Supporting Information

for

Synthesis, Structure, and Reactivity of Dicationic Bimetallic Tetrabenzyldihafnium Complexes Bearing a Chelating (2-Hydroxyethyl)amido Ligand

Mariko Inoue, Michael J. Lopez, Hayato Tsurugi,* and Kazushi Mashima*

Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan

- 1. X-Ray Crystallographic Analysis
- 2. ¹H and ¹³C{¹H} NMR Spectra of (2-Hydoroxyethylene)amine
- 3. ¹H and ¹³C{¹H} NMR Spectra of Hafnium Complexes
- 4. Screening of Reaction Condition for Oligomerization of 1-Hexene; ¹H and ¹³C{¹H} NMR Spectra of Oligomer of 1-hexene
- 5. ¹H and ¹³C{¹H} NMR Spectra of Alkene 3

1. X-ray Crystallographic Analysis

The crystals were mounted on the CryoLoop (Hampton Reserch Corp) with a layer of light mineral oil and placed in a nitrogen stream at 113(1) K. All measurements were made on Rigaku Xtalab P200 diffractometer using multi-layer mirror monochromated Mo-Kα (0.71075 Å) radiation. The structure was solved by SIR92, ^{S1} SHELXT Version $2014/5^{S2}$ in the CrystalClear program, ^{S3} and refined on F^2 by full-matrix least-squares method, using SHELXL-2016/4.^{S4} Non-hydrogen atoms were anisotropically refined, except for one carbon atom of $B(C_6F_5)_4$ for **5a**. H-atoms were included in the refinement on calculated positions riding on their carrier atoms. A bromine atom of the packing solvent in complex 2a was disordered due to thermal motion, resulted in the remaining of large electron density around the bromine atom. Large residual electron density was found closed to the heavy hafnium atom for 1a and 5a. The function minimized was $[\Sigma w (F_o^2 - F_c^2)^2]$ (w = 1/[$\sigma^2 (F_o^2) + (aP)^2 + bP$]), where $P = (\max(F_o^2, 0) + 2F_c^2)/3$ with $\sigma^2(F_o^2)$ from countin statistics. The functions *R*1 and *wR*2 were ($\Sigma \parallel F_o \mid - \mid F_c \parallel$) / $\Sigma \mid F_o$ | and $[\Sigma w (F_o^2 - F_c^2)^2 / \Sigma (w F_o^4)]^{1/2}$, respectively. The PLATON/SQUEEZE program^{S5} was used for the refinement of 5a and 6a. Crystal data and structure refinement parameters are listed in Table S1 and S2. The ORTEP-3 program^{S6} was used to draw the molecules.

	1 a	2a
empirical formula	C76H94Hf2N2O2	$\begin{array}{c} C_{122}H_{90}B_{2}Br_{2}F_{40}Hf_{2}\\ N_{2}O_{2} \end{array}$
formula weight	1424.57	2914.41
crystal system	monoclinic	triclinic
space group	<i>P</i> 2 ₁ / <i>c</i> (No. 14)	<i>P</i> 1 (No. 2)
<i>a</i> , Å	13.8298(5)	12.6621(14)
b, Å	21.0139(8)	15.0147(13)
<i>c</i> , Å	11.6755(4)	15.5219(17)
α, deg.	_	79.207(7)
β , deg.	91.249(6)	88.564(8)
γ, deg.	_	74.747(7)
<i>V</i> , Å ³	3392.3(2)	2795.8(5)
Ζ	2	1
Dcalcd, g/cm ⁻³	1.395	1.731
μ [Mo- <i>K</i> α], cm ⁻¹	30.979	26.898
<i>Т</i> , К	113	113
crystal size, mm	$0.17 \times 0.10 \times 0.07$	$0.36 \times 0.17 \times 0.16$
θ range for data collection (deg.)	3.00 to 27.60	3.10 to 27.50
no. of reflections measured	7413	52878
unique data (Rint)	7413 (0.0980)	12842 (0.0573)
data / restraints / parameters	7413 / 0 / 403	12842 / 0 / 770
$R1 (I > 2.0\sigma(I))^{a}$	0.0711	0.0664
$wR2 (I > 2.0\sigma(I))^{b}$	0.1864	0.1733
R1 (all data) ^a	0.1459	0.0798
wR2 (all data) ^b	0.2441	0.1827
GOF on F^2	1.159	1.049
Δρ, e Å ⁻³	2.57, -2.08	8.53, -7.16

