 2015,¹⁶ values were obtained by summing distribution of FRs in directly absorbed fraction and skinepidermis (depot) **Table S7**. Characteristic of the study group/indoor environment questionnaire parameters and the median amounts of CPs (with detection frequencies above 80%) in the hand wipes (ng).

		Median (Interquartile Range: IQR)						
	п	SCCPs	MCCPs	LCCPs	sumCPs			
Gender of participants								
Female	45	180 (97-330)	550 (270-1000)	140 (64-300)	1000 (480-1800)			
Male	15	110 (63-230)	390 (170-890)	200 (53-400)	640 (360-1500)			
% median difference ^a		46	34	38	47			
Age of participants		L						
<41 years old	30	110 (63-300)	470 (180-960)	89 (42-300)	800 (320-1800)			
≥41 years old	30	180 (110-260)	520 (340-1100)	210 (85-380)	1200 (550-1900)			
% median difference ^a		46	10	79	37			
Owning a sofa								
Yes	45	180 (98-330)	630 (300-1200)	170 (76-420)	1300 (510-2200)			
No	15	63 (45-230)	220 (110-500)	84 (32-280)	330 (190-1200)			
% median difference ^a		97*	95*	65	120*			
Work mainly in	1	L	I	I	<u> </u>			
Office	40	160 (98-270)	480 (280-910)	160 (64-320)	970 (500-1500)			
Lab	20	210 (62-460)	720 (180-1500)	140 (44-410)	1400 (310-2600)			
% median difference ^a		28	39	16	33			
Percent work time with electr	ical/ele [,]	ctronic equipmen	t					
<80%	22	190 (73-320)	510 (290-1000)	180 (55-400)	1100 (460-1800)			
80%-100%	38	150 (93-280)	480 (260-1000)	140 (66-340)	970 (460-1700)			
% median difference ^a		25	4	21	11			
Work hours	<u> </u>	-						
< 8 hours	45	170 (68-280)	500 (260-950)	160 (52-410)	970 (450-1500)			
> 8 hours	15	180 (110-510)	460 (280-1400)	140 (83-290)	1000 (500-2300)			
% median difference ^a		8	7	15	6			
Residence house/apartment by	ailt (dat	a available for 55	participants)	I	<u> </u>			
\leq 11 years, after the 2002 ban	8	110 (56-230)	400 (260-680)	84 (68-250)	710 (390-1100)			
> 11 years	47	180 (90-290)	500 (260-1100)	150 (58-360)	1000 (460-2000)			
% median difference ^a		52*	22	57	37			
Size of the home area	L				<u></u>			
$\leq 80 \text{ m}^2$	23	160 (94-310)	470 (250-960)	94 (51-250)	930 (370-1500)			
80-120 m ²	18	190 (73-390)	520 (270-1200)	190 (54-360)	1100 (480-2100)			
$>120 \text{ m}^2$	19	160 (92-200)	440 (270-1000)	220 (87-440)	1000 (460-1700)			
Statistical significance ^b		p>0.05	p>0.05	p>0.05	p>0.05			
How long people had lived in t	the hor	ne	I	I	F. COL			
<2 years	21	160 (97-370)	470 (290-1000)	140 (83-120)	970 (480-1800)			
2-6 years	20	110 (64-210)	460 (160-960)	76 (29-270)	680 (300-1400)			
>6 years	19	200 (130-370)	850 (250-1500)	220 (120-430)	1400 (510-2400)			
Statistical significance ^b		p>0.05	p>0.05	p>0.05	p>0.05			
No. of children in the home	L	1	1	1	1			
0	30	140 (71-260)	420 (240-850)	86 (47-200)	690 (350-1400)			
1	11	270 (140-430)	880 (450-1300)	240 (180-1600)	1600 (940-3600)			
>1	19	160 (79-270)	520 (240-1200)	200 (56-440)	1100 (450-2000)			
Statistical significance ^b		<i>p</i> >0.05	<i>p</i> >0.05	<i>p</i> >0.05	<i>p</i> <0.05			
No. of TVs		r	I MAR	r	r			
0	10	180 (97-260)	630 (370-1100)	160 (47-380)	1300 (610-2000)			
1	35	120 (64-220)	280 (190-850)	110 (50-200)	510 (330-1300)			
>1	15	190 (140-280)	720 (360-1400)	320 (150-450)	1200 (760-2300)			
Statistical significance b		<i>p</i> >0.05	<i>p</i> >0.05	<i>p</i> >0.05 ^d	<i>p</i> >0.05			

