Supporting Information

Vapochromic Properties of Diethenylpyrrole with Naphthyl Tethers Induced by Formation of a Distorted Structure in the Solid State

Soichi Yokoyama, ${ }^{1,2, *}$ Haruyasu Asahara, ${ }^{1,2,3}$ Nagatoshi Nishiwaki ${ }^{1,2, *}$
1 School of Environmental Science and Engineering, Kochi University of Technology, Kami, Kochi 782-8502, Japan
${ }^{2}$ Research Center for Material Science and Engineering, Kochi University of Technology, Kami, Kochi 782-8502, Japan
${ }^{3}$ Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka 1-6, Suita, Osaka 565-0871, Japan

Supporting Data

Contents		Page
	Experimental section	S2-S3
Figure S1	Equipment drawing	S3
Figure S2	Estimated rotation barrier by DFT calculation	S4
Figure S3	UV-vis./FL spectra in various solvent	S5
Table S1	Photophysical properties in various solvent	S5
Figure S4	Simulated absorption spectra and oscillator strength	S6
Table S2	X-ray crystallographic data of single crystal α, β and γ	S7
Figure S5	X-ray structure of single crystal γ.	S8
Table S3	X-ray crystallographic data of single crystal $2 \bigcirc 2,5-\mathrm{DHP}$	S9
Figure S6	UV-vis./FL spectra in solution and in single crystal α, β and γ	S10
Table S4	Photophysical properties in DCM solution and each single crystals	S10
Figure S7	Change of single crystal α upon exposure to THF vapor	S11
Figure S8	Quantum yield change upon exposure powder of $\mathbf{2}$ to THF/toluene vapor	S11
Figure S9	Tg chart of pristine powder and $\mathbf{2} \supset$ THF powder	S12
Figure S10	${ }^{1} \mathrm{H}$ NMR chart after exposing of pristine powder to THF vapor	S13
Figure S11	Change of ground powder 1 upon exposure to THF vapor	S14
Figure S12	Fluorescence spectra after exposing pristine powder to various solvent vapor	S15
Figure S13-S21	${ }^{1} \mathrm{H}$ NMR chart after exposing pristine powder to various solvent vapor	S16-S22
Figure S22	${ }^{1} \mathrm{H}$ NMR chart after exposing $\mathbf{2} \supset$ THF powder to toluene vapor	S23
Figure S23	Fluorescence spectra after exposing $2 \supset$ THF powder to various solvent vapor	S23
Figure S24	Thermal stability of $\mathbf{2} \supset$ THF powder	S24
Figure S25	Stability of $\mathbf{2} \supset$ THF powder under reduced pressure	S24
Figure S26	Effect of grinding on fluorescence spectra of $\mathbf{2} \supset$ THF powder	S25
Figure S27	${ }^{1} \mathrm{H}$ NMR chart after grinding $2 \supset$ THF powder	S25
Figure S28	PXRD pattern change of pristine powder 2 upon the exposure to THF vapor	S26
Figure S29	Simulated PXRD pattern of crystal α, β and γ	S27
Figure S30	A plausible mechanism of vapochromism	S27
Table S5 and Figures S31-S34	Fluorescence lifetime analysis	S28-S29
Table S6-S8	Transition states	S30-S32
Figure S35-S36	${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data of compound 2	S33-S34
	Cartesian coordination of optimized structures	S35-S37
	References	S38

General.

Unless specifically mentioned, reagents and solvents were obtained from commercial suppliers and used without further purification. All reactions were monitored by thin-layer chromatography carried out on Merck silica gel plates (60F-254). Column chromatography was performed on silica gel (Nacalai Tesque, 70-230 mesh for normal phase). The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded on a Bruker Ascend 400 at 298 K . ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ chemical shifts are reported in ppm downfield from tetramethylsilane (TMS). High-resolution mass spectra were measured on an AB SCIEX Triple TOF ${ }^{\text {TM }} 4600$ by positive mode. IR spectra were recorded on a JASCO FT/IR-4200 spectrometer equipped with an ATR detector.