 Table S1. Crystal Data and Data Collection Parameters of Complexes 1a and 2a

a) $R1 = (\Sigma ||Fo| - |Fc||)/(\Sigma |Fo|)$ b) $wR2 = [\{\Sigma w(Fo^2 - Fc^2)^2\}/\{\Sigma w(Fo^4)\}]^{1/2}$

	5a	6a
empirical formula	$C_{126}H_{102}B_2F_{40}Hf_2N_2O_2P_2$	$C_{130}H_{100}B_2F_{40}Hf_2N_6O_2$
formula weight	2876.69	2916.79
crystal system	triclinic	triclinic
space group	<i>P</i> 1 (No. 2)	<i>P</i> 1 (No. 2)
<i>a</i> , Å	12.937(3)	13.6112(17)
b, Å	14.2819(18)	16.6645(15)
<i>c</i> , Å	19.054(4)	17.442(2)
α, deg.	71.294(18)	62.030(8)
β , deg.	74.826(19)	78.174(12)
γ, deg.	75.655(19)	71.120(10)
$V, Å^3$	3166(12)	3299.5(8)
Ζ	1	1
Dcalcd, g/cm ⁻³	1.509	1.468
μ [Mo- $K\alpha$], cm ⁻¹	17.691	16.766
<i>Т</i> , К	113	113
crystal size, mm	0.20 imes 0.12 imes 0.08	$0.15 \times 0.01 \times 0.01$
θ range for data collection (deg.)	3.10 to 27.30	3.00 to 25.20
no. of reflections measured	57659	28337
unique data (Rint)	14458 (0.2094)	14187 (0.1337)
data / restraints / parameters	14458 / 0 / 793	14187 / 0 / 820
$R1 (I > 2.0\sigma(I))^{a}$	0.0963	0.0754
$wR2 (I > 2.0\sigma(I))^{b}$	0.2241	0.1644
R1 (all data) ^a	0.1548	0.1227
wR2 (all data) ^b	0.2512	0.1954
GOF on F^2	0.951	1.064
Δρ, e Å ⁻³	8.65, -2.71	1.74, -2.55

Table S2. Crystal Data and Data Collection Parameters of Complexes 5a and 6a

a) $R1 = (\Sigma ||Fo| - |Fc||)/(\Sigma |Fo|)$ *b)* $wR2 = [\{\Sigma w(Fo^2 - Fc^2)^2\}/\{\Sigma w(Fo^4)\}]^{1/2}$

2. ¹H and ¹³C{¹H} NMR Spectra of (2-Hydoroxyethylene)amine

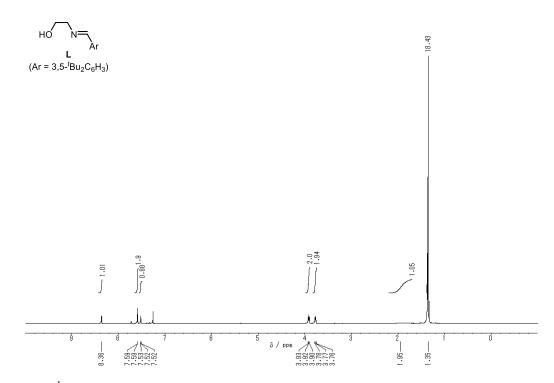


Figure S1. ¹H NMR spectrum of pro-ligand L in CDCl₃.

