SUPPORTING INFORMATION

Stable isotope analysis of intact oxyanions using electrospray

Quadrupole-Orbitrap mass spectrometry

Cajetan Neubauer^{1,*,‡}, Antoine Crémière¹, Xingchen T. Wang¹, Nivedita Thiagarajan¹, Alex L. Sessions¹, Jess F. Adkins¹, Nathan F. Dalleska², Alexandra V. Turchyn³, Josephine A. Clegg³, Annie Moradian⁴, Michael J. Sweredoski⁴, Spiros D. Garbis⁴, John M. Eiler¹

- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA.
- 2. Environmental Analysis Center, California Institute of Technology, Pasadena, CA 91125, USA
- 3. Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, United Kingdom.
- 4. Proteome Exploration Laboratory, California Institute of Technology, Pasadena, CA 91125, USA.
- * Corresponding author: 123caj@gmail.com
- ‡ Present address: Hanse-Wissenschaftskolleg, Lehmkuhlenbusch 4, 22753 Delmenhorst, Germany

Table of contents:

- Supplemental methods: Bulk isotopic composition
- **Table S1.** Existing methods for isotopic analysis of sulfate and nitrate
- **Table S2.** Description of the sulfate and nitrate materials used in this study, including their isotopic composition as determined by IRMS
- **References** for information in Table S1 and Table S2

Supplemental methods

Bulk isotopic composition. The isotopic compositions of in-house reference standards of sulfate salts were obtained by conventional IRMS methods. Sulfur-34 isotope measurements were done on an elemental analyzer-isotope ratio mass spectrometer (EA-IRMS) using the same Na_2SO_4 stock solutions used for ESMS measurements. The solution was pipetted directly into tin capsules and dried overnight at 70°C. Results were normalized to international reference materials IAEA-S-1, IAEA-S-2, and IAEA-S-3 with $\delta^{34}S$ values taken from Brand et al. as well as in-house Na_2SO_4 and seawater solutions. The precisions for $\delta^{34}S_{SO4}$ measurements are better than 0.2 ‰.

Oxygen-18 isotope measurements were analyzed on a thermal-conversion (TC) EA-IRMS. Sulfate in solution was converted to barite through precipitation with BaCl₂. The barite was cleaned using 6M HCl, to dissolve any barium carbonate co-precipitate, and then rinsed three times with deionized water and dried in the oven overnight. Barite was weighed into silver capsules and pyrolyzed in a TC/EA, and measured via continuous helium flow on a Delta V mass spectrometer. Samples were run for $\delta^{18}O_{SO4}$ ten times and the average and standard deviation presented. These samples were bracketed with NBS-127 ($\delta^{18}O_{SO4} = 8.6 \%_{VSMOW}$), which was used to correct for drift over the course of the run. The isotopic composition of sulfate and nitrate materials determined by conventional isotope-ratio analysis are summarized in Table S2.

Supplemental tables

Table S1. Existing methods for isotopic analysis of sulfate and nitrate

Method*	Conversion and Analyte	Isotope Ratio	Precision (‰; 2sd)	Sensitivity	Throughput (samples/day)	Reference
MC-ICP-MS	Na ₂ SO ₄	δ^{34} S, Δ^{33} S	δ^{34} S: 0.08-0.15; Δ^{33} S: 0.1-0.3	> 5 nmol sulfur, typically 20 nmol	< 20	Paris et al. (2013) ²
dual-inlet IRMS	$Ag_2S \rightarrow SF_6$	δ^{34} S, Δ^{33} S, Δ^{36} S	$δ^{34}S: \sim 0.2,$ $Δ^{33}S: \sim 0.02$	10 μmol	< 10	Hulston and Thode (1965) ³
EA-IRMS	Sulfate ->SO ₂	$\delta^{34}S$	> 0.05	> 0.1 μmol sulfur	< 60	Thode et al. (1961) ⁴
IRMS	Sulfate ->O ₂	$\delta^{18}O, \Delta^{17}O$	δ^{18} O: 1.6, Δ^{17} O: 0.1 (2 for smaller samples)	> 17 μmol sulfur	> 12	Bao and Thiemens (2000) ⁵
TC/EA-IRMS	Sulfate ->CO ₂ or CO	δ ¹⁸ O	δ ¹⁸ O: 0.1-0.3	0.5 μmol	< 40	Boschetti & Iacumin (2005) ⁶
GB-IRMS	Nitrate -> N ₂ O (bacterial/chemical conversion)	δ^{15} N, δ^{18} O, Δ^{17} O	δ ¹⁵ N: 0.2; $δ$ ¹⁸ O: 0.3; $Δ$ ¹⁷ O: 0.2-0.5	> 2 nmol nitrate, typically 5-20 nmol	< 120	Sigman et al. (2001) ⁷ , Kaiser et al. (2007) ⁸ , Weigand et al. (2016) ⁹
TC/EA-IRMS	Nitrate -> N ₂ , O ₂	δ^{15} N, δ^{18} O, Δ^{17} O	δ ¹⁵ N: 0.2; $δ$ ¹⁸ O: 0.3, $Δ$ ¹⁷ O: 1.0	>1 µmol nitrate	< 60	Michalski et al. (2002) ¹⁰ , Böttcher et al (1990) ¹¹
ESMS	Na ₂ SO ₄	δ^{34} S, δ^{33} S, δ^{36} S, δ^{18} O, Δ^{34} S ¹⁸ O	$\delta^{34}S$: <2, $\delta^{18}O$: <2	< 1 nmol sulfate (data acquisition)	~10 (manual sample changing)	This study
ESMS	KNO ₃	δ^{15} N, δ^{18} O, δ^{17} O	δ^{15} N: <2, δ^{18} O: <2	< 1 nmol nitrate (data acquisition)	~ 10 (manual sample changing)	This study