Synthesis of 2,5-bis[1-cyano-2-(naphthalen-1-yl)vinyl]-1H-pyrrole (2)

To a solution of 2,5-bis(cyanomethyl)pyrrole ${ }^{1}(40.0 \mathrm{mg}, 0.275 \mathrm{mmol})$ and 1-naphthaldehyde $(0.132 \mathrm{~g}, 0.845 \mathrm{mmol})$ in ethanol (5 mL) was added aqueous solution of benzyltrimethylammonium hydroxide ($10 \mathrm{w} \%, 5 \mathrm{~mL}$). After stirring at $60{ }^{\circ} \mathrm{C}$ for 2 hour under Ar , the reaction was quenched by addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution. The resulting mixture was extracted with dichloromethane. Then, the organic phase was dried over MgSO_{4}, filtered and evaporated in vacuo. The crude product was purified by silica column chromatography ($\mathrm{DCM} /$ hexane $=2 / 1$ to $5 / 1$ as an eluent). Further purification was performed by recrystallization from toluene to afford 2 as a red crystal ($80.1 \mathrm{mg}, 0.190 \mathrm{mmol}$, 69%). Mp 213.6-214.8 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 9.02(\mathrm{bs}, 1 \mathrm{H}), 8.08-7.93(\mathrm{~m}, 6 \mathrm{H}), 7.92-7.90(\mathrm{~m}, 4 \mathrm{H})$, $7.59-7.51(\mathrm{~m}, 6 \mathrm{H}), 6.80(\mathrm{~d}, 2 \mathrm{H}, J=2.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 134.9(\mathrm{CH}), 133.6(\mathrm{C}), 131.5$ $(\mathrm{CH}) 130.9(\mathrm{C}), 130.6(\mathrm{C}), 129.8(\mathrm{C}), 129.0(\mathrm{CH}), 127.1(\mathrm{CH}), 126.9(\mathrm{CH}), 126.5(\mathrm{CH}), 125.5(\mathrm{CH}), 123.3(\mathrm{CH}), 116.7$ (C), 111.7 (CH), 105.9 (C). IR (ATR/ cm^{-1}) 3293, 2220, 1586, 1507, 1419, 1286, 1233, 1053. HRMS (ESI-QTOF) m/z $[\mathrm{M}-\mathrm{H}]^{-}$calcd for $\mathrm{C}_{30} \mathrm{H}_{18} \mathrm{~N}_{3} 420.1506$, found 420.1498.

UV-vis. and Fluorescent Spectroscopy.

Absorption spectra were recorded on a JASCO V-650 spectrophotometer. Fluorescence spectra were recorded on a Hamamatsu Quantaurus-QY Plus UV-NIR absolute PL quantum yield spectrometer C13334 or JASCO FP-8300. Quartz cell with 10 mm . Fluorescence quantum yields were determined on a Hamamatsu Quantaurus-QY Plus UV-NIR absolute PL quantum yield spectrometer C13534. Excitation was carried out at 400 nm . Fluorescence decay profiles were recorded on a Hamamatsu Photonics picosecond fluorescence lifetime measurement system C11200 equipped with picosecond light pulsar PLP-10, spectrograph C11119-01, and streak scope C10627, or a Hamamatsu Photonics streak scope C4334 equipped with a spectrograph C5094. Excitation was carried out by a laser diode whose wavelength was $\lambda_{\mathrm{ex}}=378 \mathrm{~nm}$ (pulse width is around 45 ps) or 441 nm (pulse width is around 76 ps).

X-ray Single Crystal diffraction.

Data collection for X-ray crystal analysis was performed on Rigaku/XtaLAB Synergy- S / Cu or $\mathrm{Mo}(\mathrm{CuK} \alpha \lambda=$ $1.54187 \AA$ or $\operatorname{MoK} \alpha \lambda=0.71073 \AA$) diffractometers. The single crystal α, β and γ was obtained slow vapor diffusion from chlorobenzene/pentane, THF/hexane and THF/pentane, respectively. The X-ray measurement was performed at $-150{ }^{\circ} \mathrm{C}$ or $-180^{\circ} \mathrm{C}$. The structures were solved by direct methods (SHELXT) and refined through full-matrix leastsquares techniques on F^{2} using SHELXL and OLEX2 crystallographic software packages. ${ }^{2-4}$ All non-hydrogen atoms
were refined with anisotropic displacement parameters and hydrogen atoms were placed at calculated positions and refined "riding" on their corresponding carbon atoms. Crystallographic data are available from Supporting Information or The Cambridge Crystallographic Data Centre, codes 1962397, 1962398, 1962399 and 1962426.

