Supporting Information

Engineering Active Ni Sites in Ternary Layered Double Hydroxide Nanosheets for a High Selectivity Photoreduction of CO₂ to CH₄ under Irradiation above 500 nm

Xiaojie Hao,^a Ling Tan,^a Yanqi Xu,^a Zelin Wang,^a Xian Wang,^a Sha Bai,^a Chenjun Ning,^a Jingwen Zhao,^b Yufei Zhao,^a* Yu-Fei Song^a*

^aState Key Laboratory of Chemical Resource Engineering and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.

^bQingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China.

Experimental

Materials: Ni(NO₃)₂·6H₂O, Co(NO₃)₂·6H₂O, Fe(NO₃)₃·9H₂O, FeSO₄·7H₂O, NaOH, $[Ru(bpy)_3]Cl_2 \cdot 6H_2O$ (bpy = 2'2-bipyridine), Triethanolamine (TEOA) and acetonitrile (MeCN) were purchased from Energy Chemical and were used directly without any further purification. Deionized water was used in all the experimental processes.

Synthesis of CoFe-LDH nanosheets: The CoFe-LDH nanosheets were typically prepared via a co-precipitation process. To prepare solution A, 32 mmol $Co(NO_3)_2 \cdot 6H_2O$ and 10.7 mmol $FeSO_4 \cdot 7H_2O$ were dissolved in 40 mL deionized water to form a homogeneous solution (Co : Fe = 3 : 1). Solution B was prepared by dissolving 68.3 mmol NaOH and 21.3 mmol NaNO₃ in 40 mL deionized water (the deionized water was boiled to remove dissolved carbon dioxide and kept at 60°C for use). Solutions A and B were simultaneously added dropwise to a beaker containing 80 mL deionized water until the pH of the final solution was adjusted to 8.5. After stirring for another 24 h at 40°C, a solid precipitate was formed and collected by centrifugation and then washed three times with water. The collected samples were dried in an oven at 60°C overnight.

Synthesis of NiCoFe-LDH nanosheets: The NiCoFe-LDH nanosheets were typically prepared via a co-precipitation process. To prepare solution A, 16 mmol $Co(NO_3)_2 \cdot 6H_2O$, 16 mmol $Ni(NO_3)_2 \cdot 6H_2O$ and 10.7 mmol $Fe(NO_3)_3 \cdot 9H_2O$ were dissolved in 40 mL deionized water to form a homogeneous solution (Co : Ni : Fe = 1.5 : 1.5 : 1). Solution B was prepared by dissolving 68.3 mmol NaOH and 21.3 mmol NaNO₃ in 40 mL deionized water (the deionized water was boiled to remove dissolved carbon dioxide and kept at 60°C for use). Solutions A and B were simultaneously added dropwise to a beaker containing 80 mL deionized water until the pH of the final solution was adjusted to 8.5. After stirring for another 24 h at 40°C, a solid precipitate was formed and collected by centrifugation and then washed three times with water. The collected samples were dried in an oven at 60°C overnight.

Synthesis of NiFe-LDH nanosheets: The NiFe-LDH nanosheets were typically prepared via a co-precipitation process. To prepare solution A, 32 mmol Ni(NO₃)₂·6H₂O and 10.7 mmol Fe(NO₃)₃·9H₂O were dissolved in 40 mL deionized water to form a homogeneous solution (Ni: Fe = 3: 1). Solution B was prepared by dissolving 68.3 mmol NaOH and 21.3 mmol NaNO₃ in 40 mL deionized water (the deionized water was boiled to remove dissolved carbon dioxide and kept at 60°C for use). Solutions A and B were simultaneously added dropwise to a beaker containing 80 mL deionized water until the pH of the final solution was adjusted to 8.5. After stirring for another 24 h at 40°C, a solid precipitate was formed and collected by centrifugation and then washed three times with water. The collected samples were dried in an oven at 60°C overnight.

Figure S1. XRD patterns of CoFe-LDH and NiCoFe-LDH.

XRD patterns of CoFe-LDH and NiCoFe-LDH were displayed in Figure S1. XRD data of the NiCoFe-LDH (red line) and CoFe-LDH (black line) showed a series of (003), (006), (012), (110), and (113) diffractions of LDHs phase of the CoFe-LDH and NiCoFe-LDH at $2\theta = 11.5^{\circ}$, 22.9°, 34.5°, 59.8°, and 61.2°, respectively, indicating that the successful synthesis of LDHs.

