Enantioselective Synthesis of Spiroindolines via Cascade Isomerization/Spirocyclization/Dearomatization Reaction

Zhiqiang Pan^{+}, Yuchang Liu ${ }^{+}$, Fengchi Hu, Qinglong Liu, Wenbin Shang, Xu Ji, and Chengfeng Xia*

Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province), School of Chemical Science and Technology, Yunnan University

Supporting Information

Contents

1. General information 2
2. Experimental section 2
2.1 General procedure for preparation of indolyl dihydropyridines $1 \mathrm{a}, 1 \mathrm{~b}, 1 \mathrm{c}, 1 \mathrm{~h}$, $1 \mathrm{i}, 1 \mathrm{j}, 1 \mathrm{~s}$ 2
2.2 General procedure for preparation of indolyl dihydropyridines $1 \mathrm{~d}, 1 \mathrm{e}, 1 \mathrm{f}, 1 \mathrm{~g}$,$11,1 \mathrm{~m}, 1 \mathrm{n}, 1 \mathrm{o}, 1 \mathrm{p}, 1 \mathrm{q}, 1 \mathrm{r}, 1 \mathrm{t}, 1 \mathrm{u}, 1 \mathrm{v}, 1 \mathrm{w}$ 3
2.3 Procedure for preparation of indolyl dihydropyridines 1 k 4
2.4 General procedure for catalytic asymmetric cascade spirocyclization reaction.4
3. Crystal data and structure refinement for compound 2 m 28
4. NMR Spectral Data 30
5. HPLC Traces of synthetic compounds 75

1. General information

Unless otherwise noted, materials were purchased from commercial suppliers and used without further purification. All the solvent were treated according to general methods. Flash column chromatography was performed using 200-300 mesh silica gel. All reactions were carried out in flame-dried glassware under a dry argon atmosphere, glassware was dried in an oven at $150{ }^{\circ} \mathrm{C}$ or flame dried and cooled under a dry atmosphere. Reactions were monitored by TLC and visualized by a dual short wave/long wave UV lamp. ${ }^{1}$ H NMR spectra were recorded on Bruker 400 / $600(400$ $/ 600 \mathrm{MHz}$) spectrophotometers. Chemical shifts (δ) are reported in ppm from the solvent resonance as the internal standard $\left(\mathrm{CDCl}_{3}: 7.26 \mathrm{ppm}\right)$. Data are reported as follows: chemical shift, multiplicity $(\mathrm{s}=$ single, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{m}=$ multiplet or unresolved, $\mathrm{br}=$ broad, $\mathrm{dd}=$ doublet of doublets, $\mathrm{q}=$ quartet, coupling constant (s) in Hz, integration). ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker $400 / 600(101 / 151 \mathrm{MHz})$ with complete proton decoupling spectrophotometers $\left(\mathrm{CDCl}_{3}: 77.0 \mathrm{ppm}\right)$. Mass spectra were measured on a MS spectrometer.

2. Experimental section

2.1 General procedure for preparation of indolyl dihydropyridines $\mathbf{1 a}, \mathbf{1 b}, \mathbf{1 c}, \mathbf{1 h}$,

$\mathbf{1 i}, \mathbf{1 j}, \mathbf{1 s}$.

The reduction of substituted pyridinium bromide was accomplished following the reported procedures.

A mixture of substituted tryptophyl bromide (1.0 eq) and 3-substituted pyridine (1.2 eq) was heated through oil bath at $75^{\circ} \mathrm{C}$ overnight in sealed tube. The mixture was cooled to rt , crushed to
grains, stirred in ethyl acetate, and filtered. The obtained pyridinium bromide was first dissolved in MeOH under argon, then added $\mathrm{H}_{2} \mathrm{O}\left(\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}=1: 2\right)$. Stirred for a moment, $\mathrm{NaHCO}_{3}(16.0 \mathrm{eq})$ was added in one portion. The mixture was degassed three times by applying vacuum, and backfilling with nitrogen while stirring vigorously. Sodium dithionite (6.2 eq) was then added in portions over in 1 hour to this stirred solution. The reaction was stirred overnight at room temperature. After the reaction was complete (by TLC analysis), the mixture was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined dichloromethane layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtrated. After the solvent was removed under reduced pressure, the residue was purified by silica gel column chromatography (ethyl acetate/petroleum ether $=1 / 1$) to afford product 1.

2.2 General procedure for preparation of indolyl dihydropyridines $\mathbf{1 d}, \mathbf{1 e}, \mathbf{1 f}, \mathbf{1 g}$,

11, $\mathbf{1 m}, \mathbf{1 n}, \mathbf{1 0}, \mathbf{1 p}, \mathbf{1 q}, \mathbf{1 r}, \mathbf{1 t}, \mathbf{1 u}, \mathbf{1 v}, \mathbf{1 w}$.

The reduction of substituted pyridinium bromide was accomplished following the reported procedures.

A mixture of substituted tryptophyl bromide (1.0 eq) and 3-substituted pyridine (1.2 eq) was heated through oil bath at $75^{\circ} \mathrm{C}$ overnight in sealed tube. The mixture was cooled to rt , crushed to grains, stirred in ethyl acetate, and filtered. The obtained pyridinium bromide was first dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under argon, then added $\mathrm{H}_{2} \mathrm{O}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{H}_{2} \mathrm{O}=1: 2\right)$. Stirred for a moment, $\mathrm{NaHCO}_{3}(16.0 \mathrm{eq})$ was added in one portion. The mixture was degassed three times by applying vacuum, and backfilling with nitrogen while stirring vigorously. Sodium dithionite (6.2 eq) was then added in one portion at $0^{\circ} \mathrm{C}$. The reaction was stirred overnight at room temperature,After the reaction was complete (by TLC analysis) The mixture was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined dichloromethane layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtrated. After the solvent was removed under reduced pressure, the residue was purified by silica gel column chromatography
(ethyl acetate/petroleum ether $=1 / 1$) to afford product 1.

2.3 Procedure for preparation of indolyl dihydropyridines 1 k .

The reduction of substituted pyridinium bromide was accomplished following the reported procedures.

A mixture of substituted tryptophyl bromide (1.0 eq), 3-substituted pyridine (1.2 eq), and 2 mL MeCN was heated through oil bath at $100^{\circ} \mathrm{C}$ overnight in sealed tube. The mixture was cooled to rt , crushed to grains, stirred in ethyl acetate, and filtered. The obtained pyridinium bromide was first dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under argon, then added $\mathrm{H}_{2} \mathrm{O}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{H}_{2} \mathrm{O}=1: 2\right)$. Stirred for a moment, $\mathrm{NaHCO}_{3}(16.0 \mathrm{eq})$ was added in one portion. The mixture was degassed three times by applying vacuum, and backfilling with nitrogen while stirring vigorously. Sodium dithionite (6.2 eq) was then added in one portion at $0{ }^{\circ} \mathrm{C}$. The reaction was stirred overnight at room temperature, After the reaction was complete (by TLC analysis) The mixture was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined dichloromethane layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtrated. After the solvent was removed under reduced pressure, the residue was purified by silica gel column chromatography (ethyl acetate/petroleum ether $=1 / 1$) to afford product $\mathbf{1 k}$.

2.4 General procedure for catalytic asymmetric cascade spirocyclization reaction.

A flame-dried Schlenk tube was cooled to room temperature and filled with argon. To this flask (R)-SPINOL-CPA $31(0.005 \mathrm{mmol}, 10 \mathrm{~mol} \%), 3 \AA \mathrm{MS}(100 \mathrm{mg})$ were added. substrate $\mathbf{1}(0.05 \mathrm{mmol}$, $1.0 \mathrm{eq})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{ml})$ and then added to this flask. The mixture was degassed three times by applying vacuum, and backfilling with nitrogen while stirring vigorously. The reaction was stirred at $0^{\circ} \mathrm{C}$. After the reaction was complete (by TLC analysis), the reaction mixture was quenched with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ aqueous and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined dichloromethane layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. After the solvent was removed under reduced pressure, the residue was purified by silica gel column chromatography (ethyl acetate/petroleum ether $=1 / 1$ to ethyl acetate) to afford product $\mathbf{2}$.

A flame-dried Schlenk tube was cooled to room temperature and filled with argon. To this flask (R)-SPINOL-CPA $31(0.005 \mathrm{mmol}, 20 \mathrm{~mol} \%), 3 \AA \mathrm{MS}(100 \mathrm{mg})$ were added. substrate $1(0.05 \mathrm{mmol}$, $1.0 \mathrm{eq})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{ml})$ and then added to this flask. The mixture was degassed three times by applying vacuum, and backfilling with nitrogen while stirring vigorously. The reaction was stirred at $0^{\circ} \mathrm{C}$. After the reaction was complete (by TLC analysis), the reaction mixture was quenched with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ aqueous and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined dichloromethane layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. After the solvent was removed under reduced pressure, the residue was purified by silica gel column chromatography (ethyl acetate/petroleum ether $=1 / 1$ to ethyl acetate) to afford product 2.

