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Figure S1: The far-�eld spectra obtained with the MLWA model (curves) and the numerical
full-wave electrodynamics method (symbols) for oblate-shaped particles with di�erent (a)
mesh sizes and (b) particle diameters.
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Figure S2: (a) The far-�eld (upper) and near-�eld (lower) spectra for Ag and Al oblate
ellipsoidal particle. (b) The variation of far-�eld (upper) and near-�eld (lower) intensity
as a function of diameter, and (c) the corresponding trend of resonant energy (upper) and
bandwidth (lower).

In this supplementary material, we elaborate on the derivation of the analytical forms

provided in the main paper in greater detail (the expressions in Table 1, i.e., eqs 14 and 15,

and eqs 19 to 24). We begin from the expressions for the dipolar polarizability in the MLWA
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model (refers to eq 8 of the manuscript), which is given by

αe� = V
ε− εm

εm + Le�(ε− εm)
, (S1)

where Le� is the e�ective depolarization-factor with the inclusion of the �nite wavelength

corrections given by

Le�(ω) = L− Ldynω
2 − iLradω

3. (S2)

Moreover, the Drude model of the metallic dispersion relation is given by1,2

ε(ω) = 1−
ω2
p

ω2 + iγω
. (S3)

To have a simpler form, we modify eq S1 to become

αe� =
V

εm
ε−εm + Le�

. (S4)

Then, by de�ning ε as the Drude dielectric-function in eq S3, one obtains

αe� =
V

εm

1− ω2p

ω2+iγω
−εm

+ Le�

=
V

1

1
εm
−1− ω2p

εm(ω2+iγω)

+ Le�

. (S5)

For ω � ωp, we can approach that 1
εm
− 1 � ω2

p

εm(ω2+iγω)
. This approach is reasonable

because the general interest of the plasmonic e�ects is between the infrared and the near-

ultraviolet regimes, which are far below the plasma frequency of most plasmonic metal
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materials. Therefore, eq S5 can be simpli�ed as

αe� =
V

− εm(ω2+iγω)
ω2
p

+ Le�

= V

ω2
p

εm
ω2
p

εm
Le� − ω2 − iγω

. (S6)

Furthermore, inserting Le� in eq S2 into eq S6, one obtains

αe� = V

ω2
p

εm
ω2
p

εm
(L− Ldynω2 − iLradω3)− ω2 − iγω

. (S7)

Subsequently, the equation can be simpli�ed by regrouping the terms according to the real

and imaginary components as

αe� = V

ω2
p

εm

L
ω2
p

εm
−
(

1 + Ldyn
ω2
p

εm

)
ω2 − i

(
γ + Lrad

ω2
p

εm
ω2
)
ω
. (S8)

To clearly see the resonant criterion from the equation, we can multiply both the numerator

and denominator of eq S8 by 1

1+Ldyn
ω2p
εm

, then we have

αe� = V

ω2p
εm

1+Ldyn
ω2p
εm

L
ω2p
εm

1+Ldyn
ω2p
εm

− ω2 − i

(
γ+Lrad

ω2p
εm
ω2

1+Ldyn
ω2p
εm

)
ω

= V

ω2
p

εm+Ldynω2
p

Lω2
p

εm+Ldynω2
p
− ω2 − i

(
εmγ+Lradω2

pω
2

εm+Ldynω2
p

)
ω
. (S9)

At this point, one can see that the pole of the real part of eq S9 de�nes the resonant frequency

of the LSPR response as

ωlspr ≡

√
Lω2

p

εm + Ldynω2
p

. (S10)
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Correspondingly, at the resonance (when ω = ωlspr), the imaginary term would determine

the bandwidth of the spectrum, which can be approached as

Γlspr ≡
εmγ + Lradω

2
pω

2
lspr

εm + Ldynω2
p

. (S11)

Through these approximations, we can rewrite the expression in eq S9 as

αe� =
V

L

ω2
lspr

ω2
lspr − ω2 − iΓlsprω

. (S12)

Hence, we have arrived at the similar expressions as shown in eqs 14 and 15 in the main

text.

The above results can subsequently be used to obtain qualitative descriptions of the

magnitudes of the far- and near-�eld e�ciencies through the following expressions (eqs 10

and 11 in the main text)

Qsca =
k4 |αe�|2

6π2
(
d
2

)2 , (S13)

|Enf|2

|E0|2
=

∣∣∣∣1− Le�αe�

V

∣∣∣∣2 . (S14)

First, we evaluate the expression for the far-�eld scattering by considering the complex

amplitude of the polarizability in eq S12 as

|αe�|2 = αe�α
∗
e�

=

(
V

L
ω2
lspr

)2
(

1

ω2
lspr − ω2 − iΓlsprω

)
×

(
1

ω2
lspr − ω2 + iΓlsprω

)

=

(
V

L
ω2
lspr

)2
1(

ω2
lspr − ω2

)2
+ (Γlsprω)2

. (S15)