Powder X-ray diffraction

PXRD data were collected on a AERIS (PANanalytical) using Ni filter monochromatized $\mathrm{Cu}-\mathrm{K} \alpha$ radiation $\left(1.54056 \AA\right.$) with a temperature control unit. XRD patterns ranged from 3° to 30° was repeatedly recorded with a scan rate of $0.14 \% \mathrm{~min}$.

DFT calculation.

The geometrical optimization was carried out for at the B3LYP/6-31+g(d,p) level on Gaussian 09 package. ${ }^{5}$ Convergence at a local minimum structure was confirmed by no imaginary frequencies on frequency analysis. The optimized local minimum structures at the ground states (S_{0}) were subjected to TD-DFT calculations in the gas phase to obtain 10 excited states from the lowest energy states $\left(\mathrm{S}_{1}\right)$. GaussSum 3.0 software was used for the calculation of the minor and major energy contributions of HOMO and LUMO levels for each transition state. ${ }^{6}$

Sample procedure and experiment for exposure to organic solvent vapor

A pristine powder was prepared by grinding the single crystal α over 3 min . Exposure of the sample to organic solvent vapor was performed in Petri dish (Figure. S1). The powder were placed on a glass plate so as not to contact with solvent. The content was covered by a larger Petri dish to diffuse the solvent vapor.

Figure S1 Illustration of experimental method and equipment for the exposure of the sample to organic solvent.

Figure S2 Estimated rotation barrier of a single bond around a pyrrole ring between 2(i-o) and 2(0o). The relative energy was calculated by B3LYP/6-31g+(d,p) level.

Figure S3 (left) UV-vis. absorption and (right) fluorescence spectra ($\lambda_{\text {ex }}=420 \mathrm{~nm}$) in various solvent.

Table S1. The maximum absorption/fluorescence wavelength and Stokes shift in various solvent.

	$\lambda_{\mathrm{abs}} / \mathrm{nm}$	$\lambda_{\mathrm{fl}} / \mathrm{nm}$	$\left(\lambda_{\mathrm{fl}}-\lambda_{\mathrm{abs}}\right) / \mathrm{nm}$	Stokes shift $/ \mathrm{cm}^{-1}$
2,5-DHF	423	545	122	5290
THP	420	542	122	5360
THF	421	544	123	5370
2,3-DHF	421	545	124	5400
Ethanol	419	543	124	5450
Toluene	423	555	132	5620
AcOEt	417	545	128	5630
Acetone	415	545	130	5750
CHCl $_{3}$	421	559	138	5860
$\mathrm{CH}_{3} \mathrm{CN}$	412	545	133	5920
DCM^{4}	417	554	137	5930

Consideration from the result of TD-DFT calculation

We carried out TD-DFT calculation at B3LYP/6-31g+(d,p) level for each conformer and $2 \supset$ THF complex. Conformer 2(i-o) has a smaller oscillator strengths for $\mathrm{S}_{0}->\mathrm{S}_{3}$ transition than those of $\mathbf{2 (0) - \mathbf { o })}$ and $\mathbf{2} \supset$ THF complex (Figure S 5). On the other hand, the oscillator strength of $\mathbf{2}$ at $\mathrm{S}_{0}->\mathrm{S}_{1}$ transition was lowered by interconversion from 2(io) to $\mathbf{2 (0 - 0)}$ conformer. Focusing on the result of UV-vis. absorption spectra, the absorption band of the compound 2 around 340 nm would be attributed to absorption of $\mathrm{S}_{0}->\mathrm{S}_{3}$ transition. The absorbance in toluene, dichloromethane and chloroform (solvent A: dotted lines in Figure S4a) was relatively lower than that in the other solvent (solvent B: solid line in Figure S4a) that can form hydrogen bonding with a proton donor. Therefore, it is suggested that the conformer $\mathbf{2 (0 - 0)}$ formed a complex structure in solvent B, resulting in a decreasing concentration of $\mathbf{2 (0 - i)}$ and $\mathbf{2 (0 - 0)}$ with lower oscillator strength in $\mathrm{S}_{0}->\mathrm{S}_{3}$.

