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Figure Sl(a-h): Temperature dlstrlbutlon within the spreadmg polymer drop (radius 0.01 mm)

at different time instants for case 1 (1,<<t,). Here we have t,=~ 1.1 ms and 1,~ 66 ms.
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Figure S2(a-h): Temperature distribution within the spreading polymer drop (radius 0.01 mm) at

different time instants for case 2 (ts~1,). Here we have t,~ 1.1 ms and 1,~ 3.3 ms.
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Figure S3(a-h): Curing profiles within the spreading polymer drop (radius 0.01 mm) at different

time instants for case 1 (t,<<t,). Here we have t,= 1.1 ms and t,~ 66 ms. In the inset of each

subfigure, we plot the variation of the curing profile with a much smaller range of the color bar

for highlighting the curing profiles (or equivalently, a distribution of the monomer concentration)

within the drop itself at a given time instant.
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Figure S4(a-h): Curing profiles within the spreading polymer drop (radius 0.01 mm) at different

time instants for case 2 (ts~1,). Here we have t,= 1.1 ms and 1,~ 3.3 ms. In the inset of each

subfigure, we plot the variation of the curing profile with a much smaller range of the color bar

for highlighting the curing profiles (or equivalently, a distribution of the monomer concentration)

within the drop itself at a given time instant.
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Figure S5: Variation of the average temperature of the drop with #/t. for (a) Case 1 and (b) Case
2 for the drops of three different sizes. The different parameters have been summarized in the

caption of Fig. 8 of the main paper.
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Figure S6: Variation of the average degree of cure for the drop with #/1. for (a) Case 1 and (b)
Case 2 for the drops of three different sizes. The different parameters have been summarized in

the caption of Fig. 8 of the main paper.
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Figure S7: Velocity distribution within the spreading polymer drop at different time instants for
case 1 (1,<<t,) for a drop of radius 0.1 mm. Here we have 1,~ 10.2 ms and t,~ 660 ms. Velocity

profiles within the air have not been shown for the sake of clarity.
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Figure S8: Velocity distribution within the spreading polymer drop at different time instants for
case 2 (1+~1p) for a drop of radius 0.1 mm. Here we have 1= 10.2 ms and 1,~ 66 ms. Velocity

profiles within the air have not been shown for the sake of clarity.
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Figure S9: Temperature distribution within the spreading polymer drop at different time instants
at different time instants for case 1 (1,<<t,) for a drop of radius 0.1 mm. Here we have 1,= 10.2

ms and 1, = 660 ms.
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Figure S10: Temperature distribution within the spreading polymer drop at different time

instants at different time instants for case 2 (ts~1,) for a drop of radius 0.1 mm. Here we have 1,=

10.2 ms and 1, =~ 66 ms.
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Figure S11: Curing profiles within the spreading polymer drop at different time instants for case

1 (ts<<tp) for a drop of radius 0.1 mm. Here we have 1= 10.2 ms and 1, ~ 660 ms.
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Figure S12: Progression of the curing front (corresponding to a=0.4) within the spreading
polymer drop at different time instants for case 1 (t,<<t,) for a drop of radius 0.1 mm. Here we

have 1= 10.2 ms and 1, = 660 ms.
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Figure S13: Curing profiles within the spreading polymer drop at different time instants for case
2 (t4~1p) for a drop of radius 0.1 mm. Here we have t,~ 10.2 ms and t,~ 66 ms. Here we have T,

~10.2 ms and 1, = 66 ms.
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Figure S14: Progression of the curing front (corresponding to a=0.1) within the spreading
polymer drop at different time instants for case 2 (t4~tp) for a drop of radius 0.1 mm. Here we

have 1= 10.2 ms and 1, = 66 ms.
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Figure S15: Velocity distribution within the spreading polymer drop at different time instants
for case 1 (t,<<tp) for a drop of radius 1 mm. Here we have 1,= 107 ms and t,= 1200 ms.

Velocity profiles within the air have not been shown for the sake of clarity.
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Figure S16: Velocity distribution within the spreading polymer drop at different time instants
for case 1 (ts~1,) for a drop of radius 1 mm. Here we have 1,= 107 ms and t,~ 660 ms. Velocity

profiles within the air have not been shown for the sake of clarity.
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Figure S17: Temperature distribution within the spreading polymer drop at different time
instants at different time instants for case 1 (1s<<t,) for a drop of radius 1 mm. Here we have 1,=

107 ms and 1, = 1200 ms.
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Figure S18: Temperature distribution within the spreading polymer drop at different time
instants at different time instants for case 1 (14~1,) for a drop of radius 1 mm. Here we have 1,=

107 ms and 1, = 660 ms.
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Figure S19: Curing profiles within the spreading polymer drop at different time instants for case

1 (ts<<tp) for a drop of radius 1 mm. Here we have 1= 107 ms and t,~ 1200 ms.

Degree of cure contour
a=0.3
Timeins

Figure S20: Progression of the curing front (corresponding to a=0.3) within the spreading
polymer drop at different time instants for case 1 (t,<<t,) for a drop of radius 1 mm. Here we

have 1= 107 ms and 1, ~ 1200 ms.
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Figure S21: Curing profiles within the spreading polymer drop at different time instants for case

2 (ts~1p) for a drop of radius 1 mm. Here we have t,~ 107 ms and 1, = 660 ms.
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Figure S22: Progression of the curing front (corresponding to a=0.4) within the spreading
polymer drop at different time instants for case 2 (ts~1,) for a drop of radius 1 mm. Here we have

7~ 107 ms and 1,~ 660 ms.
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Table S1: Different Timescales for Drops of Different Sizes

Drop radius

7. (miliseconds)

Ts (miliseconds)

Tp (miliseconds)

Tp (miliseconds)

(mm) for Case 1 for Case 2
1 7.21 107 660 1200
0.1 0.228 10.2 66 660
0.01 7.21x10°° 1.1 66 33
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Table S2: Definition and values of the different parameters used for simulating the the 1-
mm drop of 1 wt % of carboxymethylcellulose (CMC) solution (those that are not reported
are identical to those reported in Table 1 in the main paper) (Here we don’t have the
literature for the values that dictate the polymerization process of the CMC drop;
therefore, we have chosen these values to be such that ensures that t,<<t,. Under such

conditions, the exact values of these parameters don’t matter as long as they ensure t,<<t;)

Parameter | Definition Value Reference
Pm Density of monomer 1590 [kg/m’] Ref. 48 (in the main
Pp Density of polymer 1750 [kg/m’] paper) and using the
m Consistency index 7.234 condition that the
n Power law index 0.5088 Density variation
o Surface tension of the drop/air | 0.039 [N/m] between monomer and
interface polymer is usually less
0 than 10% (Refs. 31,33
Contact angle 20°
in the mian paper)
k; Thermal conductivity of drop 0.603 [W/m/K] Ref. 49 (in the main
paper)
Coi Heat capacity (at constant 4250[J/kg/K] Ref. 50 (in the main
pressure) of the drop paper)
H; Heat of polymerization -50 [kJ/mol]
reaction
E, Activation energy for the 29.7 [kJ/mol]
propagation reaction
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E; Activation energy for the 22.2 [kJ/mol]
termination reaction

Apx Frequency factor for the 2.5 x10° [L/mol/s]
propagation reaction for case 1
(t<<1p)

A Frequency factor for the 10" [ L/mol/s]

termination reaction

Ref. 32 (in the main

paper)
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