3. Identification of Compounds

1a, ethyl acetate/petroleum ether $=1 / 1$, yellow foam, $212 \mathrm{mg}, 85 \%$ yield. Analytical data: ${ }^{1} \mathrm{H}$ NMR (600 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.56(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.08$ $(\mathrm{m}, 2 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 5,70(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.90-4.88(\mathrm{~m}, 1 \mathrm{H}), 3.42(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.04$ $(\mathrm{s}, 2 \mathrm{H}), 2.94(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 195.2$, $144.2,135.5,133.5,127.7,121.1,119.2,117.2,110.6,107.7,106.9,106.7,54.1,25.0,23.3,21.3$, 11.4; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 281.1648$, Found: 281.1644 .

1b, ethyl acetate/petroleum ether $=1 / 1$, yellow foam, $530 \mathrm{mg}, 83 \%$ yield. Analytical data: ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 9.01(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 5.70(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.91-4.87$ $(\mathrm{m}, 1 \mathrm{H}), 4.20(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 2 \mathrm{H}), 3.43(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.00(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.96(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 195.2$, $170.5,143.8,135.9,128.8,127.7,127.3,122.1,119.7,117.9,111.2,108.9,108.1,107.1,61.6,54.2$, 31.6, 25.1, 23.5, 21.3, 14.2; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 353.1860, Found: 353.1862.

1c, ethyl acetate/petroleum ether $=1 / 2$, yellow foam, $125 \mathrm{mg}, 75 \%$ yield. Analytical data: ${ }^{1} \mathrm{H}$

NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.87(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-$ $7.20(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.05(\mathrm{~m}, 3 \mathrm{H}), 6.91(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.24(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{dd}, J=$ 8.0, 1.4 Hz, 1H), 5.06-5.03(m, 1H), $4.18(\mathrm{q}, ~ J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 2 \mathrm{H}), 3.36(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H})$, $3.21(\mathrm{dd}, J=3.4,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.94(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 194.3,170.4,147.9,139.9,135.9,129.5,128.5,127.9,127.8,127.5,127.4,122.3,119.8$, $117.9,111.2,108.8,107.9,107.5,61.6,54.6,31.6,24.9,21.7,14.1$; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 437.1836$, Found: 437.1839.

1d, ethyl acetate/petroleum ether $=1 / 2$, orange foam, $96 \mathrm{mg}, 52 \%$ yield. Analytical data: ${ }^{1} \mathrm{H}$ NMR (600 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.85(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.10(\mathrm{~d}$, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.08-5.06(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=7.1,2 \mathrm{H}), 3.80(\mathrm{~s}, 2 \mathrm{H}), 3.38$ $(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.17-3.16(\mathrm{~m}, 2 \mathrm{H}), 2.94(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 192.8,170.3,147.9,138.1,135.8,135.4,129.3,128.6,128.0,127.4,127.3$, 122.4, 120.0, 117.9, 111.1, 108.8, 108.2, 107.2, 61.6, 54.6, 31.5, 24.8, 21.7, 14.1; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{ClN}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 449.1626$, Found:449.1624.

1e, ethyl acetate/petroleum ether $=1 / 2$, orange foam, $73 \mathrm{mg}, 46 \%$ yield. Analytical data: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.82(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-$ $7.17(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=6.6 \mathrm{~Hz}$,
$1 \mathrm{H}), 6.14(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.07-5.06(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 2 \mathrm{H}), 3.37(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.18(\mathrm{dd}, J=3.6,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{t}, J=6.0 \mathrm{~Hz}$, 2H), 1.27 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 192.5,170.3,148.0,141.6,135.7$, $134.1,129.4,128.9,128.4,127.9,127.4,127.3,125.8,122.3,119.8,117.8,111.2,108.8,108.2$, 107.4, 61.6, 54.7, 31.6, 24.8, 21.6, 14.1; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{ClN}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 449.1626$, Found:449.1624

1f, ethyl acetate/petroleum ether $=1 / 1$, yellow foam, $68 \mathrm{mg}, 44 \%$ yield. Analytical data: ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=8.75(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=11.4,1 \mathrm{H}), 7.26(\mathrm{~d}, J=12.0,1 \mathrm{H}), 7.11-7.07$ $(\mathrm{m}, 1 \mathrm{H}), 7.05-7.01(\mathrm{~m}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 5.46(\mathrm{dd}, J=12.0,2.4,1 \mathrm{H}), 4.62-4.59(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{q}, J$ $=10.8,2 \mathrm{H}), 3.71(\mathrm{~s}, 2 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{t}, J=10.2,2 \mathrm{H}), 3.01(\mathrm{~s}, 2 \mathrm{H}), 2.85(\mathrm{t}, J=10.2,2 \mathrm{H})$, $1.23(\mathrm{t}, J=10.8,3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=170.6,168.8,141.6,135.8,128.5,128.1$, $127.5,122.0,119.5,117.9,111.1,109.1,104.5,96.6,61.5,54.3,50.9,31.7,25.3,22.0,14.2 ;$ HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 369.1809$, Found: 369.1811 .

$\mathbf{1 g}$, ethyl acetate/petroleum ether $=1 / 1$, yellow foam, $128 \mathrm{mg}, 56 \%$ yield. Analytical data: ${ }^{1} \mathrm{H}$ NMR (600 MHz, CDCl_{3}) $\delta 8.80(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.19(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{dd}, J$ $=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.82-4.79(\mathrm{~m}, 1 \mathrm{H}), 4.23(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 2 \mathrm{H}), 3.40(\mathrm{t}, J=6.6 \mathrm{~Hz}$, 2H), $3.20(\mathrm{dd}, J=3.1,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.98(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.5,166.5,151.5,143.1,135.9,129.1,128.3,128.2,127.5,124.9,122.1$, 121.9, 119.6, 117.9, 111.1, 109.1, 105.4, 95.7, 61.5, 54.4, 31.7, 25.3, 22.0, 14.2; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 453.1785$, Found:453.1788 .

1h, ethyl acetate/petroleum ether $=1 / 1$, yellow foam, $281 \mathrm{mg}, 78 \%$ yield. Analytical data: ${ }^{1} \mathrm{H}$ NMR (600 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.79(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 5.55(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.59-4.56(\mathrm{~m}, 1 \mathrm{H})$, 4.25-4.21(m, 2H), $3.80(\mathrm{~s}, 2 \mathrm{H}), 3.29(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.05(\mathrm{~s}, 2 \mathrm{H}), 2.90(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.33$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 170.3,143.4,135.8,128.6,128.1,127.4,122.2$, 121.6, 119.7, 117.8, 111.2, 108.9, 101.7, 61.6, 54.2, 31.7, 25.1, 23.0, 14.2; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 358.1526$, Found: 358.1528.

1i, ethyl acetate/petroleum ether $=1 / 1$, yellow foam, $96 \mathrm{mg}, 76 \%$ yield. Analytical data: ${ }^{1} \mathrm{H}$ NMR (600 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.71(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}$, $J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.36(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}$, $J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.61-4.58(\mathrm{~m}, 1 \mathrm{H}), 4.21(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.73$ (s, 2H), $3.39(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.96-2.92(\mathrm{~m}, 4 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.4,140.3,139.7,135.8,132.29,128.9,128.5,128.0,127.6,127.4,122.2,119.7$, 117.9, 111.1, 108.9, 104.5, 102.7, 61.5, 54.3, 31.7, 25.2, 21.3, 14.2; HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 473.1505$, Found: 473.1504 .

$\mathbf{1 j}$, acetone/petroleum ether $=1 / 1$, yellow foam, $211 \mathrm{mg}, 72 \%$ yield. Analytical data: ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.81(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.98-4.96(\mathrm{~m}, 1 \mathrm{H}), 4.21(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 3.80(\mathrm{~s}, 2 \mathrm{H}), 3.51(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.07(\mathrm{~s}, 2 \mathrm{H}), 2.97(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.21(\mathrm{t}, J=6.5 \mathrm{~Hz}$, 2H), $2.02(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.62-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 196.0,170.4,155.4,135.7,129.4,128.1,127.6,122.2,119.8,117.8,111.1,109.2,107.2$, 105.6, 61.6, 50.0, 36.1, 31.6, 25.4, 24.9, 21.4, 21.1, 14.2; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}: 379.2016$, Found: 379.2019.

$\mathbf{1 k}$, acetone/petroleum ether $=1 / 1$, orange foam, $136 \mathrm{mg}, 45 \%$ yield. Analytical data: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.73(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{dd}, J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.94-4.92(\mathrm{~m}, 1 \mathrm{H}), 4.22-4.18(\mathrm{~m}$, 2H), $3.77(\mathrm{~s}, 2 \mathrm{H}), 3.49(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{~s}, 2 \mathrm{H}), 2.98(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{~d}, J=3.9 \mathrm{~Hz}$, 2H), $2.05(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.30-1.28(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 202.4,170.3$, $168.4,135.7,128.9,128.1,127.5,122.3,119.8,117.7,111.1,110.2,109.2,107.1,61.6,49.7,33.0$, 31.6, 24.8, 24.0, 20.1, 14.2; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 387.1679, Found:387.1679.