Figure S4 Simulated absorption spectra and oscillator strength for 2(i-o), 2(0-0) and 2 \supset THF at TD-B3LYP/6$31 \mathrm{~g}+(\mathrm{d}, \mathrm{p})$ level. GaussSum 3.0 software was used to simulate the absorption spectra. ${ }^{6}$

Table S2. X-ray crystallographic data of single crystal α, β and $\gamma{ }^{a}{ }^{a}$

	Crystal α	Crystal β	Crystal γ
Crystal structure			
Chemical formula	$\mathrm{C}_{30} \mathrm{H}_{15} \mathrm{~N}_{3}$	$\mathrm{C}_{68} \mathrm{H}_{54} \mathrm{~N}_{3} \mathrm{O}$	$\mathrm{C}_{34} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}$
Formula weight	421.48	493.58	493.58
Crystallization Solvent	Chlorobenzene/pentane	THF/pentane	THF/hexane
T / K	93.15 / K	93.15 / K	123 / K
Wavelength / A	0.71073 (Mo K α)	0.71073 (Mo K α)	$1.54184(\mathrm{Cu} \mathrm{K} \alpha)$
Color	Clear red	Clear yellow	Clear yellow
Crystal size / mm	$0.35 \times 0.186 \times 0.08$	$0.5 \times 0.255 \times 0.042$	$0.144 \times 0.082 \times 0.043$
Crystal system	Monoclinic	Monoclinic	orthorhombic
Space group	$\mathrm{P} 21 / \mathrm{n}$	Cc	Pbca
a / \AA	7.8509(2)	28.2977(8)	14.8614 (2)
b/ \AA	12.5211(3)	14.8839(3)	12.58960 (10)
c / \AA	21.5915 (5)	12.6181(3)	27.6856 (4)
$\alpha /{ }^{\circ}$	90	90	90
$\beta /{ }^{\circ}$	90.115 (2)	102.764(3)	90
$\gamma 1{ }^{\circ}$	90	90	90
V / \AA^{-3}	2122.48 (9)	5183.2(2)	5179.95 (11)
Z	4	4	8
Density (calculated)	1.313	1.265	1.266
Goodness-of-fit on F^{2}	1.039	1.045	1.031
$R_{1}[\mathrm{I}>2 \sigma(\mathrm{I})$]	0.0350	0.0297	0.0371
$\mathrm{w} R_{2}$ (for all data)	0.0886	0.0744	0.0979

a. The thermal ellipsoids are represented at 50% probability level.

Figure S5 X-ray structure of single crystal γ. (a) A complex structure of 2 with THF. (b) Dimer structure. (c) Packing structure at one unit cell. Red dotted lines denote hydrogen bonding $a(\mathrm{~N} 1 \ldots \mathrm{O} 1=2.855 \AA, \mathrm{~N} 1 \mathrm{H} 1 \ldots \mathrm{O}=2.065 \AA), b$ $(\mathrm{C} 2 \ldots \mathrm{O}=3.244 \AA, \mathrm{C} 2 \mathrm{H} 2 \ldots \mathrm{O} 1=2.615 \AA), c\left(\mathrm{C} 2^{\prime} \ldots \mathrm{O}=3.519 \AA, \mathrm{~N} 2^{\prime} \mathrm{H} 2^{\prime} \ldots \mathrm{O}=2.621 \AA\right), d(\mathrm{~N} 1 \ldots \mathrm{~N} 2=3.530 \AA$, $\mathrm{N} 1 \mathrm{H} 1 \ldots \mathrm{~N} 2=2.668 \AA$). Torsional angle around single bond between naphthyl and vinyl group became 43.6° for $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$ and 34.8° for $\mathrm{C} 1^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{C} 3^{\prime}-\mathrm{C} 4$ '. The thermal ellipsoids are represented at 50% probability level.

Table S3. X-ray crystallographic data of single crystal $2 \supset 2,5-\mathrm{DHP}$

The thermal ellipsoids are represented at 50% probability level.

Empirical formula	$\mathrm{C}_{68} \mathrm{H}_{50} \mathrm{~N}_{6} \mathrm{O}_{2}$
Formula weight	983.14
Temperature/K	93.15
Crystal system	monoclinic
Space group	Cc
a/Å	28.3008(7)
b/Å	14.7916(3)
c/Å	12.7047(4)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	102.621(3)
γ°	90
Volume/A ${ }^{3}$	5189.9(2)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.258
Crystal size/mm ${ }^{3}$	$0.862 \times 0.157 \times 0.088$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
Goodness-of-fit on F^{2}	1.046
Final R indexes [$\mathrm{I}>=2 \sigma$ (I]	$\mathrm{R}_{1}=0.0313, \mathrm{wR}_{2}=0.0751$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0347, \mathrm{wR}_{2}=0.0772$

Figure S6 UV-vis. absorption and fluorescence spectra in DCM solution and in single crystal α, β and γ.