		Median (Interquartile Range: IQR)							
	n	SCCPs	MCCPs	LCCPs	sumCPs				
No. of (mobile) phones									
<2	12	110 (62-280)	540 (170-1100)	93 (42-250)	780 (290-1700)				
2	23	180 (97-270)	470 (290-880)	190 (83-340)	660 (320-1700)				
>2	25	180 (89-310)	490 (220-1400)	150 (64-340)	1100 (510-1800)				
Statistical significance b		<i>p</i> >0.05	<i>p</i> >0.05	<i>p</i> >0.05	<i>p</i> >0.05				
No. of laptops/tablets/PCs									
<3	23	190 (95-310)	630 (370-1100)	160 (47-380)	1300 (610-2000)				
3-4	22	120 (64-220)	280 (190-850)	110 (50-200)	510 (330-1300)				
>4	15	190 (130-280)	720 (360-1400)	320 (150-470)	1200 (760-2300)				
Statistical significance b		<i>p</i> >0.05	<i>p</i> >0.05	<i>p</i> >0.05	<i>p</i> >0.05				
Floor material									
Parquet	42	170 (71- 280)	490 (270-1000)	150 (55-420)	950 (480-1800)				
Wood	8	210 (110-310)	680 (260-1200)	120 (58-260)	970 (410-1600)				
Laminate	5	290 (230-490)	960 (950-1800)	160 (95-220)	1400 (1400-2400)				
Flooring ^c	3	110 (100-130)	340 (260-360)	190 (120-400)	640 (480-900)				
Wall-to-wall carpet	1	190	720	340	1200				
Other	1	18	51	63	130				
Statistical significance ^b		<i>p</i> >0.05	<i>p</i> >0.05	<i>p</i> >0.05	<i>p</i> >0.05				

* p < 0.05, Mann–Whitney test; ^a median difference in concentration of two categories in %, $((A - B)/((A + B)/2)) \times 100$; ^b Kruskal-Wallis test; ^c floor material which comprises e.g. PVC and linoleum; ^d p < 0.05 and r = 0.15 using Spearman rank correlation coefficients.

Figure S1. Evolution of the mean deviation (%) of calculated concentration from the assigned concentration as a function of the goodness of fit (R^2) for a simulation of a mixture of SCCPs 55.5%Cl, MCCPs 52.0%Cl, and LCCPs 49.0%Cl.

Figure S2. Congener group profiles of chlorinated paraffins in selected hand wipes from the Norwegian cohort. The vertical axis represent percent relative abundance; all of the horizontal axis represent carbon chain length.

References

1. Tomy, G. T.; Stern, G. A.; Muir, D. C. G.; Fisk, A. T.; Cymbalisty, C. D.; Westmore, J. B., Quantifying C-10-C-13 polychloroalkanes in environmental samples by high-resolution gas chromatography electron capture negative ion high resolution mass spectrometry. *Analytical chemistry* **1997**, *69*, (14), 2762-2771.

2. Coelhan, M.; Saraci, M.; Parlar, H., A comparative study of polychlorinated alkanes as standards for the determination of C10-C13 polychlorinated paraffines in fish samples. *Chemosphere* **2000**, *40*, (6), 685-689.

3. Du, X.; Yuan, B.; Zhou, Y.; Benskin, J. P.; Qiu, Y.; Yin, G.; Zhao, J., Short-, Medium-, and Long-Chain Chlorinated Paraffins in Wildlife from Paddy Fields in the Yangtze River Delta. *Environmental Science & Technology* **2018**, *52*, (3), 1072-1080.

4. Bogdal, C.; Alsberg, T.; Diefenbacher, P. S.; MacLeod, M.; Berger, U., Fast quantification of chlorinated paraffins in environmental samples by direct injection high-resolution mass spectrometry with pattern deconvolution. *Analytical chemistry* **2015**, *87*, (5), 2852-60.