*EA: elemental analyzer, ICP: inductively coupled plasma, IRMS: isotope-ratio mass spectrometry, MC: multi-collector, TC: thermal-conversion, GB: gas bench

Table S2. Description of the sulfate and nitrate materials used in this study, including their isotopic composition as determined by IRMS.

Name	Provider	Origin	δ ¹⁸ O (‰ _{VSMOW} ; SD)	δ^{34} S (‰ _{VCDT} ; SD)	Purity and comments
Antarctica	G. Rossman, Caltech	McMurdo Station, Antarctica	+8.73±0.82(n=10)	+21.44 ±0.15 (n=5)	likely anhydrous; obtained as a powder
Cedar Lake	Saltex, Tx (Cooper Natural)	Cedar Lake, Texas, USA	+12.45±0.44 (n=10)	+10.92±0.2 (n=2)	99.8%; 0.01% water
Chaplin	Airborne Industrial Minerals	Chaplin, Saskatchewan, Canada	+11.54±1.14 (n=9)	+3.15±0.2 (n=2)	99.57%; 0.15% MgSO ₄ ; 0.013% water
Laguna del Rey	Peñoles	Laguna del Rey, Coahuila, Mexico	+12.92±0.69 (n=9)	+13.91±0.2 (n=2)	99.90%
Mexico	Macron, 8024-04, Batch 0000177887	Made in Mexico	+8.24±0.88 (n=10)	-0.97±0.2 (n=2)	99.20%
Rio Tiron	Crimidesa, Lot #19-0579	Minera Rio Tiron, Burgos, Spain	+13.97±0.69 (n=10)	+12.61±0.2 (n=2)	99.8%; 0.01% water;
Soda Lake	G Rossman, Caltech	Soda Lake, Carrizo Plain, San Luis Obispo Co., California, USA	+11.14±0.57 (n=9)	-9.76±0.09 (n=5)	Thénardite; likely anhydrous; rocks were ground into a powder
Synthetic India	Sigma Aldrich, 239313-500G Lot # SLBR3461V	synthetic inorganic (manufactured in India)	+11.86±0.33 (n=10)	+1.04±0.2 (n=2)	99.90%
Trona	Searles Valley Minerals	Trona, California, USA	+19.76±0.64 (n=10)	+14.69±0.2 (n=2)	99.5%; 0.10% Na ₂ CO ₃ , 0.34% NaCl
			δ ¹⁸ O (‰ _{VSMOW} ; SD), δ ¹⁷ O (‰ _{VSMOW} ; SD)	δ ¹⁵ N (‰ _{air N2} ; 2SD)	
USGS32	Reston Stable Isotope Laboratory – USGS (Reston, Virginia, USA)	USGS32 is a dried potassium nitrate salt, prepared by J. K. Böhlke in 1992 via dissolving and recrystallizing a mixture of normal reagent salt and ¹⁵ N-enriched salt.	+25.55±0.2; 13.01±0.35	+180 exactly	Böhlke et al. performed ^{18}O analysis using a TC/EA by on-line reduction with carbon. IRMS of $^{15}N/^{14}N$ was performed after combustion/reduction to N_2 . 12,13 $\delta^{17}O$ provided by Andrew Schauer, Univ. Washington. USGS34 and USGS35 were used to calibrate $\delta^{17}O$ using the bacterial denitrifier method and thermal decomposition.
USGS34	Reston Stable Isotope Laboratory – USGS (Reston, Virginia, USA)	Prepared by equilibrating nitric acid with $\delta^{18}O$ depleted Antarctic snow-melt water and subsequent neutralization with KOH	-27.84±0.3, -14.55	-1.8±0.1	Prepared and characterized similar to USGS32 by Böhlke et al. ¹⁰ ¹⁷ O was measured by off-line decomposition to O ₂ .

