Supporting Information

In situ Growing Double-layer TiO₂ Nanorod Arrays on New-type FTO Electrode for Low-concentration NH₃ Detection at Room temperature

Guodong Zhao, Jingyue Xuan, Qianqian Gong, Lili Wang, Juanjuan Ren, Meiling Sun, Fuchao Jia, Guangchao Yin*, Bo Liu*

Laboratory of Functional Molecular and Materials, School of physics and optoelectronic engineering, Shandong University of Technology, Zibo 255000, China.

*Corresponding author.

E-mail address: yingc@sdut.edu.cn (G. C. Yin).

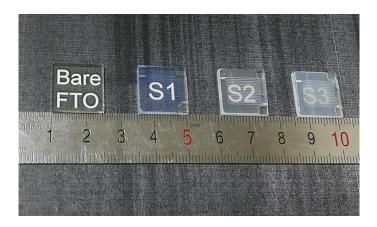


Fig. S1 Real photographs of each fabricated sensors.

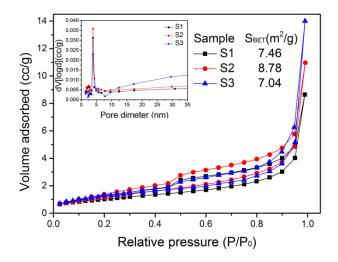


Figure S2. N₂ adsorption-desorption isotherms and pore size distribution curves

(inset) of S1, S2 and S3.

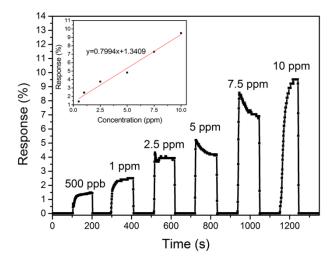


Fig. S3. The gas sensing curve of S2 to different-concentration NH₃ from 0.5 to 10 ppm in 50% RH air at room temperature. The insets is the concentration vs response curve.

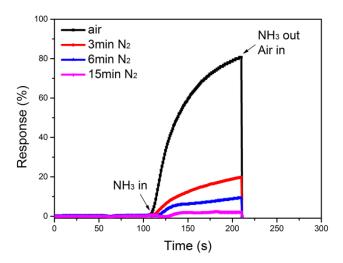


Fig. S4 Sensing curve of TiO_2 NRs for 100 ppm NH₃ under different N₂ flushing times at room temperature.

Herein, we control the time of N_2 flushing to reduce the oxygen concentration of the ambient gas, so as to qualitatively study the effect of oxygen concentration on NH3 sensing. Since we use a static gas distribution system and the background gas in the recovery phase changes from N_2 /air mixture to air, the response characteristics of the sensor will not be discussed here.