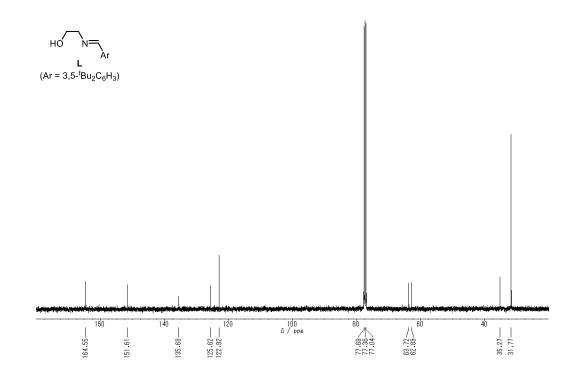
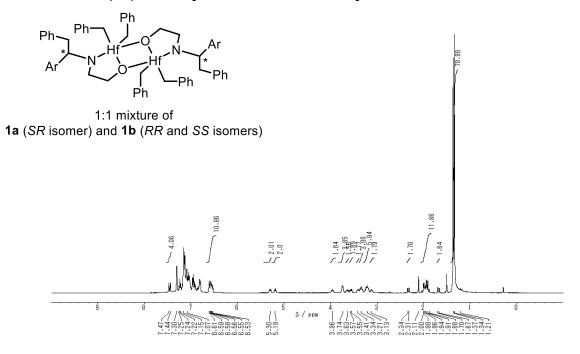



Figure S2. ¹³C{¹H} NMR spectrum of pro-ligand L in CDCl₃.

3. ¹H and ¹³C{¹H} NMR Spectra of Hafnium Complexes

Figure S3. ¹H NMR spectrum of mixture of the mixture of 1a and 1b in C₆D₆.

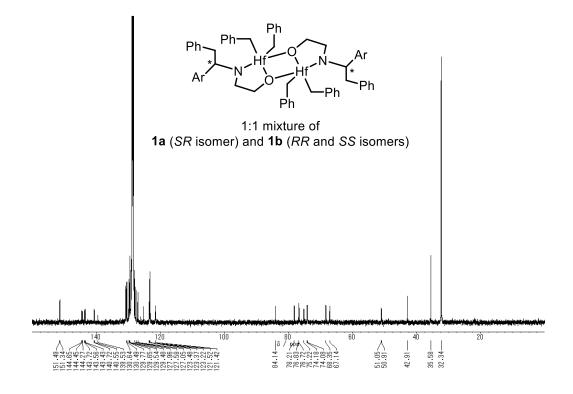


Figure S4. ¹³C{¹H} NMR spectrum of the mixture of 1a and 1b in C_6D_6 .

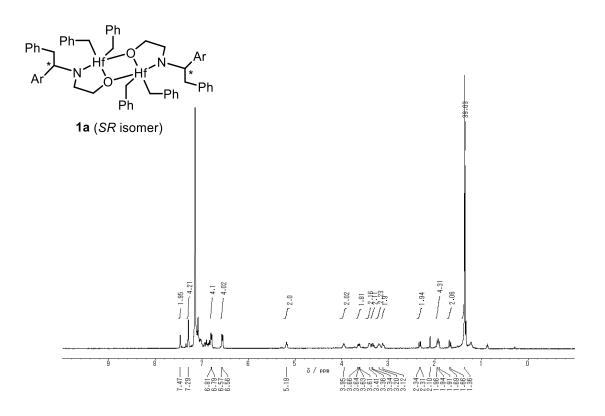


Figure S5. ¹H NMR spectrum of complex 1a in C₆D₆.

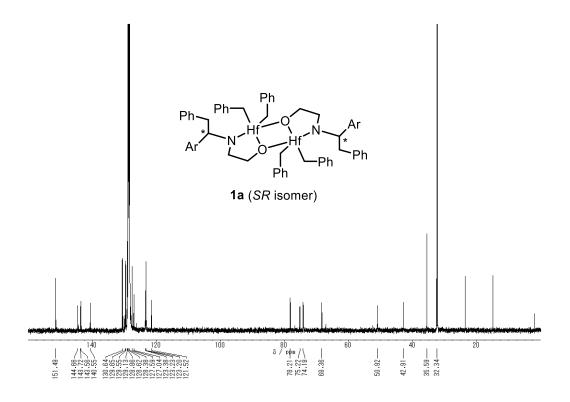


Figure S6. ¹³C{¹H} NMR spectrum of complex 1a in C₆D₆.