Here, α∗e� denotes the complex conjugate of αe�. Furthermore, substituting eq S15 into eq S13
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and taking k = ω
c
, we get

Qsca (ω) =
2

3π2c4

V 2ω4
lspr

L2d2

ω4(
ω2
lspr − ω2

)2
+ (Γlsprω)2

. (S16)

This is eq 19 from the main text. As explained in the paper, eq S16 resembles a Lorentzian

distribution function centered at ωlspr (eq S10) with a full width at half-maximum of Γlspr

(eq S11). By taking ω = ωlspr, eq S16 becomes

Qsca (ωlspr) =
2

3π2c4

V 2

L2d2

ω6
lspr

Γ2
lspr

. (S17)

This equation gives the proportionality expression for the far-�eld e�ciency at resonance as

Qsca|res ∝
(
V

Ld

ω3
lspr

Γlspr

)2

, (S18)

which results in the expression for eq 21 of the main paper.

Second, to deduce the expression for the near-�eld enhancement, one can substitute

eq S12 into eq S14. Since the magnitude of the near-�eld intensity is usually much larger

than unity, as also shown in the main text, eq S14 can be simpli�ed as,

|Enf|2

|E0|2
≈
∣∣∣∣Le�αe�

V

∣∣∣∣2 . (S19)

Hence, we can evaluate the complex-amplitude term as

|Le�αe�|2 = (Le�αe�) (Le�αe�)∗

= Le�L
∗
e�αe�α

∗
e�

= |Le�|2 |αe�|2 . (S20)

Subsequently, inserting this expression into the near-�eld enhancement in eq S19 and using
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eq S15 for the |αe�|2-term, we can obtain

|Enf|2

|E0|2
=

1

V 2
|Le�|2 |αe�|2

=
|Le�|2

V 2

[ (
V
L
ω2
lspr

)2(
ω2
lspr − ω2

)2
+ (Γlsprω)2

]
. (S21)

With a little arrangement, this equation gives the qualitative expression for the near-�eld

e�ciency shown in eq 20 in the main text as follows

|Enf|2

|E0|2
(ω) =

|Le�|2 ω4
lspr

L2

1(
ω2
lspr − ω2

)2
+ (Γlsprω)2

. (S22)

As described in the main text, eq S22 is not a Lorentzian function. The maximum amplitude

of the near �eld is reached at a frequency for which the derivative of the denominator of

eq S22 is equal to zero. This approach gives

d

dω

{(
ω2
lspr − ω2

)2
+ (Γlsprω)2

}
= 0

−4ω
(
ω2
lspr − ω2

)
+ 2Γ2

lsprω = 0(
ω2 − ω2

lspr +
Γ2
lspr

2

)
ω = 0

ω2 − ω2
lspr +

Γ2
lspr

2
= 0. (S23)

By taking only the positive component of the square root, this relation gives the e�ective

resonant frequency for the near-�eld spectra (ωnf) as

ωnf = ωlspr

√
1− 1

2

(
Γlspr

ωlspr

)2

. (S24)

This is eq 22 from the main text. For brevity, we are de�ning ∆lspr ≡
√

1− 1
2

(
Γlspr

ωlspr

)2

, as
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shown in Table 1. Therefore, we have

ωnf = ∆lsprωlspr. (S25)

Subsequently, by substituting ωlspr in this expression back into eq S22, the bandwidth of the

near-�eld spectra can be obtained from

|Enf|2

|E0|2
(ω) =

|Le�|2

L2

(
ωnf

∆lspr

)4
1((

ωnf
∆lspr

)2

− ω2

)2

+ (Γlsprω)2

=
|Le�|2

L2

ω4
nf(

ω2
nf − (∆lsprω)2)2

+ (∆lsprΓlspr∆lsprω)2
. (S26)

To simplify the equation, we approached that ω′ ∼= ∆lsprω. This way, eq S26 can be modi�ed

as

|Enf|2

|E0|2
(ω′) =

|Le�|2

L2

ω4
nf

(ω2
nf − ω′2)

2
+ (∆lsprΓlsprω′)

2

=
|Le�|2

L2

ω4
nf

(ω2
nf − ω′2)

2
+ (Γnfω′)

2
. (S27)

Hence, the bandwidth of the near-�eld spectra can be straightforwardly deduced from eq S27

as

Γnf ≡ Γlspr∆lspr

= Γlspr

√
1− 1

2

(
Γlspr

ωlspr

)2

. (S28)

This is eq 23 from the main text. Finally, by taking ω′ = ωnf and returning both eqs S24

and S28 into eq S27, we can obtain the intensity of the local �eld at resonance as

|Enf|2

|E0|2

∣∣∣∣∣
res

=

(
|Le�|
L

ωlspr

Γlspr

)2

. (S29)
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This is eq 24 from the main text.
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