11, ethyl acetate/petroleum ether $=1 / 1$, yellow foam, $119 \mathrm{mg}, 75 \%$ yield. Analytical data: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.78(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{dd}, J=9.0$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 5.69(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.90-4.87(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $3.85(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H}), 3.41(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.99(\mathrm{~s}, 2 \mathrm{H}), 2.92(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.73(\mathrm{~s}$,
$3 \mathrm{H}), 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 195.1,170.5,154.3,143.7,131.1$, $129.5,127.9,127.8,111.8,111.7,108.6,108.2,107.0,100.6,61.5,56.0,54.0,31.6,25.1,23.5,21.3$, 14.1; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 405.1785$, Found: 405.1782.

$\mathbf{1 m}$, ethyl acetate/petroleum ether $=1 / 1$, yellow foam, $144 \mathrm{mg}, 62 \%$ yield. Analytical data: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.96(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.95-4.83(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{q}, J$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 2 \mathrm{H}), 3.42-3.35(\mathrm{t}, 2 \mathrm{H}), 3.00(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.92-2.86(\mathrm{t}, 2 \mathrm{H}), 1.76$ ($\mathrm{s}, 3 \mathrm{H}$), $1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 195.0, 170.3, 143.3, 134.4, 130.2, $129.1,127.6,125.0,120.6,113.0,112.6,108.7,108.4,107.1,61.7,54.1,31.3,24.9,23.6,21.3,14.1$; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{BrN}_{2} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 453.0784, Found: 453.0787.

$\mathbf{1 n}$, ethyl acetate/petroleum ether $=1 / 1$, yellow foam, $162 \mathrm{mg}, 81 \%$ yield. Analytical data: ${ }^{1} \mathrm{H}$ NMR (600 MHz, CDCl ${ }_{3}$) $\delta 8.66(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{dd}$, $J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.93-4.82(\mathrm{~m}, 1 \mathrm{H})$, $4.18(\mathrm{q}, ~ J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 2 \mathrm{H}), 3.40(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.05-2.95(\mathrm{~m}, 2 \mathrm{H})$, $2.91(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 195.0$, $170.6,156.7,143.6,136.7,127.7,127.3,121.7,118.5,109.6,108.8,108.2,106.9,94.8,61.5,55.7$, 54.2, 31.5, 25.1, 23.5, 21.3, 14.2; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 383.1965$, Found: 383.1970.

10, ethyl acetate/petroleum ether $=1 / 1$, yellow foam, $160 \mathrm{mg}, 80 \%$ yield. Analytical data: ${ }^{1} \mathrm{H}$ NMR (600 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.96(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.09(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H}), 5.64(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.91-4.82(\mathrm{~m}, 1 \mathrm{H}), 4.19$ (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 2 \mathrm{H}), 3.39(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.99(\mathrm{~s}, 2 \mathrm{H}), 2.92(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.78$ ($\mathrm{s}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 195.0, 170.3, 143.4, 136.2, 129.5, $128.1,127.6,125.9,120.4,118.7,111.1,109.1,108.4,107.0,61.7,54.2,31.4,25.0,23.6,21.3,14.1 ;$ HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 409.1289$, Found: 409.1285.

1p, ethyl acetate/petroleum ether $=1 / 1$, yellow foam, $83 \mathrm{mg}, 69 \%$ yield. Analytical data: ${ }^{1} \mathrm{H}$ NMR (600 MHz, CDCl ${ }_{3}$) $\delta 8.77(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 5.71(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.90-4.87(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $3.93(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 2 \mathrm{H}), 3.45(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 194.9,170.6,154.1,143.9,137.5,128.0,127.0,122.9$, $117.2,109.3,108.0,106.7,104.5,99.8,61.5,55.6,55.1,31.3,26.5,23.5,21.4,14.1$; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 405.1785$, Found: 405.1783.

$\mathbf{1 q}$, ethyl acetate/petroleum ether $=1 / 1$, yellow foam, $98 \mathrm{mg}, 73 \%$ yield. Analytical data: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.08(\mathrm{~s}, 1 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H})$,
$5.71(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.91-4.88(\mathrm{~m}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 2 \mathrm{H}), 3.51(\mathrm{t}, J=6.6$ $\mathrm{Hz}, 2 \mathrm{H}), 3.17(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{~s}, 2 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 195.0,170.4,143.6,137.3,130.2,127.9,125.3,124.0,122.6,120.8,110.0,108.9$, $108.3,106.9,61.7,55.8,31.2,25.7,23.5,21.3,14.1$; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 409.1289$, Found: 409.1291.

$\mathbf{1 r}$, ethyl acetate/petroleum ether $=1 / 1$, yellow foam, $141 \mathrm{mg}, 71 \%$ yield. Analytical data: ${ }^{1} \mathrm{H}$ NMR (600 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.74(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.07(\mathrm{~m}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 5.70(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{dd}, J=7.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-4.18(\mathrm{~m}$, $2 \mathrm{H}), 3.79(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.43(\mathrm{dd}, J=10.8,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.00(\mathrm{~s}, 2 \mathrm{H}), 2.96(\mathrm{dd}, J=10.2,4.8$ $\mathrm{Hz}, 2 \mathrm{H}), 2.87(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{td}, J=7.8,2.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.31(\mathrm{td}, J=6.6,1.8$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 195.0,170.6,143.6,134.7,128.3,127.7,127.1,126.7$, 120.9, 120.1, 115.6, 109.3, 108.2, 107.0, 61.5, 54.1, 31.5, 25.2, 24.0, 23.4, 21.3, 14.1, 13.9; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 403.1992$, Found: 403.1989.

1s, ethyl acetate/petroleum ether $=1 / 1$, yellow foam, $155 \mathrm{mg}, 78 \%$ yield. Analytical data: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.90(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 5.69(\mathrm{dd}, J=8.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.90-4.88$ $(\mathrm{m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.00(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{t}, J=6.0$ $\mathrm{Hz}, 2 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 195.1,170.8,143.6,135.8,128.5,127.6$, 127.2, 122.2, 119.7, 117.8, 111.1, 108.9, 108.1, 107.0, 54.1, 52.4, 31.3, 25.0, 23.4, 21.2; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 339.1703$, Found: 339.1705.

1t, ethyl acetate/petroleum ether $=2 / 3$, yellow foam, $147 \mathrm{mg}, 49 \%$ yield. Analytical data: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.87(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H}), 5.73(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.93-4.91(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{~s}, 2 \mathrm{H}), 3.47(\mathrm{t}, J=$ $6.0 \mathrm{~Hz}, 2 \mathrm{H}) .3 .03(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 195.1,169.0$, $150.3,143.7,135.9,129.6,127.9,127.7,127.3,126.3,122.4,121.3,119.9,118.0,111.2,109.4$, $108.3,107.1,54.2,31.7,25.2,23.5,21.3$; HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 423.1679$, Found: 423.1677.

$\mathbf{1 u}$, ethyl acetate/petroleum ether $=2 / 3$, yellow foam, $104 \mathrm{mg}, 74 \%$ yield. Analytical data: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.81(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 6 \mathrm{H}), 7.20(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 5.66-5.65(\mathrm{~m}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 4.87-4.85(\mathrm{~m}$, $1 \mathrm{H}), 3.83(\mathrm{~s}, 2 \mathrm{H}), 3.40(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.99(\mathrm{~s}, 2 \mathrm{H}), 2.94(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 195.1,170.2,143.6,135.9,135.3,128.7,128.6,128.5,127.7,127.3$, 122.3, 119.8, 117.9, 111.1, 109.1, 108.2, 107.0, 67.4, 54.1, 31.6, 25.1, 23.5, 21.3; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 437.1836$, Found: 437.1839.

1v, ethyl acetate/petroleum ether $=1 / 1$, yellow foam, $122 \mathrm{mg}, 55 \%$ yield. Analytical data: ${ }^{1} \mathrm{H}$ NMR (600 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.84(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H}), 5.70(\mathrm{dd}, J=7.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{dt}, J=$ $12.5,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.90-4.88(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H}), 3.43(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.01(\mathrm{~d}, J=1.3 \mathrm{~Hz}$, 2H), $2.97(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $195.0,170.0,143.6,135.9,128.9,127.7,127.4,122.2,119.7,117.9,111.1,108.8,108.3,106.9$, 69.2, 54.2, 31.8, 25.1, 23.5, 21.8, 21.3; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 389.1836$, Found: 389.1839.

