Developing Cu-MOR@SiO₂ Core—Shell Catalyst Microcapsules for Two-Stage Ethanol Direct Synthesis from DME and Syngas Ce Du^{a,c+}, Emmerson Hondo^{a+}, Linet Gapu Chizema^a, Chengwei Wang^a, Mingliang Tong^a, Chuang Xing^{a,b}, Ruiqin Yang^{a,b}, Peng Lu^{a,b,*}, Noritatsu Tsubaki ^{c,*} a Zhejiang University of Science and Technology, Hangzhou 310023, PR China b Zhejiang Provincial Key Lab for Chem. & Bio. Processing Technology of Farm Product, Hangzhou 310023, PR China c Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan ⁺Ce Du and Emmerson Hondo contributed equally. *Corresponding authors Email: lvpeng0830@zust.edu.cn (P. Lu) Email: tsubaki@eng.u-toyama.ac.jp (N. Tsubaki) ## **Supporting Information** **Figure S1.** Reaction cond.: pressure = 1.5 MPa, temperature = 220 °C, mass (Cu-MOR@SiO₂) = 0.5 g, gas flow = 45 mL/min, gas mixture: Ar/DME/CO/H₂ = 1.01:2.01:49.50:47.48, TOS = 360 mins. Single stage DME carbonylation over Cu-MOR@SiO₂ catalyst, Figure S1, was conducted to verify the intermediate product (generated MA) and the influence of side reactions on both catalyst performance and product formation. Figure S2. Reaction cond.: pressure = 1.5 MPa, temperature = 220 °C, mass (HMOR/Cu-MOR/Cu-MOR@SiO $_2$) = 0.5 g, mass (CZA) = 0.5 g, gas flow = 45 mL/min, gas mixture: Ar/DME/CO/H $_2$ = 1.01:2.01:49.50:47.48, TOS = 360 mins, †Regenerated catalyst. Figure S3. N₂ sorption isotherms for HMOR, Cu-MOR and Cu-MOR@SiO₂ catalysts. Figure S4. FTIR spectra for a. HMOR, b. Cu-MOR and c. Cu-MOR@SiO₂ catalysts Figure S5. Images of the as-prepared catalyst samples. **Figure S6.** A summary of catalytic activity over the series reactions. Figure S7. Relative errors represented with error bars. The experiments for the as-prepared catalysts were conducted for three times, and the results were averaged. The estimated errors are shown in Figure S7 above. Table S1. BET Surface Area and Total Pore Volume | Catalyst | BET suface area/(m ² ·g ⁻¹) | | | Pore Volume/(cm ³ ·g ⁻¹) | | | |-------------------------|--|--------------------|-------------------|---|-------------------|--------------------| | | Total ^a | Micro ^b | Meso ^c | Totald | Meso ^e | Micro ^f | | Cu-MOR@SiO ₂ | 405 | 242 | 163 | 0.245 | 0.121 | 0.088 | | Cu-MOR | 317 | 283 | 34 | 0.186 | 0.044 | 0.147 | | H-MOR | 406 | 374 | 32 | 0.232 | 0.048 | 0.194 | ^a BET_{total} (Micro^b + Meso^c) ## H₂-TPR and NH₃-TPD H₂-TPR was conducted for analyzing the redox behaviour, through hydrogen consumption of the catalyst using a BELCAT-B3 (BEL, Japan) apparatus, furnished with a ^b Micropore (by t-plot) ^c Mesopore ($S_{Total} = S_{Micro} + S_{Meso}$) ^d Total pore vol. @ $P/P_0 = 0.95$ ^e Mesopore vol. @ P/P₀=0.95 (BJH method) ^f Micropore vol. (by t-plot) thermal conductivity detector (TCD). Prior reduction, the sample (20 mg) was perfectly inserted in a U-tube quartz reactor, then pre-treated under flowing Argon (30 mL· min⁻¹) at 200 °C for 1 h before being cooled to 100 °C. Reduction gas, H₂/Ar (10%, 30 mL· min⁻¹) was fed, at the same time heating from 100 to 650 °C at heat rate of 10 °C min⁻¹. For NH₃-TPD, the same machine was used but differentiating the parameters. Firstly, the catalyst was purified for 1 h at 200 °C under flowing Helium (30 mL· min⁻¹) then cooled to 100 °C. NH₃ adsorption was carried out at this temperature for 1 h. Helium (30 mL· min⁻¹) was then re-introduced under steady flow to physically desorb NH₃ for another 1 h. The sample was then heated to 650 °C at heat rate of 10 °C min⁻¹. The discharge gas was analyzed online by a thermal conductivity detector (TCD).