Figure S2. (A) Co K-edge XANES spectra, (B) Co K-edge EXAFS oscillation functions $k^3\chi$ (k), (C) magnitude of k^3 -weighted FT of the Co K-edge extended EXAFS spectra and corresponding curve-fitting results (dotted lines), (D) Ni K-edge XANES spectra, (E) Ni K-edge EXAFS oscillation functions $k^3\chi$ (k), and (F) magnitude of k^3 weighted FT of the Ni K-edge EXAFS spectra and corresponding curve-fitting results (dotted lines) for NiCoFe-LDH and CoFe-LDH, respectively.

The doping mode of Ni is substitutional as proved by EXAFS and XRD. As shown in Figure S2F, the local coordination structure of Ni species is similar to Co species with a same peak position. These results indicated that Ni species should replace the site of Co. Thus, the doping mode of Ni is substitutional in LDH structure.

Sample	Co (%)	Fe (%)	Ni (%)
NiCoFe-LDH	19.7	12.5	19.6
CoFe-LDH	39.4	12.4	0

Table S1. Summary of Elemental Analysis Data for CoFe-LDH and NiCoFe-LDH,from ICP results

The doping amount of Ni can be determined through inductively coupled plasma atomic emission spectroscopy (ICP-AES) analysis. As shown in Table S1, the ratio of Co : Ni : Fe in NiCoFe-LDH was about 1.4 : 1.4 : 1, which is almost consistent with the feed ratio (1.5 : 1.5 : 1).

Figure S3. FT-IR spectra of CoFe-LDH and NiCoFe-LDH.

In the FT-IR spectrum (Figure S2), the broadband at 3430 cm⁻¹ was belonged to the stretching vibration and bending vibration of the O-H bond. The small pinnacle at 1633 cm⁻¹ was designated to interlayer water. The strong bond at 1380 cm⁻¹ signified the vibrations of NO_3^- . We can see the M-O bond vibration peak of at 580 cm⁻¹.

All the observation of XRD and FT-IR measurements revealed the successful synthesis of CoFe-LDH and NiCoFe-LDH structure with intercalated NO₃⁻ anion.

Figure S4. SEM image of NiCoFe-LDH

SEM image of NiCoFe-LDH (Figure S3) confirmed the formation of ultrathin sheetlike morphology.

Figure S5. The (A) SEM images; (B) HRTEM image; (C) AFM image and the corresponding (D) height profiles of CoFe-LDH.

SEM and TEM images revealed a typical nanoplate structure with an average size of \approx 80 nm for the CoFe-LDH, as shown in Figure S4A, B. The thickness of the CoFe-LDH nanosheets was determined to be only \approx 5 nm. Atomic force microscopy (AFM) image in Figure S4C, D also revealed their average thickness of approximately 4.5 nm, corresponding to 5-6 monolayers in the nanostructure.

Figure S6. (A) TCD1 Chromatogram of carbon-containing products (CH₄, CO), (B) TCD2 Chromatogram of carbon-containing products (H₂) from photocatalytic CO₂ reduction on NiCoFe-LDH under visible light ($\lambda > 400$ nm) for 1 h.

Figure S7. CO₂ reduction performance under various reaction conditions.

Figure S8. XRD patterns of the fresh NiCoFe-LDH sample and after the photocatalytic reaction (denoted as NiCoFe-LDH-Re).

Figure S9. (A, B, C) Normalized Co, Fe, and Ni K-edge XANES spectra of the NiCoFe-LDH and NiCoFe-LDH-Re, respectively. (D, E, F) k^3 -weighted Fourier-transform Co, Fe, and Ni K-edge EXAFS spectra, respectively.

Figure S10. The (A) CO_2 conversion rate and (B) Selectivity of CH_4 , CO and H_2 on NiCoFe-LDH under irradiation with different wavelength light.

Figure S11. The (A) CO_2 conversion rate and (B) Selectivity of CH_4 , CO, and H_2 on CoFe-LDH under irradiation with different wavelength light.