$\mathbf{1 w}$, ethyl acetate/petroleum ether $=1 / 1$, orange foam, $99 \mathrm{mg}, 68 \%$ yield. Analytical data: ${ }^{1} \mathrm{H}$ NMR (600 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.85(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H}), 5.69(\mathrm{dd}, J=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.90-4.87$ $(\mathrm{m}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 2 \mathrm{H}), 3.42(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.01(\mathrm{~s}, 2 \mathrm{H}), 2.96(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H})$, $1.48(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 195.0,169.8,143.6,135.8,129.2,127.7,127.4,122.1$, 119.7, 117.8, 111.1, 108.6, 108.3, 106.9, 82.2, 54.2, 32.7, 28.1, 25.1, 23.5, 21.3; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 381.2173$, Found: 381.2175.

$\mathbf{2 b}$, ethyl acetate/petroleum ether $=1 / 1$ to ethyl acetate, colorless oil, $17.5 \mathrm{mg}, 99 \%$ yield, $>$ $50: 1 \mathrm{dr}, 92: 8$ er. $[\alpha]_{\mathrm{D}}{ }^{20}+138\left(c 1.0, \mathrm{CHCl}_{3}\right)$; Analytical data: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.81(\mathrm{~s}$, $1 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-6.88(\mathrm{~m}, 3 \mathrm{H}), 4.90(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, 3.93-3.78 (m, 2H), $3.49(\mathrm{~d}, ~ J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.23(\mathrm{~m}, 2 \mathrm{H}), 2.16(\mathrm{~s}$, $3 \mathrm{H}), 2.06-1.97(\mathrm{~m}, 1 \mathrm{H}), 160(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.97-0.87(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 193.1,169.9,164.6,144.1,143.3,130.8,128.8,123.8,121.4,109.6$,
81.5, 66.7, 59.5, 58.2, 48.4, 38.9, 23.9, 21.2, 19.7, 14.5; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 375.1679$, Found: 375.1683. The enantiomeric excess was determined by Daicel Chiralpak OZ-H $(25 \mathrm{~cm})$, Hexanes $/ \mathrm{IPA}=80 / 20,0.8 \mathrm{~mL} / \mathrm{min}^{-1}, \lambda=320 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ major $)=43.47 \mathrm{~min}$, $\mathrm{t}_{\mathrm{R}}($ minor $)=58.25 \mathrm{~min}$.

2c, ethyl acetate $/$ petroleum ether $=1 / 1$ to ethyl acetate, colorless oil, $20.1 \mathrm{mg}, 97 \%$ yield, $>$ 50:1 dr, $87: 13$ er. $[\alpha]_{\mathrm{D}}{ }^{20}+51.6\left(c\right.$ 1.0, $\left.\mathrm{CHCl}_{3}\right)$; Analytical data: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.82$ $(\mathrm{s}, 1 \mathrm{H}), 7.50-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.92-6.89(\mathrm{~m}, 3 \mathrm{H}), 4.92(\mathrm{~s}, 1 \mathrm{H})$, $4.22(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=11.4,3.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.86(\mathrm{dd}, J=16.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.23(\mathrm{~m}, 3 \mathrm{H}), 1.68(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{t}, J=$ 6.6 Hz, 3H), 1.02-1.00(m, 1H). ${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 192.9,169.9,164.5,148.3,143.4$, $141.1,130.7,129.3,128.8,128.3,128.0,123.8,121.4,109.7,109.5,81.6,67.1,59.5,58.2,48.5$, 38.9, 29.7, 21.3, 19.9, 14.5; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 437.1836, Found: 437.1837. The enantiomeric excess was determined by Daicel Chiralpak AS-H (25 cm), Hexanes $/ \mathrm{IPA}=75 / 25,0.8 \mathrm{~mL} / \mathrm{min}^{-1}, \lambda=320 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ major $)=38.11 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=76.80 \mathrm{~min}$.

2d, ethyl acetate/petroleum ether $=1 / 3$, pale yellow oil, $19.0 \mathrm{mg}, 85 \%$ yield, $>50: 1 \mathrm{dr}, 90: 10$ er. $[\alpha]_{\mathrm{D}}{ }^{20}+41.5\left(c 1.0, \mathrm{CHCl}_{3}\right)$; Analytical data: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.81(\mathrm{~s}, 1 \mathrm{H}), 7.44$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{td}, J=7.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 6.93-6.89$
$(\mathrm{m}, 3 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{q}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.56(\mathrm{dd}, J=11.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.23(\mathrm{~m}, 2 \mathrm{H}), 2.19-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.65(\mathrm{~m}$, $1 \mathrm{H}), 1.33(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.03-0.96(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 191.4,169.9$, $164.4,148.2,143.4,139.4,135.4,130.6,129.7,128.9,128.2,123.7,121.4,109.7,109.4,81.6,67.1$, $59.5,58.2,48.6,38.8,21.2,19.9,14.5 ;$ HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 471.1446, Found: 471.1444. The enantiomeric excess was determined by Daicel Chiralpak AS-H $(25 \mathrm{~cm})$, Hexanes $/ \mathrm{IPA}=80 / 20,0.8 \mathrm{~mL} / \mathrm{min}^{-1}, \lambda=340 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=35.87 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=$ 60.76 min .

2e, ethyl acetate/petroleum ether $=1 / 3$, pale yellow oil, $19.9 \mathrm{mg}, 89 \%$ yield, $>50: 1 \mathrm{dr}, 85: 15$ er. $[\alpha]_{\mathrm{D}}{ }^{20}+67.2\left(c 1.0, \mathrm{CHCl}_{3}\right)$; Analytical data: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.82(\mathrm{~s}, 1 \mathrm{H}), 7.47$ $(\mathrm{s}, 1 \mathrm{H}), 7.41-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 6.94-6.90(\mathrm{~m}, 3 \mathrm{H})$, $4.92(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{dd}, J=18.2,10.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.57(\mathrm{dd}, \mathrm{J}=11.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.84-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.23(\mathrm{~m}, 2 \mathrm{H}), 2.19-2.13(\mathrm{~m} \mathrm{1H}), 1.69-1.67$ $(\mathrm{m}, 1 \mathrm{H}), 1.33(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.03-0.96(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 190.9,169.9$, $164.4,148.4,143.4,142.9,134.1,130.6,129.4,129.3,128.9,128.3,126.3,123.7,121.5,109.7$, $109.3,81.6,67.1,59.5,58.2,48.7,38.8,21.2,19.9,14.5$; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 471.1446$, Found: 471.1444. The enantiomeric excess was determined by Daicel Chiralpak AS-H $(25 \mathrm{~cm})$, Hexanes $/ \mathrm{IPA}=70 / 30,1.0 \mathrm{~mL} / \mathrm{min}^{-1}, \lambda=320 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=38.42 \mathrm{~min}$, $\mathrm{t}_{\mathrm{R}}($ minor $)=79.80 \mathrm{~min}$.

2f, ethyl acetate/petroleum ether $=1 / 1$ to ethyl acetate, colorless oil, $13.1 \mathrm{mg}, 71 \%$ yield, $>$ 50:1 dr, 81:19 er. $[\alpha]_{\mathrm{D}}{ }^{20}+29.6\left(c 1.0, \mathrm{CHCl}_{3}\right)$; Analytical data: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.80$ $(\mathrm{s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=1.1,1 \mathrm{H}), 7.21(\mathrm{td}, J=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.87(\mathrm{~m}$, $2 \mathrm{H}), 4.90(\mathrm{~s}, 1 \mathrm{H}), 4.21(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H})$, $3.47(\mathrm{dd}, J=11.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.19(\mathrm{~m}, 2 \mathrm{H}), 2.14-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.56(\mathrm{~s}$, $1 \mathrm{H}), 1.32(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.00-0.93(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 165.0,168.6$, $164.9,143.3,142.4,131.1,128.6,124.0,121.4,109.5,96.0,81.4,66.4,59.4,58.3,50.6,48.1,39.0$, 21.5, 20.4, 14.5; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 391.1628$, Found: 391.1624. The enantiomeric excess was determined by Daicel Chiralpak OZ-H $(25 \mathrm{~cm})$, Hexanes/IPA $=90 / 10,0.8$ $\mathrm{mL} / \mathrm{min}^{-1}, \lambda=320 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ major $)=27.69 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=44.88 \mathrm{~min}$.

$\mathbf{2 g}$, ethyl acetate/petroleum ether $=1 / 1$ to ethyl acetate, pale yellow oil, $18.9 \mathrm{mg}, 88 \%$ yield, $>$ $50: 1 \mathrm{dr}, 87: 13 \mathrm{er} .[\alpha]_{\mathrm{D}}{ }^{20}+33.4\left(c 1.0, \mathrm{CHCl}_{3}\right)$; Analytical data: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.82$ $(\mathrm{s}, 1 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~s}$, $1 \mathrm{H}), 4.23(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{q}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=11.1$, $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=16.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.20(\mathrm{~m}, 3 \mathrm{H}), 1.64(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.08-1.01(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.0,166.4,164.7,151.7$, $144.0,143.4,130.9,129.6,129.1,128.8,124.7,124.0,122.0,121.5,115.3,109.6,95.2,81.5,66.5$, 59.5, 58.3, 48.3, 39.0, 21.4, 20.4, 14.5; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 453.1785$, Found: 453.1789. The enantiomeric excess was determined by Daicel Chiralpak IE (25 cm), Hexanes $/ \mathrm{IPA}=70 / 30,0.8 \mathrm{~mL} / \mathrm{min}^{-1}, \lambda=320 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ major $)=30.27 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=40.91 \mathrm{~min}$.