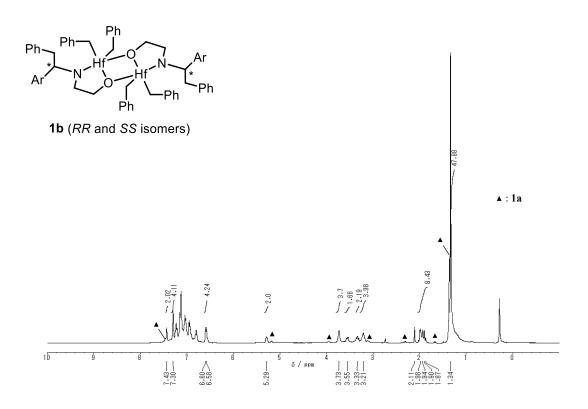


Figure S7. ¹H NMR spectrum of complex 1b in C₆D₆.

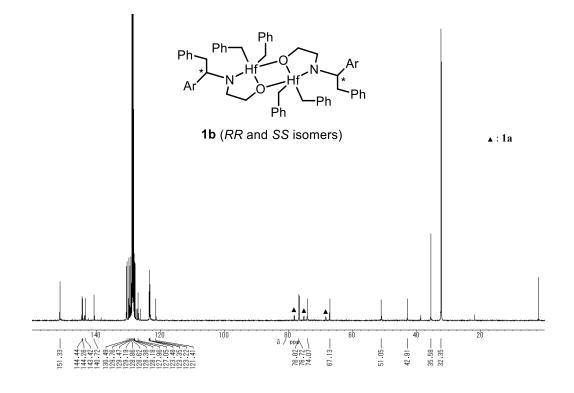


Figure S8. ¹³C{¹H} NMR spectrum of complex 1b in C_6D_6 .

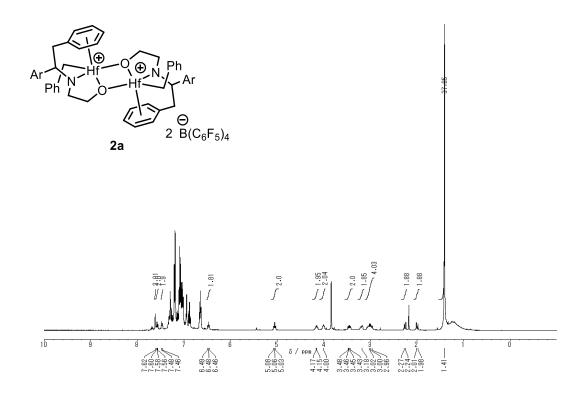


Figure S9. ¹H NMR spectrum of complex 2a in C₆D₅Br.

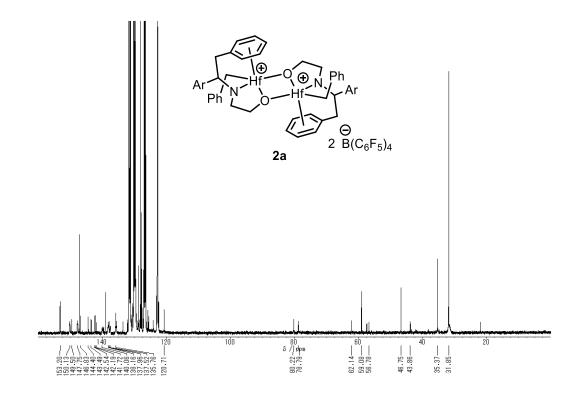


Figure S10. ¹³C $\{^{1}H\}$ NMR spectrum of complex 2a in C₆D₅Br.