Table S4. Photophysical properties in DCM solution and each single crystals.

	$\lambda_{\mathrm{fl}} / \mathrm{nm}$	Φ_{f}	$\left\langle\tau_{\mathrm{f}}\right\rangle / \mathrm{ns}$	$k_{\mathrm{f}} / \mathrm{ns}^{-1}$	$k_{\mathrm{nr}} / \mathrm{ns}^{-1}$
Solution (DCM)	555	0.08	1.72	0.079	0.91
Crystal α (w/o THF)	601	0.12	2.06	0.058	0.43
Crystal β (2 \supset THF)	558	0.38	3.72	0.10	0.17
Crystal $\gamma(\mathbf{2} \supset$ THF)	558	0.31	3.41	0.091	0.20

The fluorescence rate constant (k_{f}) and non-radiative decay rate constant (k_{nr}) were calculated from the fluorescence quantum yield $\left(\Phi_{\mathrm{f}}\right)$ and the lifetime ($\left.\left\langle\tau_{\mathrm{f}}\right\rangle\right)$ using the following equations: ${ }^{7}$

$$
\begin{align*}
& \Phi_{f}=\frac{k_{f}}{k_{f}+k_{n r}}=k_{f}<\tau_{f}> \tag{1}\\
& <\tau_{f}>^{-1}=k_{f}+k_{n r} \tag{2}
\end{align*}
$$

Figure S7 Change of single crystal α upon exposure to THF vapor.

Figure S8 Quantum yield change upon exposure of pristine powder of $\mathbf{2}$ to THF/toluene. Black square symbol denotes the quantum yield of the pristine powder $\mathbf{2}$. Blue and red square symbol denote the quantum yield of powder after exposing to THF or toluene vapor, respectively.

Figure S9 Tg chart of pristine powder (black line) and $\mathbf{2} \supset$ THF powder (red line). The scan rate was $5^{\circ} \mathrm{C} /$ min under N_{2} gas flow ($100 \mathrm{~mL} / \mathrm{min}$)

Estimation of the molar amount of absorbed THF molecules from the result of Tg measurement

Weight of 2 \supset THF powder at $30^{\circ} \mathrm{C}$:	4.315 mg
Weight of the powder after heating at $120^{\circ} \mathrm{C}:$	3.666 mg

The amount of the released THF molecule and the remaining compound 2 becomes $0.649 \mathrm{mg}(9.0 \mu \mathrm{~mol})$ and 3.666 $\mathrm{mg}(8.7 \mu \mathrm{~mol})$, respectively. Therefore, the molar ratio of $\mathbf{2} / \mathrm{THF}$ becomes $c a .1 / 1$ in the $\mathbf{2} \supset \mathbf{T H F}$ powder.

Figure S10. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2} \supset$ THF powder after exposing the pristine powder to THF vapor for 1 h . The molar ratio of $\mathbf{2} /$ THF becomes $1 / 1$.

1

Figure S11 Change of ground powder 1 upon exposure to THF vapor. Timecode was represented at the bottom of each photograph. The display (00:00:00:00) denotes (h:min:sec:10msec).

Figure S12 (a) Fluorescence spectra after exposing pristine powder to various solvent vapor for one hour. $\lambda_{\text {ex }}=400$ nm. (b) An enlarged graph of (a).

Figure S13. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ after exposing the pristine powder to 2,5 -dihydrofuran ($2,5-\mathrm{DHF}$) vapor.
The exposure of the pristine powder to 2,5 -dihydrofuran for 1 h . The molar ratio of $2 /$ THF becomes $1 / 1$.

Figure S14 ${ }^{1} \mathrm{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) after exposing the pristine powder to oxetane vapor for 1 h . The molar ratio of $\mathbf{2}$ /oxetane becomes $1 / 1$.

Figure S15 $\quad{ }^{1} \mathrm{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) after exposing the pristine powder to 2,3-dihydrofuran (2,3-DHF) vapor for 1 h . The molar ratio of $\mathbf{2} / 2,3$-DHF becomes $10 / 9$.

Figure S16 ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ after exposing the pristine powder to 2-methyltetrahydrofuran (2-MeTHF) vapor for 1 h . The molar ratio of $\mathbf{2} / 2-\mathrm{MeTHF}$ becomes $10 / 9$.

