Combined Force-Frequency Sampling for Simulation of Systems Having Rugged Free Energy Landscapes

Emre Sevgen, † Ashley Guo, † Hythem Sidky, † Jonathan K. Whitmer, ‡ and Juan J. de Pablo*, † , ¶

- † Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- ‡ Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556
 - ¶Materials Science Division, Argonne National Laboratory, Argonne, IL 60439

E-mail: depablo@uchicago.edu

1 Supplemental Information

1.1 Two-Dimensional Plots of Polymer Diffusion Through a Pore



Figure 1: Free energy surfaces for a 50-bead Kremer-Grest polymer diffusing through a pore of A) 10x10, B) 8x8 and C) 6x6 at $5.0*10^6$ LJ timesteps, with the two collective variables defined as the center of mass of the polymer in the pore dimension and end-to-end distance of the polymer.