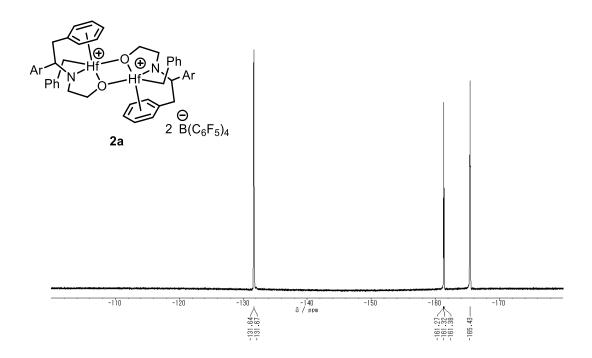


Figure S11. ¹⁹F NMR spectrum of complex 2a in C₆D₅Br.

4. 1-Hexene Oligomerization

General Procedure for Oligomerization of 1-Hexene: Complex 1a (7.1 mg, 5.0 μ mol, 0.2 mol%) was dissolved in bromobenzene (0.3 mL), and 1-hexene (210.2 mg, 2.50 mmol) was added. [Ph₃C][B(C₆F₅)₄] (9.2 mg, 10.0 μ mol, 0.4 mol%) was subsequently added. The reaction mixture was kept at designated temperature for the time period as shown the table. Methanol was added to quench the reaction mixture. After removing all the volatile, the residue was dissolved in hexane, and the solution was passed through pad of silica gel. Oligomer of 1-hexene was obtained by evaporating the solvent to dryness.

	(5 mmol)	<u>cocata</u>	1a (0.2 mol%) cocatalyst (0.4 mol%) C ₆ H₅Br temp. [°C], time [h]			t t n	
entry	cocatalyst	temp. [°C]	time [h]	yield ^a [%]	<i>M</i> ∩ ^b (×10 ³)	<i>М</i> _w ^b (×10 ³)	M _w /M _n
1	[Ph ₃ C][B(C ₆ F ₅) ₄]	rt	20	n.r. ^c	_	_	_
2	[Ph ₃ C][B(C ₆ F ₅) ₄]	80	20	47	1.02	1.21	1.19
3	$[Ph_3C][B(C_6F_5)_4]$	100	20	78	0.81	1.02	1.26
4	[Ph ₃ C][B(C ₆ F ₅) ₄]	100	10	48	0.82	0.98	1.20
5 ^d	[Ph ₃ C][B(C ₆ F ₅) ₄]	100	20	trace	_	_	_
6	B(C ₆ F ₅) ₃	120	20	trace	-	-	-

Table S3. Oligomerization of 1-Hexene Catalyzed by Complex 1a

^a Isolated yield. ^b Determined by GPC. ^c No reaction. ^d Performed with 0.2 mol% of cocatalyst.

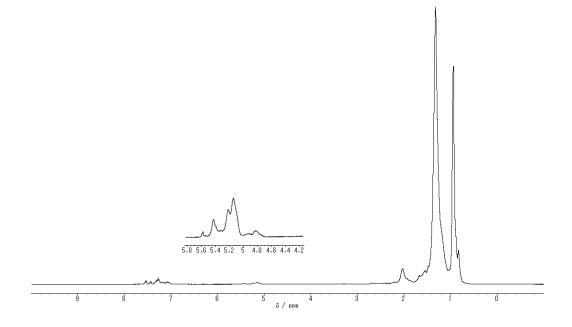


Figure S12. ¹H NMR spectrum of 1-hexene oligomer in CDCl₃.

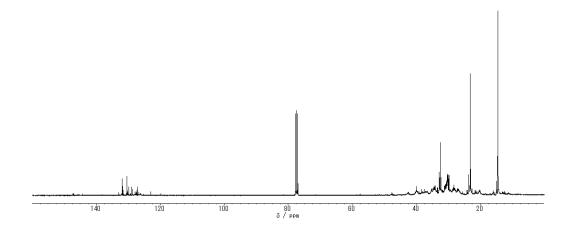
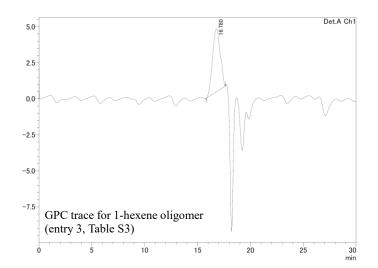
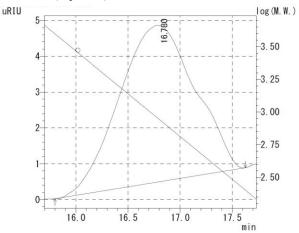




Figure S13. ¹³C{¹H} NMR spectrum of 1-hexene oligomer in CDCl₃.