	Catalyst	Photosensitizer	Sacrificial agent	Solvent	Light source	Selectivity	Reference
1	NiCoFe-LDH	Ru(bpy) ₃ Cl ₂ •6H ₂ O	TEOA	$\begin{array}{c} \text{MeCN-} \\ \text{H}_2\text{O} \\ (3:1 \text{ v/v}) \end{array}$	$300 \text{ W Xe} \\ (\lambda \ge 400 \text{ nm})$	CH ₄ : 56.6% CO: 31.4% H ₂ : 11.9%	This work
2	NiCoFe-LDH	Ru(bpy) ₃ Cl ₂ •6H ₂ O	TEOA	$\begin{array}{c} \text{MeCN-} \\ \text{H}_2\text{O} \\ (3:1 \text{ v/v}) \end{array}$	$300 \text{ W Xe} \\ (\lambda \ge 500 \text{ nm})$	CH ₄ : 78.9% CO: 19.3% H ₂ : 1.71%	This work
3	Zr-bpdc/RuCO	$[Ru(phen)_3](PF_6)_2$	TEOA	MeCN	300 W Xe (λ = 385- 740 nm)	CH ₄ : 78.9% CO: 19.3% H ₂ : 1.71%	Angew. Chem., 2016 , 55, 2697 ¹
4	Iron tetra- phenylporphyrin complex	Ir(ppy) ₃	TEA	$\begin{array}{c} MeCN-\\ H_2O\\ (2:1 v/v) \end{array}$	300 W Xe $(\lambda > 420 \text{ nm})$	CH ₄ : 82% H ₂ : 18%	<i>Nature</i> , 2017 , 548, 74 ²
5	Pt/C-In ₂ O ₃	Pt	TEOA	H ₂ O	300 W Xe	CO:63.3% CH ₄ : 14.0% H ₂ : 22.7%	<i>JACS</i> , 2017 , 139, 4123 ³
6	In ₂ S ₃ -CdIn ₂ S ₄	Co(bpy) ₃ ²⁺	TEOA	MeCN- H ₂ O (3:2 v/v)	$300 \text{ W Xe} (\lambda > 400 \text{ nm})$	CO: 70.2% H ₂ :29.8%	<i>JACS</i> , 2017 , 139, 17305 ⁴
7	Ni(0.26%): CdS QD		TEOA	H ₂ O	$300 \text{ W Xe} (\lambda > 400 \text{ nm})$	CO: 11.2% CH ₄ : 88.8%	Angew., 2018 , 57, 16447 ⁵
8	Co1-G	[Ru(bpy) ₃]Cl ₂ •6H ₂ O	TEOA	MeCN	$300 \text{ W Xe} (\lambda > 420 \text{ nm})$	CO: 79.4% H ₂ : 20.6%	Adv. Mater., 2018, 1704624 ⁶
9	Ni MOLs	[Ru(bpy) ₃]Cl ₂ •6H ₂ O	TEOA	MeCN	$300 \text{ W Xe} (\lambda > 420 \text{ nm})$	CO: 97.8 % H ₂ : 2.2%	Angew., 2018 , 57,16811 ⁷
10	V _O -rich WO ₃			H ₂ O vapor	IR light	CO: below 3	<i>Joule</i> , 2018 , 2, 1004 ⁸
11	Auc-C-M		TEOA	MeCN	300 W Xe $(\lambda > 420 \text{ nm})$	CO:72.7% CH ₄ : 4.50% H ₂ : 22.8%	JACS, 2018 , 140, 16514 ⁹

Table S2. Comparison of photocatalytic CO₂ reduction performance for various photocatalysts in this work and in previous literature