Figure S17 $\quad{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right){ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ after exposing the pristine powder to acetone vapor for 1 h . The molar ratio of $2 /$ acetone becomes $2 / 1$.

Figure S18 ${ }^{1} \mathrm{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) after exposing the pristine powder to ethanol vapor for 1 h . Peaks of ethanol were not observed after the exposure.

Figure $\mathbf{S 1 9} \quad{ }^{1} \mathrm{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) after exposing the pristine powder to $\mathrm{CH}_{3} \mathrm{CN}$ vapor for 1 h . Peaks of $\mathrm{CH}_{3} \mathrm{CN}$ were not observed after the exposure.

Figure S20 $\quad{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ after exposing the pristine powder to furan vapor for 1 h . Peaks of furan were not observed after the exposure.

Figure S21 ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ after exposing the pristine powder to tetrahyropran (THP) vapor for 1 h . Peaks of THP were not observed after the exposure.

Figure S22 ${ }^{1} \mathrm{H}$-NMR ($400 \mathrm{MHZ}, \mathrm{CDCl}_{3}$) after exposure of $\mathbf{2} \supset$ THF powder to toluene vapor for 1 h . The exposure of the $2 \supset$ THF powder to toluene for 1 h .

Figure S23 Fluorescence spectra after exposing $\mathbf{2} \supset$ THF powder to various solvent vapor for one hour. $\lambda_{\text {ex }}=400$ nm . (b) An enlarged graph of (a).

Figure S24 Thermal stability of $\mathbf{2} \supset$ THF powder (a) at r.t. and (b) at $100^{\circ} \mathrm{C}$.

Figure S25 Fluorescence spectra change of the $\mathbf{2} \supset$ THF powder after drying under reduced pressure. The spectra were not almost changed for 5 h .

Figure S26 Fluorescence spectra change of the $\mathbf{2} \supset$ THF powder by the grinding. The spectrum of the sample after grinding (red solid line) for 15 min was almost same as the spectrum for 3 min (green solid line).

Figure S27 ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ chart after grinding $\mathbf{2} \supset \mathrm{THF}$ powder for 15 min . The molar ratio of compound 2 and THF molecule became 2.7:1.

(c) Exposure to THF for 0.5 min
(d) Exposure to THF for 30 min (2 \supset THF powder)

(e) Sim. of crystal β

Figure S28 PXRD pattern changes of the pristine powder 2 upon the exposure to the THF vapor (forward process). The PXRD pattern of the crystal α and β was calculated from the X-ray single crystal data ($\mathrm{FWHM}=0.35^{\circ}$).

Figure S29 Simulated PXRD patterns of the crystal α and β obtained from the X-ray single crystal data (FWHM = 0.10°).

Figure S30 A plausible mechanism of vapochromism of the compound $\mathbf{2}$ in the powder state.

Table S5. Fluorescence lifetime of $\mathbf{2}$ in dichloromethane and at the single crystal state. ${ }^{a}$

	τ_{1} / ns	A_{1}	τ_{2} / ns	A_{2}	χ	$<\tau_{\mathrm{f}}>/ \mathrm{ns}{ }^{b}$
in DCM	0.781	0.146	1.786	0.017	1.134	0.99
single crystal α	1.16	0.097	2.891	0.042	1.168	2.06
single crystal β	2.95	0.038	4.027	0.071	1.247	3.72
single crystal γ	2.49	0.192	4.361	0.106	1.187	3.41

a. Fluorescence lifetimes were recorded upon excitation at 378 nm or $441 \mathrm{~nm} . \quad b$. The area-weighted ratio $\left(A_{\mathrm{n}} \tau_{\mathrm{n}}\right)$ are shown in parentheses. c. The area-weighted mean fluorescence lifetime was calculated as follows: $<\tau_{\mathrm{f}}>=$ $\Sigma\left(A_{\mathrm{n}} \tau_{\mathrm{n} 2}\right) / \Sigma\left(A_{\mathrm{n}} \tau_{\mathrm{n}}\right)$ where A_{n} is the coefficient of exponential function of the n-th component.

Figure S31 (left) Streak image and (right) fluorescence decay analysis of $\mathbf{2}$ in DCM.

Figure S32 (left) Streak image and (right) fluorescence decay analysis of single crystal α in DCM.

Figure S33 (left) Streak image and (right) fluorescence decay analysis of single crystal β in DCM.