GPC trace (expanded) with calibration line

Peak Information

	Retention time	Area	Height	Area%	Height%
1	16.780	220815	4375	100.000	100.000
Sum		220815	4375	100.000	100.000

Molecular weight calculation

Peak Info	rmation			
	time (min)	flow (mL)	MW	hight
Start	15.800	12.640	3955	25
Peak top	16.780	13.424	901	4375
end	17.625	14.100	252	887
area : area %	220815 : 100.0000			
Average r	nolecular weight			
Mn	811			
Mw	1018			
Mz	1265			
Mw/Mn	1. 25598			
Mv/Mn	0.00000			
Mz/Mw	1. 24242			

Figure S14. GPC trace of 1-hexene oligomer for entry 3 in Table S3.

5. ¹H and ¹³C{¹H} NMR Spectra of Alkene 3

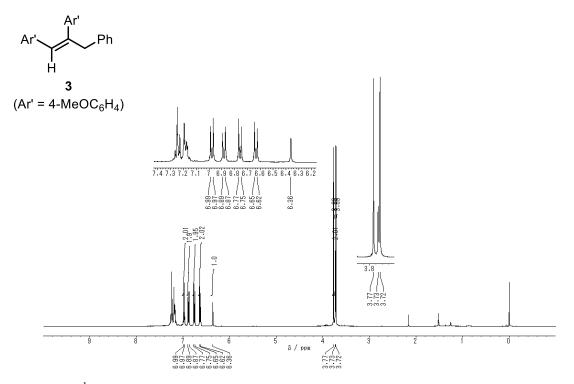


Figure S15. ¹H NMR spectrum of trisubstituted alkene 3 in CDCl₃.

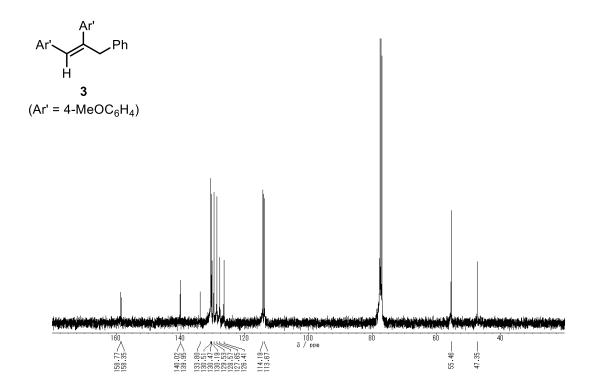


Figure S16. ¹³C{¹H} NMR spectrum of trisubstituted alkene 3 in CDCl₃.

References

- (S1) Altomare, A., Cascarano, G., Giacovazzo, C. and Guagliardi, A. Completion and refinement of crystal structures with SIR92. *J. Appl. Cryst.* **1993**, *26*, 343–350.
- (S2) Sheldrick, G. M. Acta Cryst. 2014, A70, C1437.
- (S3) *CrystalClear: Data Collection and Processing Software*, Rigaku Corporation, 1998–2015, Tokyo 196–8666, Japan.
- (S4) Sheldrick, G. M. A Short History of SHELX. Acta Cryst. 2008, A64, 112–122.
- (S5) van der Sluis, P.; Spek, A. L. BYPASS: an Effective Method for the Refinement of Crystal Structures Containing Disordered Solvent Regions. *Acta Cryst.* 1990, *A46*, 194–201.
- (S6) Farrugia, L. J. ORTEP-3 for Windows a Version of ORTEP-III with a Graphical User Interface (GUI). J. Appl. Crystallogr. 1997, 30, 565.