MAF-X27l-OH	Ru(bpy) ₃ Cl ₂ •6H ₂ O	TEOA	$\begin{array}{c} \text{MeCN-} \\ \text{H}_2\text{O} \\ (4:1 \text{ v/v}) \end{array}$	$\begin{array}{c} \text{LED} \\ (\lambda = 420 \text{ nm}) \end{array}$	CO: 98.3% H ₂ : 1.7%	JACS, 2018 , 140, 38 ¹⁰
NC@NiCo ₂ O ₄	Ru(bpy) ₃ Cl ₂ •6H ₂ O	TEOA	$\begin{array}{c} \text{MeCN-} \\ \text{H}_2\text{O} \\ (3:2 \text{ v/v}) \end{array}$	300 W Xe $(\lambda > 420 \text{ nm})$	CO: 88.5% H ₂ : 11.5%	Energy Environ. Sci., 2018 , 11, 306 ¹¹
MOF-Ni	Ru(bpy) ₃ Cl ₂ •6H ₂ O	TIPA	$\begin{array}{c} \text{MeCN-} \\ \text{H}_2\text{O} \\ (13:1 \text{ v/v}) \end{array}$	$300 \text{ W Xe} \\ (\lambda > 420 \text{ nm})$	CO: 97.7% H ₂ : 2.3%	ACS Catal., 2019, 9, 1726 ¹²
BIF-101	Ru(bpy) ₃ Cl ₂ •6H ₂ O	TEOA	$\begin{array}{c} \text{MeCN-} \\ \text{H}_2\text{O} \\ (4:1 \text{ v/v}) \end{array}$	300 W Xe $(\lambda > 420 \text{ nm})$	CO: 72.3% H ₂ : 17.7%	<i>JMCA</i> , 2019, 7,17272 ¹³
Co _{1.11} Te ₂ CC	Ru(bpy) ₃ Cl ₂ •6H ₂ O	TEOA	$\begin{array}{c} \text{MeCN-} \\ \text{H}_2\text{O} \\ (4:1 \text{ v/v}) \end{array}$	$300 \text{ W Xe} \\ (\lambda > 420 \text{ nm})$	CO: 73.4% H ₂ : 16.6%	Chem. Commun., 2019 , 55, 6862 ¹⁴
NENU-606	Ru(bpy) ₃ Cl ₂ •6H ₂ O	TEOA	H ₂ O	300 W Xe $(\lambda > 420 \text{ nm})$	CO: 14.5% CH ₄ : 85.5%	Chem. Sci., 2019 , 10, 185 ¹⁵
Co ₃ O ₄ -NS	Ru(bpy) ₃ Cl ₂ •6H ₂ O	TEOA	H ₂ O	LED lamp (400 nm-1000 nm)	CO:60.1% H ₂ : 29.9%	Appl. Catal. B-Environ., 2019 , 244, 996 ¹⁶
PMMCoCC-1200	Ru(bpy) ₃ Cl ₂ •6H ₂ O	TEOA	$\begin{array}{c} \text{MeCN-} \\ \text{H}_2\text{O} \\ (3:1 \text{ v/v}) \end{array}$	300 W Xe $(\lambda > 420 \text{ nm})$	CO: 64.2% H ₂ : 35.8%	Small, 2018 , 14, 1800762 ¹⁷
QA/rGO-2		TEOA	H2O	$300 \text{ W Xe} \\ (\lambda > 420 \text{ nm})$	CO:60.0% CH ₄ : 36.7% H ₂ : 3.3%	Ind. Eng. Chem. Res. 2019, 58, 9636 ¹⁸
Monolayer NiAl-LDH	Ru(bpy) ₃ Cl ₂ •6H ₂ O	TEOA	$\begin{array}{c} \text{MeCN-} \\ \text{H}_2\text{O} \\ (3:1 \text{ v/v}) \end{array}$	$300 \text{ W Xe} \\ (\lambda > 600 \text{ nm})$	CH ₄ : 70.3% CO: 29.7%	Angew., 2019 , 58, 11860 ¹⁹
Pd/CoAl-LDH	Ru(bpy) ₃ Cl ₂ •6H ₂ O	TEOA	$\begin{array}{c} \text{MeCN-} \\ \text{H}_2\text{O} \\ (3:1 \text{ v/v}) \end{array}$	$300 \text{ W Xe} \\ (\lambda > 600 \text{ nm})$	CO : H ₂ = 1.35 (Pd = 0) CO : H ₂ = 0.45 (Pd = 7.57%)	J. Energy. Chem., 2019 , 2020, 46, 1-7 ²⁰
	MAF-X27I-OH NC@NiCo2O4 MOF-Ni BIF-101 CO1.11Te2CC NENU-606 NENU-606 QA/rGO-2 QA/rGO-2 PH/CoAI-LDH	MAF-X27I-OHRu(bpy)3 Cl2•6H2ONC@NiCo2O4Ru(bpy)3 Cl2•6H2OMOF-NiRu(bpy)3 Cl2•6H2OBIF-101Ru(bpy)3 Cl2•6H2OCo1.11Te2CCRu(bpy)3 Cl2•6H2ONENU-606Ru(bpy)3 Cl2•6H2OCo3O4-NSRu(bpy)3 Cl2•6H2OPMMCoCC-1200Ru(bpy)3 Cl2•6H2OQA/rGO-2Monolayer NiAl-LDHRu(bpy)3 Cl2•6H2OPd/CoAl-LDHRu(bpy)3 Cl2•6H2O	MAF-X27I-OHRu(bpy)3 Cl2•6H2OTEOANC@NiCo2O4Ru(bpy)3 Cl2•6H2OTEOAMOF-NiRu(bpy)3 Cl2•6H2OTIPABIF-101Ru(bpy)3 Cl2•6H2OTEOACo1.11 Te2CCRu(bpy)3 Cl2•6H2OTEOANENU-606Ru(bpy)3 Cl2•6H2OTEOACo3O4-NSRu(bpy)3 