SUPPORTING INFORMATION

Stable isotope analysis of intact oxyanions using electrospray
 Quadrupole-Orbitrap mass spectrometry

Cajetan Neubauer ${ }^{1, * \ddagger}$, Antoine Crémière ${ }^{1}$, Xingchen T. Wang ${ }^{1}$, Nivedita Thiagarajan ${ }^{1}$, Alex L. Sessions ${ }^{1}$, Jess F. Adkins ${ }^{1}$, Nathan F. Dalleska ${ }^{2}$, Alexandra V. Turchyn ${ }^{3}$, Josephine A. Clegg ${ }^{3}$, Annie Moradian ${ }^{4}$, Michael J. Sweredoski ${ }^{4}$, Spiros D. Garbis ${ }^{4}$, John M. Eiler ${ }^{1}$

1. Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA.
2. Environmental Analysis Center, California Institute of Technology, Pasadena, CA 91125, USA
3. Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, United Kingdom.
4. Proteome Exploration Laboratory, California Institute of Technology, Pasadena, CA 91125, USA.
*Corresponding author: 123caj@gmail.com
\ddagger Present address: Hanse-Wissenschaftskolleg, Lehmkuhlenbusch 4, 22753 Delmenhorst, Germany

Table of contents:

- Supplemental methods: Bulk isotopic composition
- Table S1. Existing methods for isotopic analysis of sulfate and nitrate
- Table S2. Description of the sulfate and nitrate materials used in this study, including their isotopic composition as determined by IRMS
- References for information in Table S1 and Table S2

Supplemental methods

Bulk isotopic composition. The isotopic compositions of in-house reference standards of sulfate salts were obtained by conventional IRMS methods. Sulfur-34 isotope measurements were done on an elemental analyzer-isotope ratio mass spectrometer (EA-IRMS) using the same $\mathrm{Na}_{2} \mathrm{SO}_{4}$ stock solutions used for ESMS measurements. The solution was pipetted directly into tin capsules and dried overnight at $70^{\circ} \mathrm{C}$. Results were normalized to international reference materials IAEA-S-1, IAEA-S-2, and IAEA-S-3 with $\delta^{34} \mathrm{~S}$ values taken from Brand et al. ${ }^{1}$ as well as in-house $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and seawater solutions. The precisions for $\delta^{34} \mathrm{~S}_{\mathrm{SO} 4}$ measurements are better than 0.2%.

Oxygen-18 isotope measurements were analyzed on a thermal-conversion (TC) EA-IRMS. Sulfate in solution was converted to barite through precipitation with BaCl_{2}. The barite was cleaned using 6 M HCl , to dissolve any barium carbonate co-precipitate, and then rinsed three times with deionized water and dried in the oven overnight. Barite was weighed into silver capsules and pyrolyzed in a TC/EA, and measured via continuous helium flow on a Delta V mass spectrometer. Samples were run for $\delta^{18} \mathrm{O}_{\mathrm{SO} 4}$ ten times and the average and standard deviation presented. These samples were bracketed with NBS-127 $\left(\delta^{18} \mathrm{O}_{\mathrm{SO} 4}=8.6 \%_{\text {VSMOW }}\right)$, which was used to correct for drift over the course of the run. The isotopic composition of sulfate and nitrate materials determined by conventional isotope-ratio analysis are summarized in Table S2.