$\mathbf{2 h}$, ethyl acetate/petroleum ether $=1 / 1$ to ethyl acetate, colorless oil, $15.9 \mathrm{mg}, 95 \%$ yield, $>$ $50: 1 \mathrm{dr}, 82: 18 \mathrm{er} .[\alpha]_{\mathrm{D}}{ }^{20}+31.9$ (c 1.0, CHCl_{3}); Analytical data: ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.79$ (s, 1H), 7.25-7.22 (m, 1H), $7.02(\mathrm{~d}, ~ J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.88(\mathrm{~s}, 1 \mathrm{H}), 4.21(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.83-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{dd}, J=18.0,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{dd}$, $J=11.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.21(\mathrm{~m}, 3 \mathrm{H}), 2.15-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 1.05-0.98(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.9,164.5,143.9,143.3,130.7,128.9$, $123.9,122.7,121.5,109.6,81.6,65.8,59.5,58.3,48.3,38.8,22.4,21.2,14.5$; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 358.1526$, Found: 358.1523 . The enantiomeric excess was determined by Daicel Chiralpak AD-H (25 cm), Hexanes $/ \mathrm{IPA}=80 / 20,0.8 \mathrm{~mL} / \mathrm{min}^{-1}, \lambda=320 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ major $)=$ $26.72 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=33.20 \mathrm{~min}$.

$\mathbf{2 i}$, ethyl acetate $/$ petroleum ether $=1 / 1$ to ethyl acetate, pale yellow oil, $20.9 \mathrm{mg}, 93 \%$ yield, $>$ 50:1 dr, $92: 8$ er. $[\alpha]_{\mathrm{D}}{ }^{20}+25.7\left(c 1.0, \mathrm{CHCl}_{3}\right)$; Analytical data: ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.77$ $(\mathrm{s}, 1 \mathrm{H}), 7.82-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.95-6.91(\mathrm{~m}$, $2 \mathrm{H}), 6.87(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{td}, J=10.8,3.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.83(\mathrm{dd}, \mathrm{J}=18.1,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dd}, \mathrm{J}=11.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.21(\mathrm{~m}$, 2H), 2.062.00 (m, 1H), 1.56-1.54(m, 1H), $1.29(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.00-0.93(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.9,164.5,143.3,142.7,141.0,131.8,130.6,128.9,128.8,126.8,123.9$, $121.5,109.6,102.3,81.5,66.1,59.5,58.1,48.2,38.9,21.3,20.2,14.5$; HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 473.1505$, Found: 473.1500. The enantiomeric excess was determined by Daicel Chiralpak AD-H (25 cm), Hexanes $/ \mathrm{IPA}=80 / 20,0.8 \mathrm{~mL} / \mathrm{min}^{-1}, \lambda=280 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ major $)=$ $71.71 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=98.01 \mathrm{~min}$.

$\mathbf{2} \mathbf{j}$, acetone $/$ petroleum ether $=1 / 1$ to acetone, colorless oil, $18.0 \mathrm{mg}, 95 \%$ yield, $>50: 1 \mathrm{dr}$, 98:2 er. $[\alpha]_{\mathrm{D}}{ }^{20}+27.8\left(c 1.0, \mathrm{CHCl}_{3}\right)$; Analytical data: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.81(\mathrm{~s}, 1 \mathrm{H})$, 7.25-7.20 (m, 1H), 6.94-6.88 (m, 3H), $4.89(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{q}, ~ J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{t}, J=7.3 \mathrm{~Hz}$, 2H), $3.54(\mathrm{dd}, J=11.3 .2 .8 \mathrm{~Hz}, 1 \mathrm{H}), 2.68-2.56(\mathrm{~m}, 3 \mathrm{H}), 2.36(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{t}, J=7.6 \mathrm{~Hz}$, 2H), 2.04-1.97(m, 3H), $1.59(\mathrm{~d}, \mathrm{~J}=12.8,1 \mathrm{H}), 1.33(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.99-0.89(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 193.4,169.9,164.4,158.0,143.4,130.7,128.8,123.7,121.3,109.6,106.3$, $81.5,67.7,60.4,59.5,58.3,46.0,38.7,35.9,27.0,21.6,19.4,14.5$; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 401.1836$, Found: 401.1830. The enantiomeric excess was determined by Daicel Chiralpak AD-H $(25 \mathrm{~cm})$, Hexanes $/ \mathrm{IPA}=85 / 15,0.8 \mathrm{~mL} / \mathrm{min}^{-1}, \lambda=320 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ major $)=$ $44.84 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=95.49 \mathrm{~min}$.

For 1.2 mmol scale $\mathbf{1} \mathbf{j}$, the reaction was quenched after stirred for 96 h . The residue was purified by silica gel column chromatography (acetone/petroleum ether $=1 / 1$ to acetone) to afford 395 mg product $\mathbf{2 j}$, 87% yield $(92 \% \mathrm{brsm}),>50: 1 \mathrm{dr}, 96: 4 \mathrm{er} .[\alpha]_{\mathrm{D}}{ }^{20}+27.1\left(c 1.0, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by Daicel Chiralpak AD-H (25 cm), Hexanes $/ \mathrm{IPA}=85 / 15,0.8 \mathrm{~mL} / \mathrm{min}^{-1}, \lambda$ $=320 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ major $)=41.72 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=91.91 \mathrm{~min}.\right)$

$\mathbf{2 k}$, acetone/petroleum ether $=1 / 1$ to acetone, colorless oil, $16.0 \mathrm{mg}, 88 \%$ yield, $>50: 1 \mathrm{dr}$, 90:10 er. $[\alpha]_{\mathrm{D}}{ }^{20}+36.3\left(c 1.0, \mathrm{CHCl}_{3}\right)$; Analytical data: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.81(\mathrm{~s}, 1 \mathrm{H})$, $7.23(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.87(\mathrm{~m}, 3 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H}), 4.21(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.91-3.81(\mathrm{~m}$, 2H), $3.58(\mathrm{~d}, \mathrm{~J}=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{~s}, 2 \mathrm{H}), 2.49-2.41(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{dd}, \mathrm{J}=16.2,4.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.33-2.30 (m, 2H), 2.02-1.97(m, 1H), 1.62 (d, $J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.93-0.86$
(m, 1H). ${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 199.3, 170.6, 169.9, 164.3, 143.4, 130.5, 128.9, 123.6, $121.4,109.7,81.6,68.0,59.5,58.3,53.9,38.9,33.7,24.9,21.6,17.5,14.5$; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 387.1679$, Found: 387.1672. The enantiomeric excess was determined by Daicel Chiralpak AS-H $(25 \mathrm{~cm})$, Hexanes $/ \mathrm{IPA}=70 / 30,0.8 \mathrm{~mL} / \mathrm{min}^{-1}, \lambda=320 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=62.10$ $\min , \mathrm{t}_{\mathrm{R}}($ minor $)=106.46 \mathrm{~min}$.

21, ethyl acetate/petroleum ether $=1 / 1$ to ethyl acetate, colorless oil, $17.0 \mathrm{mg}, 89 \%$ yield, $>$ $50: 1 \mathrm{dr}, 74: 26$ er. $[\alpha]_{\mathrm{D}}{ }^{20}+89.8\left(c 1.0, \mathrm{CHCl}_{3}\right)$; Analytical data: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.72$ (s, 1H), $7.49(\mathrm{~s}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.5,1 \mathrm{H}), 6.76(\mathrm{dd}, J=8.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=2.2,1 \mathrm{H}), 4.84$ $(\mathrm{s}, 1 \mathrm{H}), 4.21(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.91-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.83-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{dd}, J$ $=11.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{dd}, J=16.5,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.05-1.97$ $(\mathrm{m}, 1 \mathrm{H}), 1.61-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 193.1,170.0,165.0,155.0,144.1,137.3,132.5,112.1,111.9,109.5,80.6,66.6,59.4,58.5,56.0$, 48.3, 38.7, 23.9, 21.2, 19.7, 14.5; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 383.1965$, Found: 383.1967. The enantiomeric excess was determined by Daicel Chiralpak OZ-H (25 cm), Hexanes $/ \mathrm{IPA}=70 / 30,0.8 \mathrm{~mL} / \mathrm{min}^{-1}, \lambda=310 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ major $)=27.28 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=40.18 \mathrm{~min}$.