Figure S34 (left) Streak image and (right) fluorescence decay analysis of single crystal γ in DCM.

Table S6. Calculated excited states of the optimized structure 2(i-o) at the TD-B3LYP/6-31g+(d,p) level on Gaussian 9 at the ground state (S_{0}).

No.	Energy (cm-1)	Wavelength (nm)	Osc. Strength	Major contribs	Minor contribs
1	20400	489.4	1.083	HOMO->LUMO (99\%)	
2	24400	410.3	0.1057	$\begin{aligned} & \text { H-1->LUMO (} 23 \% \text {), } \\ & \text { HOMO->L+1 (75\%) } \end{aligned}$	
3	26200	382.0	0.0933	$\begin{aligned} & \text { H-1->LUMO (74\%), } \\ & \text { HOMO->L+1 (23\%) } \end{aligned}$	
4	28300	353.6	0.0044	$\begin{aligned} & \text { H-2->LUMO (78\%), } \\ & \text { HOMO->L+2 (15\%) } \end{aligned}$	H-1->L+1 (3\%)
5	30100	332.2	0.0727	H-1->L+1 (78\%)	$\begin{aligned} & \text { H-2->LUMO (9\%), } \\ & \text { HOMO->L+2 (7\%), } \\ & \text { HOMO->L+3 (3\%) } \end{aligned}$
6	30600	326.4	0.0012	$\begin{aligned} & \text { HOMO->L+2 (64\%), } \\ & \text { HOMO->L+3 (17\%) } \end{aligned}$	$\begin{aligned} & \text { H-2->LUMO (6\%), } \\ & \text { H-1->L+1 (5\%) } \end{aligned}$
7	30800	325.1	0.0085	H-3->LUMO (78\%)	$\begin{aligned} & \text { H-3->L+1 (8\%), } \\ & \text { H-1->L+5 (3\%), } \\ & \text { HOMO->L+5 (9\%) } \end{aligned}$
8	31000	322.4	0.0066	$\begin{aligned} & \text { H-4->LUMO (70\%), } \\ & \text { HOMO->L+4 (17\%) } \end{aligned}$	$\begin{aligned} & \text { H-4->L+1 (5\%), } \\ & \text { H-1->L+4 (4\%), } \\ & \text { HOMO->L+2 (2\%) } \end{aligned}$
9	31500	318.0	0.003	$\begin{aligned} & \text { H-1->L+1 (10\%), } \\ & \text { HOMO->L+3 (68\%) } \end{aligned}$	$\begin{aligned} & \text { H-2->LUMO (} 2 \% \text {), } \\ & \text { H-2->L+1 (4\%), } \\ & \text { HOMO->L+2 (9\%) } \end{aligned}$
10	33300	299.9	0.0044	$\begin{aligned} & \text { H-5->LUMO (19\%), } \\ & \text { H-2->L+1 (74\%) } \end{aligned}$	HOMO->L+3 (3\%)

Table S7. Calculated excited states of the optimized structure 2(o-o) at the TD-B3LYP/6-31g+(d,p) level on Gaussian 9 at the ground state $\left(\mathrm{S}_{0}\right)$.

No.	Energy (cm-1)	Wavelength (nm)	Osc. Strength	Major contribs	Minor contribs
1	20500	488.8	0.805	HOMO->LUMO (99\%)	
2	24500	407.4	0.0046	$\begin{aligned} & \text { H-1->LUMO (46\%), } \\ & \text { HOMO->L+1 (52\%) } \end{aligned}$	
3	26500	377.9	0.3727	H-1->LUMO (51\%), HOMO->L+1 (45\%)	
4	28300	353.2	0.0181	H-2->LUMO (83\%), HOMO->L+2 (14\%)	
5	30400	328.6	0.0408	H-1->L+1 (68\%), HOMO->L+2 (23\%)	H-2->LUMO (8\%)
6	30800	324.9	0.0024	H-3->LUMO (76\%), HOMO->L+4 (10\%)	$\begin{aligned} & \text { H-4->L+1 (5\%), } \\ & \text { H-1->L+5 (3\%), } \\ & \text { HOMO->L+3 (5\%) } \end{aligned}$
7	30800	324.8	0.0119	H-4->LUMO (78\%), HOMO->L+5 (10\%)	$\begin{aligned} & \mathrm{H}-3->\mathrm{L}+1(5 \%), \\ & \mathrm{H}-1->\mathrm{L}+4(3 \%) \end{aligned}$
8	31100	321.9	0.0092	HOMO->L+3 (83\%)	$\begin{aligned} & \text { H-6->LUMO (3\%), } \\ & \text { H-3->LUMO (5\%), } \\ & \text { H-2->L+1 (4\%) } \end{aligned}$
9	31300	319.4	0.0025	H-1->L+1 (28\%), HOMO->L+2 (59\%)	H-2->LUMO (7\%)
10	33300	300.1	0.0031	$\begin{aligned} & \text { H-5->LUMO (63\%), } \\ & \text { H-2->L+1 (33\%) } \end{aligned}$	