Supplemental tables

Table S1. Existing methods for isotopic analysis of sulfate and nitrate

Method*	Conversion and Analyte	Isotope Ratio	Precision (\%; 2sd)	Sensitivity	Throughput (samples/day)	Reference
MC-ICP-MS	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	$\delta^{34} \mathrm{~S}, \Delta^{33} \mathrm{~S}$	$\begin{aligned} & \delta^{34} \mathrm{~S}: 0.08-0.15 \\ & \Delta^{33} \mathrm{~S}: 0.1-0.3 \end{aligned}$	$>5 \mathrm{nmol}$ sulfur, typically 20 nmol	<20	Paris et al. (2013) ${ }^{2}$
dual-inlet IRMS	$\mathrm{Ag}_{2} \mathrm{~S}->\mathrm{SF}_{6}$	$\begin{aligned} & \delta^{34} \mathrm{~S}, \Delta^{33} \mathrm{~S}, \\ & \Delta^{36} \mathrm{~S} \end{aligned}$	$\begin{aligned} & \delta^{34} \mathrm{~S}: \sim 0.2, \\ & \Delta^{33} \mathrm{~S}: \sim 0.02 \end{aligned}$	$10 \mu \mathrm{~mol}$	<10	Hulston and Thode $(1965)^{3}$
EA-IRMS	Sulfate -> SO_{2}	$\delta^{34} \mathrm{~S}$	> 0.05	> $0.1 \mu \mathrm{~mol}$ sulfur	<60	Thode et al. (1961) ${ }^{4}$
IRMS	Sulfate ->O2	$\delta^{18} \mathrm{O}, \Delta^{17} \mathrm{O}$	$\delta^{18} \mathrm{O}: 1.6, \Delta^{17} \mathrm{O}: 0.1$ (2 for smaller samples)	> $17 \mu \mathrm{~mol}$ sulfur	>12	Bao and Thiemens (2000) ${ }^{5}$
TC/EA-IRMS	Sulfate $->\mathrm{CO}_{2}$ or CO	$\delta^{18} \mathrm{O}$	$\delta^{18} \mathrm{O}: 0.1-0.3$	$0.5 \mu \mathrm{~mol}$	<40	Boschetti \& Iacumin $(2005)^{6}$
GB-IRMS	Nitrate -> $\mathrm{N}_{2} \mathrm{O}$ (bacterial/chemical conversion)	$\begin{aligned} & \delta^{15} \mathrm{~N}, \delta^{18} \mathrm{O}, \\ & \Delta^{17} \mathrm{O} \end{aligned}$	$\begin{aligned} & \delta^{15} \mathrm{~N}: 0.2 ; \delta^{18} \mathrm{O}: 0.3 ; \Delta^{17} \mathrm{O}: \\ & 0.2-0.5 \end{aligned}$	>2 nmol nitrate, typically 5-20 nmol	<120	Sigman et al. (2001) ${ }^{7}$, Kaiser et al. (2007) , Weigand et al. (2016) ${ }^{9}$
TC/EA-IRMS	Nitrate -> $\mathrm{N}_{2}, \mathrm{O}_{2}$	$\begin{aligned} & \delta^{15} \mathrm{~N}, \delta^{18} \mathrm{O}, \\ & \Delta^{17} \mathrm{O} \end{aligned}$	$\begin{aligned} & \delta^{15} \mathrm{~N}: 0.2 ; \delta^{18} \mathrm{O}: 0.3, \Delta^{17} \mathrm{O}: \\ & 1.0 \end{aligned}$	>1 $\mu \mathrm{mol}$ nitrate	<60	Michalski et al. (2002) ${ }^{10}$, Böttcher et al $(1990)^{11}$
ESMS	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	$\begin{aligned} & \delta^{34} \mathrm{~S}, \delta^{33} \mathrm{~S} \\ & \delta^{36} \mathrm{~S}, \delta^{18} \mathrm{O}, \\ & \Delta^{34} \mathrm{~S}^{18} \mathrm{O} \end{aligned}$	$\delta^{34} \mathrm{~S}:<2, \delta^{18} \mathrm{O}:<2$	<1 nmol sulfate (data acquisition)	$\begin{aligned} & \sim 10 \text { (manual } \\ & \text { sample changing) } \end{aligned}$	This study
ESMS	KNO_{3}	$\begin{aligned} & \delta^{15} \mathrm{~N}, \delta^{18} \mathrm{O}, \\ & \delta^{17} \mathrm{O} \end{aligned}$	$\delta^{15} \mathrm{~N}:<2, \delta^{18} \mathrm{O}:<2$	<1 nmol nitrate (data acquisition)	~ 10 (manual sample changing)	This study

*EA: elemental analyzer, ICP: inductively coupled plasma, IRMS: isotope-ratio mass spectrometry, MC: multi-collector, TC: thermal-conversion, GB: gas bench

Table S2. Description of the sulfate and nitrate materials used in this study, including their isotopic composition as determined by IRMS.