Cl2•6H2OTEOAQA/rGO-2TEOAMonolayer NiAI-LDHRu(bpy)3 Cl2•6H2OTEOAPd/CoAI-LDHRu(bpy)3 Cl2•6H2OTEOA	MAF-X271-OHRu(bpy)_3 Cl_2•6H_2OTEOAMeCN- H_2O (4 : 1 v/v)NC@NiCo_2O_4Ru(bpy)_3 Cl_2•6H_2OTEOAMeCN- H_2O (3 : 2 v/v)MOF-NiRu(bpy)_3 Cl_2•6H_2OTIPAMeCN- H_2O (13 : 1 v/v)BIF-101Ru(bpy)_3 Cl_2•6H_2OTEOAMeCN- H_2O (13 : 1 v/v)BIF-101Ru(bpy)_3 Cl_2•6H_2OTEOAMeCN- H_2O (4 : 1 v/v)Co_{1.11}Te_2CCRu(bpy)_3 Cl_2•6H_2OTEOAMeCN- H_2O (4 : 1 v/v)NENU-606Ru(bpy)_3 Cl_2•6H_2OTEOAH_2O (3 : 1 v/v)QA/rGO-2TEOAMeCN- H_2O (3 : 1 v/v)QA/rGO-2TEOAMeCN- H_2O (3 : 1 v/v)Pd/CoAI-LDHRu(bpy)_3 Cl_2•6H_2OTEOAMeCN- H_2O (3 : 1 v/v)Pd/CoAI-LDHRu(bpy)_3 Cl_2•6H_2OTEOAMeCN- H_2O (3 : 1 v/v)	MAF-X27I-OHRu(bpy)_3 Cl_2•6H_2OTEOAMeCN- H_2O (4 : 1 V/V)LED ($\lambda = 420$ nm)NC@NiCo_2O_4Ru(bpy)_3 Cl_2•6H_2OTEOA $MeCN-$ H_2O (3 : 2 V/V)300 W Xe ($\lambda > 420$ nm)MOF-NiRu(bpy)_3 Cl_2•6H_2OTIPA $MeCN-$ H_2O (1 : 1 1 V/V)300 W Xe ($\lambda > 420$ nm)BIF-101Ru(bpy)_3 Cl_2•6H_2OTEOA $MeCN-$ H_2O (4 : 1 V/V)300 W Xe ($\lambda > 420$ nm)Co_{1.11} E_2CCRu(bpy)_3 Cl_2•6H_2OTEOA $MeCN-$ H_2O (4 : 1 V/V)300 W Xe ($\lambda > 420$ nm)NENU-606Ru(bpy)_3 Cl_2•6H_2OTEOA H_2O ($(\lambda = 1 V/V)$ $300 W Xe((\lambda > 420 nm)NENU-606Ru(bpy)_3 Cl_2•6H_2OTEOAH_2O((\lambda = 1 V/V)300 W Xe((\lambda > 420 nm)PMMCoCC-1200Ru(bpy)_3 Cl_2•6H_2OTEOAMeCN-((\lambda = 1 V/V)300 W Xe((\lambda > 420 nm)QA/rGO-2TEOAMeCN-((\lambda = 1 V/V)300 W Xe((\lambda > 420 nm)Monolayer NiAI-LDHRu(bpy)_3 Cl_2•6H_2OTEOAMeCN-((\lambda = 1 V/V)300 W Xe((\lambda > 420 nm)Pd/CoAI-LDHRu(bpy)_3 Cl_2•6H_2OTEOAMeCN-((\lambda = 1 V/V)300 W Xe((\lambda > 600 nm)$	MAF-X27I-OHRu(bpy)_3 Cl_2-6H_2OTEOA $\frac{MeCN}{H_2O}$ $(\frac{1}{4} 1 v/v)$ LED $(\frac{\lambda}{4} 420 nm)$ CO: 98.3% $H_2: 1.7%$ NC@NiCo_2O4Ru(bpy)_3 Cl_2-6H_2OTEOA $\frac{MeCN}{(3 : 2 v/v)}$ 300 W Xe $(\lambda > 420 nm)$ CO: 88.5% $H_2: 11.5\%$ MOF-NiRu(bpy)_3 Cl_2-6H_2OTIPA $\frac{MeCN}{(\lambda} > 420 nm)$ 300 W Xe $(\lambda > 420 nm)$ CO: 97.7% $H_2: 11.5\%$ BIF-101Ru(bpy)_3 Cl_2-6H_2OTEOA $\frac{MeCN}{(13 : 1 v/v)}$ 300 W Xe $(\lambda > 420 nm)$ CO: 72.3% $H_2: 17.7\%$ Co_{1.11} Te_2CCRu(bpy)_3 Cl_2-6H_2OTEOA $\frac{MeCN}{(4 : 1 v/v)}$ 300 W Xe $(\lambda > 420 nm)$ CO: 73.4% $H_2: 17.7\%$ NENU-606Ru(bpy)_3 Cl_2-6H_2OTEOA H_2O $300 W Xe$ $(\lambda > 420 nm)$ CO: 14.5% CO: 14.5%Oso_0-NSRu(bpy)_3 Cl_2-6H_2OTEOA H_2O $300 W Xe$ $(\lambda > 420 nm)CO: 14.5%CO: 14.5%PMMCoCC-1200Ru(bpy)_3 Cl_2-6H_2OTEOAH_2O300 W Xe(\lambda > 420 nm)CO: 64.2%H_2: 9.7%QA/rGO-2TEOA\frac{MeCN}{H_2O}(3 : 1 v/v)300 W Xe(\lambda > 420 nm)CO: 64.2%H_2: 9.7%Monolayer NiAl-LDHRu(bpy)_3 Cl_2-6H_2OTEOA\frac{MeCN}{H_2O}(3 : 1 v/v)300 W Xe(\lambda > 420 nm)CO: 64.2%(\lambda > 420 nm)Pd/CoAl-LDHRu(bpy)_3 Cl_2-6H_2OTEOA\frac{MeCN}{H_2O}(3 : 1 v/v)300 W Xe(\lambda > 420 nm)CO: 64.2%(\lambda > 420 nm)Pd/CoAl-LDHRu(bpy)_3 Cl_2-6H_2OTEOA\frac{MeCN}{H_2O}(3 : 1 v/v)300 W Xe(\lambda > 420 nm)CO: 64.2%$