$\mathbf{2 m}$, ethyl acetate/petroleum ether $=1 / 1$ to ethyl acetate, pale yellow solid, $\mathrm{mp}: 81 \sim 83^{\circ} \mathrm{C}$, $18.1 \mathrm{mg}, 84 \%$ yield, $15: 1 \mathrm{dr}, 81: 19 \mathrm{er} .[\alpha]_{\mathrm{D}}{ }^{20}+99.4$ (c 1.0, CHCl_{3}); Analytical data: ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.80(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H}), 4.20(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.90-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{dd}, J=18.4,9.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.46(\mathrm{dd}, \mathrm{J}=11.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{dd}, J=16.7,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{~s}$,
$3 \mathrm{H}), 2.06-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.61 \mathrm{dt}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.98-0.91(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 193.3,169.7,164.0,143.8,142.5,133.2,131.7,126.8,113.7,110.8$, $82.4,66.8,59.6,58.3,48.2,38.9,24.0,21.3,19,8,14.4$; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{BrN}_{2} \mathrm{O}_{3} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 453.0784$, Found: 453.0781. The enantiomeric excess was determined by Daicel Chiralpak OZ-H $(25 \mathrm{~cm})$, Hexanes $/ \mathrm{IPA}=85 / 15,0.8 \mathrm{~mL} / \mathrm{min}^{-1}, \lambda=320 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=64.59 \mathrm{~min}$, $t_{R}($ minor $)=110.51 \mathrm{~min}$.

$\mathbf{2 n}$, ethyl acetate/petroleum ether $=1 / 1$ to ethyl acetate, colorless oil, $18.0 \mathrm{mg}, 94 \%$ yield, $>$ 50:1 dr, 80:20 er. $[\alpha]_{\mathrm{D}}{ }^{20}+108.8\left(c 1.0, \mathrm{CHCl}_{3}\right)$; Analytical data: ${ }^{1} \mathrm{H}$ NMR ($\left.600 \mathrm{MHz}, \mathrm{CDCl}\right) \delta 9.76$ $(\mathrm{s}, 1 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{dd}, J=8.2,2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.89(\mathrm{~s}, 1 \mathrm{H}), 4.21(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.89-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.81-3.76(\mathrm{~m}, 4 \mathrm{H}), 3.46(\mathrm{dd}, J=11.0$, $3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.04-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.60-$ $1.57(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.97-0.90(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 193.0$, $169.9,165.3,160.7,144.7,144.0,124.3,122.9,106.1,96.7,81.8,66.7,59.5,57.7,55.5,48.4,39.0$, 24.0, 21.3, 19.7, 14.5; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 383.1965$, Found: 383.1965 . The enantiomeric excess was determined by Daicel Chiralpak OZ-H (25 cm), Hexanes/IPA $=80 / 20$, $0.8 \mathrm{~mL} / \mathrm{min}^{-1}, \lambda=318 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ major $)=60.07 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=75.98 \mathrm{~min}$.

20, ethyl acetate $/$ petroleum ether $=1 / 1$ to ethyl acetate, pale yellow oil, $16.0 \mathrm{mg}, 83 \%$ yield, $>$ 50:1 dr, 82:18 er. $[\alpha]_{\mathrm{D}}{ }^{20}+268.6$ (c 1.0, CHCl_{3}); Analytical data: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $9.80(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H}), 6.90-6.84(\mathrm{~m}, 3 \mathrm{H}), 4.93(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{t}, J=9.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=18.2,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{dd}, J=11.2,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.31-$
$2.25(\mathrm{~m}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.06-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.61(\mathrm{~s}, 1 \mathrm{H}), 1.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.96-0.87(\mathrm{~m}$, 1H). ${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 193.1,169.7,164.3,144.6,143.7,134.7,129.4,124.5,121.2$, 110.1, $82.8,66.7,59.7,57.8,48.2,39.0,24.0,21.3,19.7,14.4$; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 409.1289$, Found: 409.1287. The enantiomeric excess was determined by Daicel Chiralpak As-H $(25 \mathrm{~cm})$, Hexanes $/ \mathrm{IPA}=80 / 20,0.8 \mathrm{~mL} / \mathrm{min}^{-1}, \lambda=320 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ major $)=$ $34.17 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=43.09 \mathrm{~min}$.

$\mathbf{2 p}$, ethyl acetate $/$ petroleum ether $=1 / 1$ to ethyl acetate, colorless oil, $16.1 \mathrm{mg}, 84 \%$ yield, $>$ 50:1 dr, 80:20 er. $[\alpha]_{\mathrm{D}}{ }^{20}+144\left(c 1.0, \mathrm{CHCl}_{3}\right)$; Analytical data: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.78$ $(\mathrm{s}, 1 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.92(\mathrm{~s}, 1 \mathrm{H}), 4.20(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{q}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.52$ $(\mathrm{dd}, J=11.2,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H})$, 2.02-1.98 (m, 1H), $1.55(\mathrm{~s}, 1 \mathrm{H}), 1.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.07-1.00(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 192.5,170.1,167.6,156.0,145.0,144.5,130.4,117.8,104.4,103.2,81.4,68.8,59.9,59.4$, $55.3,50.5,39.1,29.7,21.8,19.9,14.5$; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 405.1785$, Found: 405.1783. The enantiomeric excess was determined by Daicel Chiralpak OZ-H (25 cm), Hexanes $/ \mathrm{IPA}=75 / 25,0.8 \mathrm{~mL} / \mathrm{min}^{-1}, \lambda=320 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ major $)=40.92 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=35.81 \mathrm{~min}$.

2q, ethyl acetate/petroleum ether $=1 / 1$ to ethyl acetate, pale yellow oil, $18.0 \mathrm{mg}, 93 \%$ yield, $>$ 50:1 dr, 85:15 er. $[\alpha]_{\mathrm{D}}{ }^{20}+210.5$ (c 1.0, CHCl_{3}); Analytical data: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $9.85(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.98(\mathrm{~s}, 1 \mathrm{H}), 4.21(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.03-3.98(\mathrm{~m}, 1 \mathrm{H}), 3.86-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=11.2,3.6$
$\mathrm{Hz}, 1 \mathrm{H}), 2.84-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.67(\mathrm{dd}, J=16.4,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.06-$ $2.01(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.27-1.20(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 193.1,169.9,168.2,145.4,143.5,130.4,130.1,129.3,122.9,108.1,82.4,70.2,60.3,59.6$, $50.4,37.6,23.8,21.8,19.8,14.4$; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 409.1289$, Found: 409.1288. The enantiomeric excess was determined by Daicel Chiralpak OZ-H (25 cm), Hexanes $/ \mathrm{IPA}=70 / 30,0.8 \mathrm{~mL} / \mathrm{min}^{-1}, \lambda=320 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ major $)=23.71 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=33.40 \mathrm{~min}$.

$\mathbf{2 r}$, ethyl acetate/petroleum ether $=1 / 1$ to ethyl acetate, colorless oil, $16.0 \mathrm{mg}, 84 \%$ yield, $>$ 50:1 dr, $62: 38$ er. $[\alpha]_{\mathrm{D}}{ }^{20}+172.2$ (c 1.0, CHCl_{3}); Analytical data: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $9.86(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.91(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=18.2,10.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.50(\mathrm{dd}, \mathrm{J}=11.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.60(\mathrm{~m}, 3 \mathrm{H}), 2.32-2.24(\mathrm{~m}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.06-1.99$ $(\mathrm{m}, 1 \mathrm{H}), 1.60-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.27(\mathrm{~m}, 6 \mathrm{H}), 0.97-0.90(\mathrm{~m}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.0,170.1,165.0,144.0,141.4,130.5,128.1,125.2,121.6,121.3,81.3,66.7,59.4,58.5,48.4$, 39.0, 29.7, 23.8, 21.3, 19.8, 14.5, 13.6; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 381.2173$, Found: 381.2172. The enantiomeric excess was determined by Daicel Chiralpak OZ-H (25 cm), Hexanes $/ \mathrm{IPA}=85 / 15,0.8 \mathrm{~mL} / \mathrm{min}^{-1}, \lambda=320 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ major $)=50.15 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=63.91 \mathrm{~min}$.

$\mathbf{2 s}$, ethyl acetate/petroleum ether $=1 / 1$ to ethyl acetate, colorless oil, $16.1 \mathrm{mg}, 95 \%$ yield, $>$ 50:1 dr, 88:12 er. $[\alpha]_{\mathrm{D}}{ }^{20}+143.5$ (c 1.0, CHCl_{3}); Analytical data: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $9.78(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{td}, J=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-6.89(\mathrm{~m}, 3 \mathrm{H}), 4.90(\mathrm{~s}, 1 \mathrm{H}), 3.92-3.89$ $(\mathrm{m}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=18.2,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{dd}, J=11.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=$
$15.8,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.24(\mathrm{~m}, 2 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.05-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.57(\mathrm{~m}, 1 \mathrm{H}), 0.96-0.89$ (m, 1H). ${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 193.1,170.2,164.8,144.0,143.3,130.9,128.8,123.9$, $121.5,109.6,81.1,66.8,58.3,50.8,48.4,38.9,24.0,21.3,19.8$; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 361.1523$, Found: 361.1523. The enantiomeric excess was determined by Daicel Chiralpak OZ-H (25 cm), Hexanes $/ \mathrm{IPA}=80 / 20,0.8 \mathrm{~mL} / \mathrm{min}^{-1}, \lambda=320 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ major $)=$ $39.08 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=49.58 \mathrm{~min}$.