Name	Provider	Origin		$\mathbf{\delta}^{34} \mathrm{~S}\left(\mathbf{\% o}_{\mathrm{VCDI}} ; \mathbf{S D}\right)$	Purity and comments
Antarctica	G. Rossman, Caltech	McMurdo Station, Antarctica	$+8.73 \pm 0.82(\mathrm{n}=10)$	$+21.44 \pm 0.15$ ($\mathrm{n}=5$)	likely anhydrous; obtained as a powder
Cedar Lake	Saltex, Tx (Cooper Natural)	Cedar Lake, Texas, USA	$+12.45 \pm 0.44(\mathrm{n}=10)$	$+10.92 \pm 0.2(\mathrm{n}=2)$	99.8\%; 0.01% water
Chaplin	Airborne Industrial Minerals	Chaplin, Saskatchewan, Canada	$+11.54 \pm 1.14$ ($\mathrm{n}=9)$	$+3.15 \pm 0.2(\mathrm{n}=2)$	$\begin{aligned} & 99.57 \% ; 0.15 \% \mathrm{MgSO}_{4} ; \\ & 0.013 \% \text { water } \end{aligned}$
Laguna del Rey	Peñoles	Laguna del Rey, Coahuila, Mexico	$+12.92 \pm 0.69$ ($\mathrm{n}=9$)	$+13.91 \pm 0.2(\mathrm{n}=2)$	99.90\%
Mexico	Macron, 8024-04, Batch 0000177887	Made in Mexico	$+8.24 \pm 0.88(\mathrm{n}=10)$	$-0.97 \pm 0.2(\mathrm{n}=2)$	99.20\%
Rio Tiron	Crimidesa, Lot \#19-0579	Minera Rio Tiron, Burgos, Spain	$+13.97 \pm 0.69(\mathrm{n}=10)$	$+12.61 \pm 0.2(\mathrm{n}=2)$	99.8\%; 0.01% water;
Soda Lake	G Rossman, Caltech	Soda Lake, Carrizo Plain, San Luis Obispo Co., California, USA	$+11.14 \pm 0.57(\mathrm{n}=9)$	$-9.76 \pm 0.09(\mathrm{n}=5)$	Thénardite; likely anhydrous; rocks were ground into a powder
Synthetic India	Sigma Aldrich, 239313-500G Lot \# SLBR3461V	synthetic inorganic (manufactured in India)	$+11.86 \pm 0.33$ ($\mathrm{n}=10$)	$+1.04 \pm 0.2(\mathrm{n}=2)$	99.90\%
Trona	Searles Valley Minerals	Trona, California, USA	$+19.76 \pm 0.64(\mathrm{n}=10)$	$+14.69 \pm 0.2(\mathrm{n}=2)$	$\begin{aligned} & 99.5 \% ; 0.10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}, 0.34 \% \\ & \mathrm{NaCl} \end{aligned}$
			$\begin{aligned} & \boldsymbol{\delta}^{18} \mathrm{O}\left(\% \mathbf{o}_{\text {VSMow }} ; ~ \mathrm{SD}\right), \\ & \mathbf{\delta}^{17} \mathrm{O}\left(\%_{\mathbf{v}_{\text {vsMow }}} ; \mathrm{SD}\right) \end{aligned}$	$\delta^{15} \mathrm{~N}\left(\%_{\text {air } \mathrm{N} 2} ; 2 \mathrm{SD}\right)$	
USGS32	Reston Stable Isotope Laboratory - USGS (Reston, Virginia, USA)	USGS32 is a dried potassium nitrate salt, prepared by J. K. Böhlke in 1992 via dissolving and recrystallizing a mixture of normal reagent salt and ${ }^{15} \mathrm{~N}$-enriched salt.	$\begin{aligned} & +25.55 \pm 0.2 \\ & 13.01 \pm 0.35 \end{aligned}$	+180 exactly	Böhlke et al. performed ${ }^{18} \mathrm{O}$ analysis using a TC/EA by on-line reduction with carbon. IRMS of ${ }^{15} \mathrm{~N} /{ }^{14} \mathrm{~N}$ was performed after combustion/reduction to N_{2}. ${ }^{12,13}$ $\delta^{17} \mathrm{O}$ provided by Andrew Schauer, Univ. Washington. USGS34 and USGS35 were used to calibrate $\delta^{17} \mathrm{O}$ using the bacterial denitrifier method and thermal decomposition.
USGS34	Reston Stable Isotope Laboratory - USGS (Reston, Virginia, USA)	Prepared by equilibrating nitric acid with $\delta^{18} \mathrm{O}$ depleted Antarctic snow-melt water and subsequent neutralization with KOH	$\begin{aligned} & -27.84 \pm 0.3 \\ & -14.55 \end{aligned}$	-1.8 ± 0.1	Prepared and characterized similar to USGS32 by Böhlke et al. ${ }^{10}{ }^{17} \mathrm{O}$ was measured by off-line decomposition to O_{2}.