Figure S12. (A) CO₂ conversion rate (B) Selectivity of CH₄, CO, and H₂ under irradiation at $\lambda > 400$ nm for NiCoFe-LDH and NiFe-LDH. (C) CO₂ conversion rate and (D) Selectivity of CH₄, CO, and H₂ on NiFe-LDH under irradiation $\lambda > 500$ nm.

In order to further determine the role of Ni species, Co cations were completely replaced by Ni cations by increasing the amount of Ni species for the synthesis of NiFe-LDH. As shown in Figure S10A and B, compared with NiCoFe-LDH, the CO₂ conversion rate decreased from 670 μ mol·g⁻¹·h⁻¹ (NiCoFe-LDH) to 368 μ mol·g⁻¹·h⁻¹ (NiFe-LDH), while the selectivity of CH₄ had also been suppressed from 56.6% (NiCoFe-LDH) to 41.9% (NiFe-LDH).

More interesting, under light irradiation at $\lambda > 500$ nm, the tendency kept a similar result, and the NiFe-LDH gave a lower CO₂ conversion rate and also the CH₄ selectivity also decreased to 64.3%. The above results indicated that further totally increasing Ni amount of NiCoFe-LDH for the synthesis of NiFe-LDH, both decreased CO₂ conversion and CH₄ selectivity further confirmed the advantage of trinary NiCoFe-LDH for the excellent photocatalytic CO₂ reduction to CH₄.

Figure S13. (A) Fe 2p X-ray photoelectron spectroscopy (XPS) and Co 2p XPS spectra of CoFe-LDH and NiCoFe-LDH, respectively.

Sample	Shell	N ^a	<i>R</i> [Å] ^b	$\sigma^2 [10^{-3} \mathrm{\AA}^2]^{\mathrm{c}}$	S_0^2	R-factor (10 ⁻²)
	Fe-O	6	2.00	4.4	0.82	0.79
	Fe-M	5.7	3.15	11.3		
Core-LDH	Со-О	6	2.09	7.3	0.86	0.74
	Co-M	5.7	3.15	11.8		
	Fe-O	5.2	1.98	5.4	0.82	0.87
N'CoFo I DH	Fe-M	4.1	3.13	11.1		
NICOFE-LDH	Со-О	5.6	2.07	9.8	0.97	1.2
	Co-M	5.6	3.12	12.4	0.86	1.5

Table S3. Local structure parameters around Co and Fe atoms estimated by EXAFS analysis

^aN = coordination number; ^bR = distance between absorber and backscatter atoms; ^c σ^2 = Debye-Waller factor.

Figure S14 Schematic illustration of layer structure of A, B) CoFe-LDH; C, D) NiCoFe-LDH, respectively.

The formula of NiCoFe-LDH is $Ni_{24}Co_{24}Fe_{16}H_{128}O_{128}$, and the surface area of this cell is 1.2 nm * 1.2 nm * sin 60° = 1.247 nm². The volume of the LDH can be obtained as follows: surface area of the cell * thickness (nm), where the thickness had been measured by AFM results. The corresponding oxygen number in this NiCoFe-monolayer model was 128, and total number of the metal (Ni, Co and Fe) was 64.