References

- (1) Brand, W. A.; Coplen, T. B.; Vogl, J.; Rosner, M.; Prohaska, T. Assessment of International Reference Materials for Isotope-Ratio Analysis (IUPAC Technical Report). *Pure and Applied Chemistry* **2014**, *86* (3), 425–467.
- (2) Paris, G.; Sessions, A. L.; Subhas, A. V.; Adkins, J. F. MC-ICP-MS Measurement of δ^{34} S and Δ^{33} S in Small Amounts of Dissolved Sulfate. *Chemical Geology*. 2013, pp 50–61.
- (3) Hulston, J. R.; Thode, H. G. Variations in the S³³, S³⁴, and S³⁶ Contents of Meteorites and Their Relation to Chemical and Nuclear Effects. *Journal of Geophysical Research*. 1965, pp 3475–3484.
- (4) Thode, H. G.; Monster, J.; Dunford, H. B. Sulphur Isotope Geochemistry. *Geochimica et Cosmochimica Acta*. 1961, pp 159–174.
- (5) Bao, H.; Thiemens, M. H. Generation of O_2 from BaSO₄ Using a CO₂-Laser Fluorination System for Simultaneous Analysis of $\delta^{18}O$ and $\delta^{17}O$. *Anal. Chem.* **2000**, 72 (17), 4029–4032.
- (6) Boschetti, T.; Iacumin, P. Continuous-flow δ^{18} O Measurements: New Approach to Standardization, High-temperature Thermodynamic and Sulfate Analysis. *Rapid Communications in Mass Spectrometry*. 2005, pp 3007–3014.
- (7) Sigman, D. M.; Casciotti, K. L.; Andreani, M.; Barford, C.; Galanter, M.; Böhlke, J. K. A Bacterial Method for the Nitrogen Isotopic Analysis of Nitrate in Seawater and Freshwater. *Anal. Chem.* **2001**, *73* (17), 4145–4153.
- (8) Kaiser, J.; Hastings, M. G.; Houlton, B. Z.; Röckmann, T.; Sigman, D. M. Triple Oxygen Isotope Analysis of Nitrate Using the Denitrifier Method and Thermal Decomposition of N₂O. Anal. Chem. 2007, 79 (2), 599–607.
- (9) Weigand, M. A.; Foriel, J.; Barnett, B.; Oleynik, S.; Sigman, D. M. Updates to Instrumentation and Protocols for Isotopic Analysis of Nitrate by the Denitrifier Method. *Rapid Commun. Mass Spectrom.* **2016**, *30* (12), 1365–1383.
- (10) Michalski, G.; Savarino, J.; Böhlke, J. K.; Thiemens, M. Determination of the Total Oxygen Isotopic Composition of Nitrate and the Calibration of a Δ¹⁷O Nitrate Reference Material. *Anal. Chem.* 2002, 74 (19), 4989–4993.
- (11) Böttcher, J.; Strebel, O.; Voerkelius, S.; Schmidt, H.-L. Using Isotope Fractionation of Nitrate-Nitrogen and Nitrate-Oxygen for Evaluation of Microbial Denitrification in a Sandy Aquifer. *J. Hydrol.* **1990**, *114* (3), 413–424.
- (12) Böhlke, J. K.; Gwinn, C. J.; Coplen, T. B. New Reference Materials for Nitrogen-Isotope-Ratio Measurements. *Geostandards Newslett.: J. Geostandards Geoanalysis* **1993**, *17* (1), 159–164.
- (13) Böhlke, J. K.; Coplen, T. B. *Interlaboratory Comparison of Reference Materials for Nitrogen-Isotope-Ratio Measurements*; IAEA-TECDOC-825; IAEA, 1995.