References

(1) Brand, W. A.; Coplen, T. B.; Vogl, J.; Rosner, M.; Prohaska, T. Assessment of International Reference Materials for Isotope-Ratio Analysis (IUPAC Technical Report). Pure and Applied Chemistry 2014, 86 (3), 425-467.
(2) Paris, G.; Sessions, A. L.; Subhas, A. V.; Adkins, J. F. MC-ICP-MS Measurement of δ^{34} S and Δ^{33} S in Small Amounts of Dissolved Sulfate. Chemical Geology. 2013, pp 50-61.
(3) Hulston, J. R.; Thode, H. G. Variations in the S^{33}, S^{34}, and S^{36} Contents of Meteorites and Their Relation to Chemical and Nuclear Effects. Journal of Geophysical Research. 1965, pp 3475-3484.
(4) Thode, H. G.; Monster, J.; Dunford, H. B. Sulphur Isotope Geochemistry. Geochimica et Cosmochimica Acta. 1961, pp 159-174.
(5) Bao, H.; Thiemens, M. H. Generation of O_{2} from BaSO_{4} Using a CO_{2}-Laser Fluorination System for Simultaneous Analysis of $\delta^{18} \mathrm{O}$ and $\delta^{17} \mathrm{O}$. Anal. Chem. 2000, 72 (17), 4029-4032.
(6) Boschetti, T.; Iacumin, P. Continuous-flow $\delta^{18} \mathrm{O}$ Measurements: New Approach to Standardization, High-temperature Thermodynamic and Sulfate Analysis. Rapid Communications in Mass Spectrometry. 2005, pp 3007-3014.
(7) Sigman, D. M.; Casciotti, K. L.; Andreani, M.; Barford, C.; Galanter, M.; Böhlke, J. K. A Bacterial Method for the Nitrogen Isotopic Analysis of Nitrate in Seawater and Freshwater. Anal. Chem. 2001, 73 (17), 4145-4153.
(8) Kaiser, J.; Hastings, M. G.; Houlton, B. Z.; Röckmann, T.; Sigman, D. M. Triple Oxygen Isotope Analysis of Nitrate Using the Denitrifier Method and Thermal Decomposition of $\mathrm{N}_{2} \mathrm{O}$. Anal. Chem. 2007, 79 (2), 599-607.
(9) Weigand, M. A.; Foriel, J.; Barnett, B.; Oleynik, S.; Sigman, D. M. Updates to Instrumentation and Protocols for Isotopic Analysis of Nitrate by the Denitrifier Method. Rapid Commun. Mass Spectrom. 2016, 30 (12), 1365-1383.
(10) Michalski, G.; Savarino, J.; Böhlke, J. K.; Thiemens, M. Determination of the Total Oxygen Isotopic Composition of Nitrate and the Calibration of a $\Delta^{17} \mathrm{O}$ Nitrate Reference Material. Anal. Chem. 2002, 74 (19), 4989-4993.
(11) Böttcher, J.; Strebel, O.; Voerkelius, S.; Schmidt, H.-L. Using Isotope Fractionation of Nitrate-Nitrogen and Nitrate-Oxygen for Evaluation of Microbial Denitrification in a Sandy Aquifer. J. Hydrol. 1990, 114 (3), 413-424.
(12) Böhlke, J. K.; Gwinn, C. J.; Coplen, T. B. New Reference Materials for Nitrogen-Isotope-Ratio Measurements. Geostandards Newslett.: J. Geostandards Geoanalysis 1993, 17 (1), 159-164.
(13) Böhlke, J. K.; Coplen, T. B. Interlaboratory Comparison of Reference Materials for Nitrogen-Isotope-Ratio Measurements; IAEA-TECDOC-825; IAEA, 1995.