$\mathbf{2 t}$, ethyl acetate $/$ petroleum ether $=1 / 1$ to ethyl acetate, pale yellow oil, $18.0 \mathrm{mg}, 90 \%$ yield, $>$ $50: 1 \mathrm{dr}, 88: 12$ er. $[\alpha]_{\mathrm{D}}{ }^{20}+163.9$ (c 1.0, CHCl_{3}); Analytical data: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $9.86(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{dd}, J=13.00,1.7 \mathrm{~Hz}, 2 \mathrm{H})$, 7.00-6.94 (m, 2H), $6.90(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 3.98(\mathrm{t}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.82(\mathrm{~m}$, $1 \mathrm{H}), 3.60(\mathrm{dd}, J=16.8,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{dd}, J=24.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.19(\mathrm{~s}$, $3 \mathrm{H}), 2.11-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.00-0.90(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 193.2$, $168.4,166.6,151.0,144.0,143.0,131.0,129.32128 .9,125.4,123.9,121.9,121.9,121.4,110.0$, 80.4, 66.6, 58.6, 48.4, 38.8, 24.0, 21.3, 19.7; HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 401.1860$, Found: 401.1861. The enantiomeric excess was determined by Daicel Chiralpak OZ-H (25 cm), Hexanes $/ \mathrm{IPA}=70 / 30,0.8 \mathrm{~mL} / \mathrm{min}^{-1}, \lambda=320 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ major $)=28.77 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=35.52 \mathrm{~min}$.

$\mathbf{2 u}$, ethyl acetate/petroleum ether $=1 / 1$ to ethyl acetate, colorless oil, $19.1 \mathrm{mg}, 92 \%$ yield, $>$ 50:1 dr, 88:12 er. $[\alpha]_{\mathrm{D}}{ }^{20}+88.3$ (c 1.0, CHCl_{3}); Analytical data: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.82$ (s, 1H), $7.55(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24$ $(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-6.89(\mathrm{~m}, 3 \mathrm{H}), 5.19(\mathrm{~s}, 2 \mathrm{H}), 4.96(\mathrm{~s}, 1 \mathrm{H}), 3.91(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J$
$=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{dd}, J=10.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.18$ $(\mathrm{s}, 3 \mathrm{H}), 2.05(\mathrm{~d}, J=16.8,1 \mathrm{H}), 1.60(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.94-0.91(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 192.9,169.6,165.0,144.5,143.3,136.7,130.8,128.8,128.6,128.2,128.1,123.8,121.5$, 109.7, 81.2, 66.7, 65.4, 58.3, 48.5, 38.9, 23.8, 21.2, 19.7; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 437.1836$, Found: 437.1834. The enantiomeric excess was determined by Daicel Chiralpak OZ-H $(25 \mathrm{~cm})$, Hexanes $/ \mathrm{IPA}=80 / 20,0.8 \mathrm{~mL} / \mathrm{min}^{-1}, \lambda=320 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ major $)=35.38 \mathrm{~min}$, $\mathrm{t}_{\mathrm{R}}($ minor $)=46.51 \mathrm{~min}$.

$\mathbf{2 v}$, ethyl acetate/petroleum ether $=1 / 1$ to ethyl acetate, pale yellow oil, $15.0 \mathrm{mg}, 82 \%$ yield, $>$ 50:1 dr, $90: 10$ er. $[\alpha]_{\mathrm{D}}{ }^{20}+109.8$ (c 1.0, CHCl_{3}); Analytical data: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $9.82(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.87(\mathrm{~m}, 3 \mathrm{H}), 5.09-5.05(\mathrm{~m}, 1 \mathrm{H}), 4.87(\mathrm{~s}$, $1 \mathrm{H}), 3.91(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=18.4,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=11.1,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.63$ $(\mathrm{d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.23(\mathrm{~m}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.05-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.61(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.30(\mathrm{t}, J=5.3 \mathrm{~Hz}, 6 \mathrm{H}), 0.96-0.89(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 193.1, 169.5, 164.5, $144.0,143.4,130.8,128.8,123.8,121.3,109.6,82.0,66.7,66.6,58.2,48.4,39.0,24.0,22.1,21.3$, 19.7; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 389.1836, Found: 389.1835. The enantiomeric excess was determined by Daicel Chiralpak OZ-H $(25 \mathrm{~cm})$, Hexanes/IPA $=80 / 20,0.8$ $\mathrm{mL} / \mathrm{min}^{-1}, \lambda=320 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ major $)=27.58 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=35.43 \mathrm{~min}$.

$\mathbf{2 w}$, ethyl acetate/petroleum ether $=1 / 1$ to ethyl acetate, pale yellow oil, $15.0 \mathrm{mg}, 79 \%$ yield, $>$ $50: 1 \mathrm{dr}, 90: 10$ er. $[\alpha]_{\mathrm{D}}{ }^{20}+135.5$ (c 1.0, CHCl_{3}); Analytical data: ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $9.79(\mathrm{~s}, 1 \mathrm{H}), 7.51(, \mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{t}, J=7.4 \mathrm{~Hz}$,
$1 \mathrm{H}), 6.86(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{q}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.48$ $(\mathrm{dd}, J=11.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{dd}, J=16.0,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.23(\mathrm{~m}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.06-$ $2.00(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{~s}, 9 \mathrm{H}), 0.96-0.89(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ $193.3,169.8,163.9,144.0,143.5,130.8,128.7,123.8,121.2,109.4,83.3,79.5,66.7,58.2,48.4$, 39.1, 28.5, 21.3, 19.8; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 381.2173, Found: 381.2175. The enantiomeric excess was determined by Daicel Chiralpak OZ-H (25 cm), Hexanes/IPA = 80/20, $0.8 \mathrm{~mL} / \mathrm{min}^{-1}, \lambda=320 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ major $)=19.95 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=24.57 \mathrm{~min}$.

3. Crystal data and structure refinement for compound 2 m .

Table S2. Crystal data and structure refinement for 2m. CCDC1977098

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/ \AA
b/ \AA
c/ \AA
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ} \quad 116.8450(10)$
$\gamma^{\circ} \quad 90$
Volume/ \AA^{3}
Z
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size/mm ${ }^{3}$
Radiation
2Θ range for data collection $/{ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes [$\mathrm{I}>=2 \sigma(\mathrm{I})]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}
.
2.825

2 m
$\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{BrN}_{2} \mathrm{O}_{4}$
463.36

100(2)
Monoclinic
P 1211
12.2117(4)
7.7360(3)
12.9006(4)

90
1087.38(7)

2
1.415

480
$0.510 \times 0.220 \times 0.180$
$\mathrm{CuK} \alpha(\lambda=2.825)$
3.84 to 80.25
$-15<=\mathrm{h}<=15,-9<=\mathrm{k}<=8,-16<=\mathrm{l}<=16$
24312
$4575\left[\mathrm{R}_{\mathrm{int}}=0.0470\right]$
4575 / 1 / 267
1.094
$\mathrm{R} 1=0.0492, \mathrm{wR} 2=0.1350$
$R 1=0.0499, w R 2=0.1359$
0.918 and -0.250
$0.113(9)$

4. NMR Spectral Data

Copies of NMR spectra of 1a

Copies of NMR spectra of $\mathbf{1 b}$

Copies of NMR spectra of $\mathbf{1 d}$
$x p-5-1 d$

Copies of NMR spectra of $\mathbf{1 e}$

Copies of NMR spectra of $\mathbf{1 f}$

Copies of NMR spectra of $\mathbf{1 h}$

$\begin{array}{llllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 \\ 10\end{array}$

Copies of NMR spectra of $\mathbf{1 k}$

$\mathrm{CO}_{2} \mathrm{Et}$

號

1

$\begin{array}{lllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}$

Copies of NMR spectra of $\mathbf{1 1}$
$\underbrace{\text { D }}$ BRUNER

Copies of NMR spectra of $\mathbf{1 m}$

Copies of NMR spectra of $\mathbf{1 0}$

Copies of NMR spectra of $\mathbf{1 p}$

Copies of NMR spectra of $\mathbf{1 q}$

Copies of NMR spectra of $\mathbf{1 r}$

Copies of NMR spectra of $\mathbf{1 t}$

Copies of NMR spectra of $\mathbf{1 u}$
$\stackrel{\circ}{i}$
BRUKER

宛
-54.203

V

Copies of NMR spectra of $\mathbf{1 w}$

ndeme	$\times 1 \mathrm{~s}-\mathrm{c}-77-2$
EXPNO	
РоСео	
Date-	20190916
Time	15.57
Imstram	Avance
POBHD	2116098_0861
PULPROG	- 2930
D	65536
solvem	cDC13
s	
S	
\%6\%	5555.556
fides	0.169542
\bigcirc	5.8982902
6	101
w	90.000
E	299.9
1	1.00000000
roo	
3 OO	400.1321847
nuci	1 H
0	3.58
1	10.75
I	65536
${ }^{F}$	400.1300095
NDE	EM
8	0.30
:	

