Supporting Information for "Sorption and Diffusion of Methane and Carbon Dioxide in Amorphous Poly(alkyl acrylates): A Molecular Simulation Study"

Yafan Yang, Arun Kumar Narayanan Nair^{*}, and Shuyu Sun[†]
Physical Science and Engineering Division (PSE),
Computational Transport Phenomena Laboratory,
King Abdullah University of Science and Technology (KAUST),
Thuwal, 23955-6900, Saudi Arabia.

January 23, 2020

 $^{^{*}\}mathrm{To}$ whom correspondence should be addressed, email: arun.narayanannair@kaust.edu.sa

 $^{^{\}dagger}\mathrm{To}$ whom correspondence should be addressed, email: shuyu.sun@kaust.edu.sa

Potential form	Type	Parameters	
LJ:		$\epsilon_{ii} \; (\rm kcal/mol)$	σ_{ii} (Å)
$E_{\rm LJ} = 4\epsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^6 \right]$	$\mathbf{C}^{\mathrm{cbn}}$	0.0795	3.82
	CH	0.0199	4.68
	CH_2	0.0910	3.95
	$\mathrm{CH}_{2}^{\mathrm{et}}$	0.0910	3.95
	CH_3	0.1950	3.75
	CH_3^{et}	0.1950	3.75
	$O^{\rm cbn}$	0.1570	3.05
	O^{et}	0.1090	2.80

Table S1: Lennard-Jones(LJ) parameters of the poly(alkyl acrylates)^a.

^{*a*}Martin and Siepmann, 1999; Kamath, et al., 2006; Maerzke, et al., 2009.

Potential form	Type	$\operatorname{Parameters}$			
Harmonic bond:		$k_b \; (\text{kcal/mol/} \dot{A}^2)$	l_0 $(Å)$		
$E_{\text{Stretch}} = k_b (l - l_0)^2$	Ccbn-Ocbn	700.000	1.200		
	C^{cbn} - O^{et}	449.570	1.344		
	C ^{cbn} -CH	449.570	1.520		
	CH_x - CH_y , CH_x - CH_2^{et}	449.570	1.540		
	CH_x^{et} -Oet	449.570	1.410		
Harmonic bend angle:		$k_{\theta} \; (\text{kcal/mol/rad}^2)$	$\theta_0 \; (\mathrm{deg})$		
$E_{\text{Bend}} = k_{\theta} (\theta - \theta_0)^2$	CH-C ^{cbn} -O ^{et}	35.074	111		
	CH_x - CH - CH_u , CH_x - CH - C^{cbn}	62.100	112		
	CH_x - CH_2 - CH_y , CH_x - CH_2 - CH_2^{et}	62.100	114		
	CH_x - CH_2^{et} - O^{et}	35.074	111		
	$\operatorname{CH}_{x}^{\operatorname{et}}$ - $\operatorname{O}^{\operatorname{et}}$ - Ccbn	62.100	115		
	Ocbn-Ccbn-CH	40.042	126		
	O^{cbn} - C^{cbn} - O^{et}	40.042	123		
Dihedral angle:		$A_1 \; (\mathrm{kcal/mol})$	A_2	A_3	A_4
$E_{\text{Dihedral}} = \sum_{n=1,4} A_n cos^{n-1}(\phi)$	$C^{cbn}-O^{et}-CH_2^{et}-CH_x$	1.900	-1.886	0.651	4.437
$(\phi = 180^{\circ} \text{ at trans})$	$CH-C^{cbn}-O^{et}-CH_x^{et}$	13.019	3.112	-8.338	1.568
	CH_x - CH - C^{cbn} - O^{cbn}	2.228	0.284	-0.230	-2.331
	CH_x - CH - C^{cbn} - O^{et}	2.228	-0.284	-0.230	2.331
	CH _x -CH ₂ -CH-CH _y , CH _x -CH ₂ -CH-C ^{cbn}	0.785	-1.779	0.445	3.508
	CH_x - CH_2 - CH_2 - CH_y , CH_x - CH_2 - CH_2 - CH_2	1.967	-4.052	0.271	6.290
	O^{et} - CH_2^{et} - CH_2 - CH_x	1.669	-4.239	0.212	6.120
	O^{cbn} - C^{cbn} - O^{et} - CH^{et}_x	12.890	-3.445	-8.183	-1.219
a Martin and Siepmann, 1999; Ka	math, et al., 2006; Maerzke, et al., 2009.				

Table S2: Bonded potential forms and parameters of the poly(alkyl acrylates)^a.

Figure S1: United-atom representation of the poly(alkyl acrylate) repeat unit where the various united atoms and charges are shown. Note that CH_3^{et} (same charge as CH_2^{et}) is bonded with O^{et} for PMA.

Figure S2: Time evolution of the specific volume of (a) PMA and (b) PDA at 1 atm. The system was rapidly (1 ns MD) brought to the required condition from a molten state at time 0.

Figure S3: (a) Pore limiting diameter and (b) maximum pore diameter in the poly(alkyl acrylate) system as a function of temperature at 1 atm.

Figure S4: Log-log plot of the MSDs of main-chain and side-chain monomers as a function of time in the poly(alkyl acrylate) system at 300 K and 1 atm: (a) PMA, (b) PEA, (c) PBA, (d) PDA.

Figure S5: Same as in Fig. S4, but at 600 K.

Figure S6: Variation of the sorption amount for (a) methane and (b) CO_2 in PMA as a function of the number of hybrid MC/MD cycles at 308 K. Also shown is the effect of swelling on sorption isotherms of (c) methane and (d) CO_2 in PMA at 308 K.

Figure S7: Temperature dependence of the swelling $(\Delta V/V)$ of the poly(alkyl acrylates) in the presence of methane: (a) PMA, (b) PEA, (c) PBA, (d) PDA.

Figure S8: Same as in Fig. S7, but for the CO_2 case.

Figure S9: Sorption isotherms as computed from simulations (symbols) of methane in the poly(alkyl acrylate) system: (a) PMA, (b) PEA, (c) PBA, (d) PDA. The lines are fitting curves to the simulation data.

Figure S10: Same as in Fig. S9, but for the CO_2 case.

Figure S11: Void fraction dependence of the solubility constants of (a) methane and (b) carbon dioxide in poly(alkyl acrylates). The lines are a guide to the eye.

Figure S12: Void fraction dependence of the self-diffusion coefficients of (a) methane and (b) carbon dioxide in poly(alkyl acrylates) at 1 atm. The lines are a guide to the eye.