5. Brandsma, S. H.; van Mourik, L.; O'Brien, J. W.; Eaglesham, G.; Leonards, P. E.; de Boer, J.; Gallen, C.; Mueller, J.; Gaus, C.; Bogdal, C., Medium-Chain Chlorinated Paraffins (CPs) Dominate in Australian Sewage Sludge. *Environ Sci Technol* **2017**, *51*, (6), 3364-3372.

6. Krätschmer, K.; Schächtele, A., Interlaboratory studies on chlorinated paraffins: Evaluation of different methods for food matrices. *Chemosphere* **2019**, *234*, 252-259.

7. Tay, J. H.; Sellström, U.; Papadopoulou, E.; Padilla-Sánchez, J. A.; Haug, L. S.; de Wit, C. A., Assessment of dermal exposure to halogenated flame retardants: Comparison using direct measurements from hand wipes with an indirect estimation from settled dust concentrations. *Environment International* **2018**, *115*, 285-294.

8. Poothong, S.; Padilla-Sánchez, J. A.; Papadopoulou, E.; Giovanoulis, G.; Thomsen, C.; Haug, L. S., Hand Wipes: A Useful Tool for Assessing Human Exposure to Poly- and Perfluoroalkyl Substances (PFASs) through Hand-to-Mouth and Dermal Contacts. *Environmental Science & Technology* **2019**, *53*, (4), 1985-1993.

9. Xu, F.; Giovanoulis, G.; van Waes, S.; Padilla-Sanchez, J. A.; Papadopoulou, E.; Magnér, J.; Haug, L. S.; Neels, H.; Covaci, A., Comprehensive Study of Human External Exposure to Organophosphate Flame Retardants via Air, Dust, and Hand Wipes: The Importance of Sampling and Assessment Strategy. *Environmental Science & Technology* **2016**, *50*, (14), 7752-7760.

10. Giovanoulis, G.; Bui, T.; Xu, F.; Papadopoulou, E.; Padilla-Sanchez, J. A.; Covaci, A.; Haug, L. S.; Cousins, A. P.; Magnér, J.; Cousins, I. T.; de Wit, C. A., Multi-pathway human exposure assessment of phthalate esters and DINCH. *Environment International* **2018**, *112*, 115-126.

11. Zhou, Y.; de Wit, C. A.; Yin, G.; Du, X.; Yuan, B., Shorter than short-chain: Very short-chain chlorinated paraffins (vSCCPs) found in wildlife from the Yangtze River Delta. *Environment International* **2019**, *130*, 104955.

12. USEPA, Exposure Factors Handbook; EPA/600/R-09/052F. . In 2011.

13. Xia, D.; Gao, L.; Zheng, M.; Sun, Y.; Qiao, L.; Huang, H.; Zhang, H.; Fu, J.; Wu, Y.; Li, J.; Zhang, L., Identification and evaluation of chlorinated nonane paraffins in the environment: A persistent organic pollutant candidate for the Stockholm Convention? *Journal of Hazardous Materials* **2019**, *371*, 449-455.

14. Hilger, B.; Fromme, H.; Volkel, W.; Coelhan, M., Effects of Chain Length, Chlorination Degree, and Structure on the Octanol-Water Partition Coefficients of Polychlorinated n-Alkanes. *Environm Sci Technol* **2011**, *45*, (7), 2842-2849.

15. Braekevelt, E.; Tittlemier, S. A.; Tomy, G. T., Direct measurement of octanol-water partition coefficients of some environmentally relevant brominated diphenyl ether congeners. *Chemosphere* **2003**, *51*, (7), 563-567.

16. Abdallah, M. A.-E.; Pawar, G.; Harrad, S., Effect of Bromine Substitution on Human Dermal Absorption of Polybrominated Diphenyl Ethers. *Environ. Sci. Technol.* **2015**, *49*, (18), 10976-10983.

17. Frederiksen, M.; Vorkamp, K.; Jensen, N. M.; Sørensen, J. A.; Knudsen, L. E.; Sørensen, L. S.; Webster, T. F.; Nielsen, J. B., Dermal uptake and percutaneous penetration of ten flame retardants in a human skin ex vivo model. *Chemosphere* **2016**, *162*, 308-314.