8
$\stackrel{8}{8}$
$\stackrel{y}{8}$
1

	$\stackrel{\square}{7}$	¢	
	$\stackrel{\infty}{\infty}$	m	
\|V	V/	I	

あう．

B民UKE

$$
\begin{aligned}
& \text { Janis-2020-panthiqiang }
\end{aligned}
$$

[^0]

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20

5. HPLC Traces of synthetic compounds

HPLC Chromatographs of $\mathbf{2 b}$

No.	Retention Time \min	Area $\mathrm{mAU}^{*} \mathrm{~s}$	Height mAU	Relative Area $\%$
1	40.043	2.13032 e 5	1469.23206	50.2492
2	51.842.	2.10919 e 5	1169.27661	49.7508

No.	Retention Time \min	Area $\mathrm{mAU} * \mathrm{~s}$	Height mAU	Relative Area $\%$
1	43.465	1.19548 e 5	886.02887	91.9740
2	58.245	1.04322 e 4	70.95335	8.0260

HPLC Chromatographs of 2c

No.	RT	Area	Height	\% Area
1	35.025	6.91320 e 4	329.98679	49.9686
2	68.870	6.92187 e 4	235.76665	50.0314

No.	RT	Area	Height	\% Area
1	38.108	3962.78296	14.82190	13.0630
2	76.795	2.63731 e 4	69.19044	86.9370

HPLC Chromatographs of 2d

No.	RT	Area	Height	\% Area
1	35.873	1.01902 e 4	52.73842	9.8446
2	60.762	9.33200 e 4	307.12946	90.1554

HPLC Chromatographs of $\mathbf{2 e}$

No.	RT	Area	Height	\% Area
1	38.237	$1.16299 E 5$	286.91916	50.0173
2	80.836	1.16219 E 5	211.78023	49.9827

No.	RT	Area	Height	\% Area
1	37.415	$3.67997 E 4$	104.25102	14.8316
2	79.795	$2.11317 E 5$	370.10733	85.1684

HPLC Chromatographs of $\mathbf{2 f}$

No.	RT	Area	Height	\% Area
1	27.686	1.29381 e 4	163.82076	81.1414
2	44.884	3007.01587	24.31292	18.8586

HPLC Chromatographs of $\mathbf{2 g}$

No.	RT	Area	Height	\% Area
1	30.274	5.97726 e 4	987.68182	82.5971
2	40.911	1.25939 e 4	137.09364	17.4029

HPLC Chromatographs of $\mathbf{2 h}$

No.	RT	Area	Height	\% Area
1	25.139	2.93062 e 4	331.52722	49.2649
2	31.087	3.01808 e 4	275.64615	50.7351

No.	RT	Area	Height	\% Area
1	26.718	7.76248 e 4	1178.16711	82.3820
2	33.203	1.6606 e 4	226.29604	17.6180

HPLC Chromatographs of $\mathbf{2 i}$

No.	RT	Area	Height	\% Area
1	73.633	3.36722 e 4	167.16280	50.4061
2	100.227	3.31297 e 4	120.05046	49.5939

No.	RT	Area	Height	\% Area
1	71.709	5236.77490	32.90313	8.0193
2	98.012	6.00655 e 4	163.32048	91.9807

HPLC Chromatographs of $\mathbf{2 j}$

No.	RT	Area	Height	\% Area
1	44.844	$1.57697 e 5$	972.56158	98.0776
2	95.491	3090.99927	19.05363	1.9224

HPLC Chromatographs of $\mathbf{2 j}$ (for 1.2 mmol scale)

HPLC Chromatographs of $\mathbf{2 k}$

No.	RT	Area	Height	\% Area
1	59.486	1.61742 e 5	395.57379	47.9291
2	86.121	1.32827 e 4	35.45404	3.9361
3	96.594	1.62436 e 5	206.61314	48.1248

No.	RT	Area	Height	\% Area
1	62.102	1.08310 e 5	250.56642	90.1119
2	106.461	1.18851 e 4	18.39356	9.8881

HPLC Chromatographs of $\mathbf{2 1}$

No.	RT	Area	Height	\% Area
1	26.656	$1.93931 e 5$	1991.11963	49.3217
2	38.229	$1.99265 e 5$	1127.86975	50.6783

No.	RT	Area	Height	\% Area
1	27.277	9.14401 e 4	931.90857	73.8354
2	40.178	3.24090 e 4	184.03590	26.1646

HPLC Chromatographs of $\mathbf{2 m}$

No.	RT	Area	Height	\% Area
1	61.872	2.55968 e 5	804.04749	32.2865
2	76.063	1.22517 e 5	356.93442	15.4537
3	86.490	1.41587 e 5	338.61230	17.8590
4	102.889	2.72731 e 5	552.85773	34.4008

No.	RT	Area	Height	\% Area
1	64.585	2.7817 e 5	828.94562	80.7979
2	110.507	6.62149 e 4	161.24443	19.2021

HPLC Chromatographs of $\mathbf{2 n}$

No.	RT	Area	Height	\% Area
1	57.508	$4.17157 e 4$	215.41885	50.0375
2	72.701	4.16532 e 4	159.87820	49.9625

No.	RT	Area	Height	\% Area
1	60.065	$1.51607 e 5$	564.05188	80.0897
2	75.978	$3.76896 e 4$	136.10732	19.9130

HPLC Chromatographs of $\mathbf{2 0}$

HPLC Chromatographs of $\mathbf{2 p}$

No.	RT	Area	Height	\% Area
1	22.696	1.47254 e 4	199.50711	11.3098
2	26.132	1.39879 e 4	178.81096	10.7434
3	35.544	5.03571 e 4	437.05756	38.6767
4	41.547	5.11297 e 4	394.29492	39.2701

No.	RT	Area	Height	\% Area
1	35.809	2.74856 e 4	282.36868	19.3646
2	40.924	1.14452 e 5	854.30878	80.6354

HPLC Chromatographs of $\mathbf{2 q}$

No.	RT	Area	Height	\% Area
1	23.709	5.51240 e 4	679.70770	85.1009
2	33.402	9650.87793	81.63828	14.8991

HPLC Chromatographs of $\mathbf{2 r}$

No.	RT	Area	Height	\% Area
1	52.063	2.31050 e 4	140.14931	38.1226
2	61.268	6908.07324	41.89958	11.3982
3	65.716	2.34374 e 4	116.97540	38.6711
4	83.689	7156.55908	29.77675	11.8081

No.	RT	Area	Height	\% Area
1	50.149	6.06618 e 4	388.43484	62.2373
2	63.913	3.68068 e 4	213.99442	37.7627

HPLC Chromatographs of $\mathbf{2 s}$

No.	RT	Area	Height	\% Area
1	39.077	3.41089 e 5	2001.09617	87.9516
2	49.580	4.67256 e 4	340.69925	12.0484

HPLC Chromatographs of $\mathbf{2 t}$

No.	RT	Area	Height	\% Area
1	29.462	2.51084 e 5	1859.48901	49.4902
2	35.413	2.56257 e 5	1479.70117	50.5098

No.	RT	Area	Height	\% Area
1	28.768	2.52711 e 5	2082.52 .26	87.9854
2	35.523	3.45084 e 4	276.00833	12.0146

HPLC Chromatographs of $\mathbf{2 u}$

No.	RT	Area	Height	\% Area
1	38.732	1.81713 e 4	113.14646	44.2811
2	45.277	1844.74878	19.29135	4.4954
3	47.635	1.88663 e 4	98.53289	45.9749
4	58.027	2153.80469	11.71779	5.2486

No.	RT	Area	Height	\% Area
1	35.384	3.40510 e 5	2054.65234	87.8233
2	46.513	4.72118 e 4	292.32117	12.1767

HPLC Chromatographs of $\mathbf{2 v}$

No.	RT	Area	Height	\% Area
1	26.427	3.13219 e 4	422.33765	50.7728
2	33.130	3.03684 e 4	307.95016	49.2272

No.	RT	Area	Height	\% Area
1	27.575	4.88699 e 4	521.21484	90.2439
2	35.430	5283.22900	49.11884	9.7561

HPLC Chromatographs of $\mathbf{2 w}$

No.	RT	Area	Height	\% Area
1	19.950	1.04422 e 5	1777.11414	89.6269
2	24.567	1.20855 e 4	182.92143	10.3731

[^0]: $\begin{array}{lllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}$