Ni species had occupied the position of Co after Ni was introduced into LDH structure, but there was no effect on the content of Fe species. Therefore, Fe element was used as the basis for calculating the corresponding vacancy density. As obtained from EXAFS results of NiCoFe-LDH, the corresponding coordination number of the first Fe-O shell was 5.2, compared with the ideal LDH with coordination number of 6.0, the ratio of defect concentration of Fe-O shell in NiCoFe-LDH was proposal to be around (5.2-6)/6 = 13.3%. Therefore, in the whole model, the defect intensity of oxygen vacancy can be inferred as followings:

Oxygen vacancies density $(nm^{-3}) = ratio of the defect concentration * the total$

oxygen number in the model per $nm^3 = 13.3\% * 128/(1.247 nm^2 * 3.5 nm) = 3.90 nm^{-3}$.

The above equation can be also extend to calculation the metal vacancies density, and the metal vacancies density (nm⁻³) in NiCoFe-LDH = ratio of defect concentration * the total metal number in the model per nm³ = $(6.0-4.1)/6.0 * 64/(1.247 \text{ nm}^2 * 3.5 \text{ nm}) = 4.64 \text{ nm}^{-3}$

In summary, the defect density of V_0 or V_M is showed in **Table S4**:

Table S4. the defect density of V_0 or V_M in CoFe and NiCoFe-LDH calculated from the EAXFS data

	Sample	layer thickness	shell	Na	Defect density (nm ⁻³)
		4.2	Fe-O	6	
	Core-LDH	4.2	Fe-M	5.7	0.57
NiCoFe-LD	N:CoEo I DH	3.5	Fe-O	5.2	3.90
	NICOFE-LDH	3.5	Fe-M	4.1	4.64

 $^{a}N =$ coordination number.

Figure S15. Total and partial electronic density of states (TDOS and PDOS) for (A) CoFe-LDH, (B) NiCoFe-Perfect, and (C) NiCoFe-LDH containing oxygen and metal vacancies. The Fermi energy level E_F was set to zero. (D) Schematic structure model of NiCoFe-LDH containing vacancies.

Figure S16. Schematic structure model and the corresponding calculated band structure for (A, B) CoFe-LDH, (C, D) NiCoFe-Perfect, and (E, F) NiCoFe-LDH containing oxygen and cobalt vacancies.

The direct energy gap was approximately 1.159 eV for NiCoFe-LDH, much lower than that of CoFe-LDH (1.707 eV).

References

(1) Kajiwara, T.; Fujii, M.; Tsujimoto, M.; Kobayashi, K.; Higuchi, M.; Tanaka, K.; Kitagawa, S., Photochemical reduction of low concentrations of CO₂ in a porous coordination polymer with a ruthenium(II)-CO complex. *Angew. Chem. Int. Ed.* **2016**, *55*, 2697-2700.

(2) Rao, H.; Schmidt, L. C.; Bonin, J.; Robert, M., Visible-light-driven methane formation from CO₂ with a molecular iron catalyst. *Nature* **2017**, *548*, 74-77.

(3) Pan, Y. X.; You, Y.; Xin, S.; Li, Y.; Fu, G.; Cui, Z.; Men, Y. L.; Cao, F. F.; Yu, S. H.; Goodenough, J. B., Photocatalytic CO₂ reduction by carbon-coated indium-oxide nanobelts. *J. Am. Chem. Soc.* **2017**, *139*, 4123-4129.

(4) Wang, S.; Guan, B. Y.; Lu, Y.; Lou, X. W. D., Formation of hierarchical In₂S₃-CdIn₂S₄ heterostructured nanotubes for efficient and stable visible light CO₂ reduction. *J. Am. Chem. Soc.* **2017**, *139*, 17305-17308.

(5) Wang, J.; Xia, T.; Wang, L.; Zheng, X.; Qi, Z.; Gao, C.; Zhu, J.; Li, Z.; Xu, H.; Xiong, Y., Enabling visible-light-driven selective CO₂ reduction by doping quantum dots: trapping electrons and suppressing H₂ evolution. *Angew. Chem. Int. Ed.* **2018**, *57*, 16447-16451.

(6) Gao, C.; Chen, S.; Wang, Y.; Wang, J.; Zheng, X.; Zhu, J.; Song, L.; Zhang, W.; Xiong, Y., Heterogeneous single-atom catalyst for visible-light-driven high-turnover CO₂ reduction: the role of electron transfer. *Adv. Mater.* **2018**, *30*, 1704624.

(7) Han, B.; Ou, X.; Deng, Z.; Song, Y.; Tian, C.; Deng, H.; Xu, Y.-J.; Lin, Z., Nickel metal-organic framework monolayers for photoreduction of diluted CO₂: Metal-node-dependent activity and selectivity. *Angew. Chem. Int. Ed.* **2018**, *57*, 16811-16815.