Table S8. Calculated excited states of the optimized structure 2(i-o) at the TD-B3LYP/6-31g+(d,p) level on Gaussian 9 at the ground state (S_{0}).

No.	Energy (cm-1)	Wavelength (nm)	Osc. Strength	Major contribs	Minor contribs
1	20400	489.6	0.761	HOMO->LUMO (99\%)	
2	24600	406.7	0.0493	$\begin{aligned} & \text { H-1->LUMO (18\%), } \\ & \text { HOMO->L+1 (80\%) } \end{aligned}$	
3	27000	369.9	0.278	$\begin{aligned} & \text { H-1->LUMO (79\%), } \\ & \text { HOMO->L+1 (18\%) } \end{aligned}$	
4	28500	350.5	0.0014	$\begin{aligned} & \text { H-2->LUMO (54\%), } \\ & \text { HOMO->L+2 (43\%) } \end{aligned}$	
5	30300	329.7	0.0342	$\begin{aligned} & \text { H-2->LUMO (43\%), } \\ & \text { HOMO->L+2 (50\%) } \end{aligned}$	H-1->L+1 (5\%)
6	31000	322.4	0.0209	HOMO->L+3 (87\%)	$\begin{aligned} & \text { H-6->LUMO (4\%), } \\ & \text { H-5->LUMO (3\%), } \\ & \text { H-2->L+1 (3\%) } \end{aligned}$
7	31500	318.0	0.0071	H-4->LUMO (35\%), $\mathrm{H}-1->\mathrm{L}+1(30 \%),$ HOMO->L+4 (25\%)	$\begin{aligned} & \mathrm{H}-3->\mathrm{L}+1(4 \%), \\ & \mathrm{H}-1->\mathrm{L}+5(3 \%) \end{aligned}$
8	31500	317.7	0.0013	$\begin{aligned} & \text { H-3->LUMO (49\%), } \\ & \text { HOMO->L+5 (36\%) } \end{aligned}$	$\begin{aligned} & \mathrm{H}-4->\mathrm{L}+1(6 \%), \\ & \mathrm{H}-1->\mathrm{L}+4(4 \%) \end{aligned}$
9	31500	317.2	0.007	$\begin{aligned} & \text { H-4->LUMO (15\%), } \\ & \text { H-1->L+1 (62\%), } \\ & \text { HOMO->L+4 (12\%) } \end{aligned}$	$\begin{aligned} & \text { H-3->L+1 (2\%), } \\ & \text { HOMO->L+2 (5\%) } \end{aligned}$
10	32600	306.7	0.0164	H-5->LUMO (92\%)	H-2->L+1 (4\%)

Figure S35 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ chart of $\mathbf{2}$.

Figure S36 ${ }^{13} \mathrm{C}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ chart of $\mathbf{2}$.

Cartesian coordinates $[\AA]$ of optimized structure of compound 2(0-0) at the ground state (\mathbf{S}_{0})

Cartesian coordinates [\AA] of optimized structure of compound 2(i-o) at the ground state $\left(\mathbf{S}_{\mathbf{0}}\right)$

References

1 C. Mazet, L. H. Gade, Chem. Eur. J. 2003, 9, 1759-1767.
2 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339.

3 G. M. Sheldrick, Acta Crystallogr. Sect. A Found. Crystallogr. 2015, 71, 3.
4 G. M. Sheldrick, Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3.
5 Gaussian 09, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.
6 N. M. O'Boyle, A. L. Tenderholt and K. M. Langner. J. Comp. Chem. 2008, 29, 839-845.
7 N. J. Turro, V. Ramamurthy, J. C. Scaiano, Principles of Molecular Photochemistry: An Introduction; University Science Books:Sausalito, CA, 2009.

