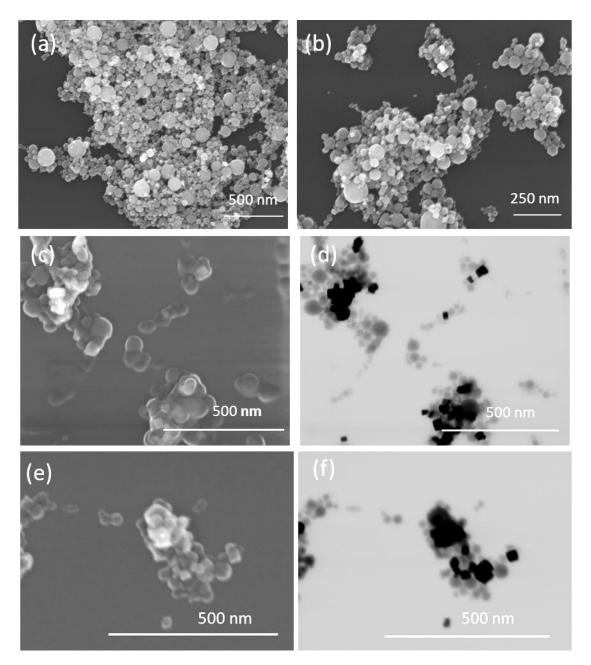
Supporting Information

Controlled Release of Hydrogen Isotopes from Hydride-Magnetic Nanomaterials

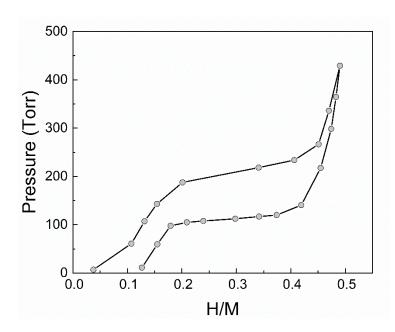
Simona E. Hunyadi Murph,^{*,†,§} Kaitlin Coopersmith, [±] Henry T. Sessions, Jr., [‡] Michael Brown[‡] and George Larsen[±]

[†]Environmental, Materials & Energy Sciences Directorate, Aiken, SC USA


[±]National Security Directorate, Savannah River National Laboratory, Aiken, SC USA

[‡]Science and Technology Directorate, Aiken, SC USA

[§]Department of Physics and Astronomy, University of Georgia, Athens, GA USA


*Corresponding author, email address: Simona.Murph@srnl.doe.gov, phone: 803-646-6761

KEYWORDS: hydrogen absorption, hydride-magnetic nanomaterials, magnetic induced heating

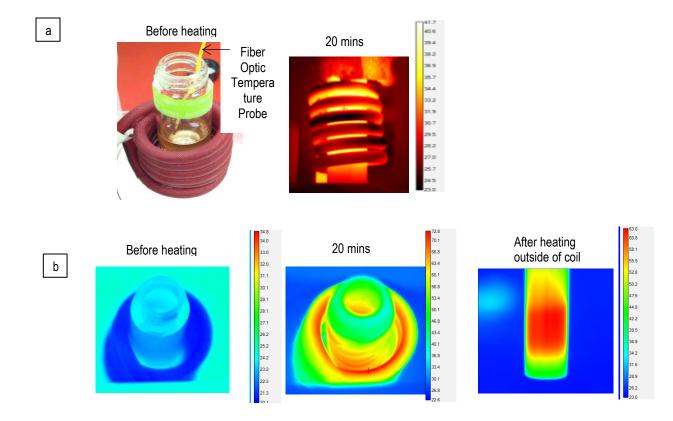


Figure S1. (*a*, *b*, *c*, *e*) *SEM images of* Fe_2O_3 -*Pd nanostructures,* (*d*, *e*) *SEM images collected using backscattered electron imaging of* Fe_2O_3 -*Pd nanostructures.*

Isotherm on Palladium Nanoparticles

Figure S2. Protium absorption and desorption isotherm collected at 90 °C on palladium nanoparticles of < 25 nm in diameter (purchased from sigma-aldrich). Compared to the Fe2O3-Pd, the Pd nanoparticles shows comparable capacity of H/M=0.46.

Figure S3. Photographs and IR heating rate and thermal energy balance profiles of aqueous solutions of Fe2O3 NPs (a) side view, before -left- and after 20 minutes heating -right- with the magnetic induced heating device; and (b) top view, before and after 20 minutes heating with the alternating magnetic induced heating device (left and center); sample vials after 20 minutes heating outside the coil (right).

Calculation of Hydrogen concentration

The concentration of they hydrogen concentration in the overhead pressure in the capillaries was calculated based on eq. 1:

$$n = \frac{PV}{RT} \tag{1}$$

Where n is the number of moles, P is the overhead pressure, R is the gas constant, and T is temperature of the capillaries.