(8) Liang, L.; Li, X.; Sun, Y.; Tan, Y.; Jiao, X.; Ju, H.; Qi, Z.; Zhu, J.; Xie, Y., Infrared light-driven CO₂ overall splitting at room temperature. *Joule* **2018**, *2*, 1004-1016.

(9) Cui, X.; Wang, J.; Liu, B.; Ling, S.; Long, R.; Xiong, Y., Turning Au nanoclusters catalytically active for visible-light-driven CO₂ reduction through bridging ligands. *J. Am. Chem. Soc.* **2018**, *140*, 16514-16520.

(10) Wang, Y.; Huang, N.-Y.; Shen, J.-Q.; Liao, P.-Q.; Chen, X.-M.; Zhang, J.-P., Hydroxide ligands cooperate with catalytic centers in metal-organic frameworks for efficient photocatalytic CO₂ reduction. *J. Am. Chem. Soc.* **2018**, *140*, 38-41.

(11) Wang, S.; Guan, B. Y.; Lou, X. W., Rationally designed hierarchical N-doped carbon@NiCo₂O₄ double-shelled nanoboxes for enhanced visible light CO₂ reduction. *Energy Environ. Sci.* **2018**, *11*, 306-310.

(12) Wang, X.-K.; Liu, J.; Zhang, L.; Dong, L.-Z.; Li, S.-L.; Kan, Y.-H.; Li, D.-S.; Lan, Y.-Q., Monometallic catalytic models hosted in stable metal-organic frameworks for tunable CO₂ photoreduction. *ACS Catal.* **2019**, *9*, 1726-1732.

(13) Hong, Q.-L.; Zhang, H.-X.; Zhang, J., Synthesis of boron imidazolate frameworks with cobalt clusters for efficient visible-light driven CO₂ reduction. *J. Mater. Chem. A* **2019**, *7*, 17272-17276.

(14) Xu, Y.; Mo, J.; Xie, G.; Ding, D.; Ding, S.; Wang, X.; Li, C., MOF-derived Co_{1.11}Te₂ with halfmetallic character for efficient photochemical conversion of CO₂ under visible-light irradiation. *Chem. Commun.* **2019**, *55*, 6862-6865.

(15) Xie, S.-L.; Liu, J.; Dong, L.-Z.; Li, S.-L.; Lan, Y.-Q.; Su, Z.-M., Hetero-metallic active sites coupled with strongly reductive polyoxometalate for selective photocatalytic CO₂-to-CH₄ conversion in water. *Chem. Sci.* **2019**, *10*, 185-190.

(16) Chen, W.; Han, B.; Tian, C.; Liu, X.; Liang, S.; Deng, H.; Lin, Z., MOFs-derived ultrathin holey Co₃O₄ nanosheets for enhanced visible light CO₂ reduction. *Appl. Catal. B-Environ.* **2019**, *244*, 996-1003.

(17) Zhao, K.; Zhao, S.; Gao, C.; Qi, J.; Yin, H.; Wei, D.; Mideksa, M. F.; Wang, X.; Gao, Y.; Tang, Z.; Yu, R., Metallic cobalt-carbon composite as recyclable and robust magnetic photocatalyst for efficient CO₂ reduction. *Small* **2018**, *14*, 1800762.

(18) Yang, P.; Guo, S.; Yu, X.; Zhang, F.; Yu, B.; Zhang, H.; Zhao, Y.; Liu, Z., Photocatalytic reduction of carbon dioxide over quinacridone nanoparticles supported on reduced graphene oxide. *Ind. Eng. Chem. Res.* **2019**, *58*, 9636-9643.

(19) Tan, L.; Xu, S.-M.; Wang, Z.; Xu, Y.; Wang, X.; Hao, X.; Bai, S.; Ning, C.; Wang, Y.; Zhang, W.; Jo, Y. K.; Hwang, S. J.; Cao, X.; Zheng, X.; Yan, H.; Zhao, Y.; Duan, H.; Song, Y.-F., Highly selective photoreduction of CO₂ with suppressing H₂ evolution over monolayer layered double hydroxide under irradiation above 600 nm. *Angew. Chem. Int. Ed.* **2019**, *58*, 11860-11867.

(20) Wang, X.; Wang, Z.; Bai, Y.; Tan, L.; Xu, Y.; Hao, X.; Wang, J.; Mahadi, A. H.; Zhao, Y.; Zheng, L.; Song, Y.-F., Tuning the selectivity of photoreduction of CO₂ to syngas over Pd/layered double hydroxide nanosheets under visible-light up to 600 nm. *J. Energy. Chem.* **2020**, *46*, 1-7.