Supporting Information

3D Printed Microdroplet Curing: Unravelling the Physics of On-spot Photopolymerization

Vishal Sankar Sivasankar,¹ Harnoor Singh Sachar,¹ Shayandev Sinha,² Daniel R. Hines,^{3*} and Siddhartha Das^{1*}

¹Department of Mechanical Engineering, University of Maryland, College Park, MD 20742

²The Rowland Institute at Harvard, Harvard University, Cambridge, MA 02142

³Laboratory for Physical Sciences, 8050 Greenmead Drive, College Park, Maryland 20740, USA

*Email: <u>hines@lps.umd.edu; sidd@umd.edu</u>

Figure S1(a-h): Temperature distribution within the spreading polymer drop (radius 0.01 mm) at different time instants for case 1 ($\tau_s \ll \tau_p$). Here we have $\tau_s \approx 1.1$ ms and $\tau_p \approx 66$ ms.

Figure S2(a-h): Temperature distribution within the spreading polymer drop (radius 0.01 mm) at different time instants for case 2 ($\tau_s \sim \tau_p$). Here we have $\tau_s \approx 1.1$ ms and $\tau_p \approx 3.3$ ms.

Figure S3(a-h): Curing profiles within the spreading polymer drop (radius 0.01 mm) at different time instants for case 1 ($\tau_s \ll \tau_p$). Here we have $\tau_s \approx 1.1$ ms and $\tau_p \approx 66$ ms. In the inset of each subfigure, we plot the variation of the curing profile with a much smaller range of the color bar for highlighting the curing profiles (or equivalently, a distribution of the monomer concentration) within the drop itself at a given time instant.

Figure S4(a-h): Curing profiles within the spreading polymer drop (radius 0.01 mm) at different time instants for case 2 ($\tau_s \sim \tau_p$). Here we have $\tau_s \approx 1.1$ ms and $\tau_p \approx 3.3$ ms. In the inset of each subfigure, we plot the variation of the curing profile with a much smaller range of the color bar for highlighting the curing profiles (or equivalently, a distribution of the monomer concentration) within the drop itself at a given time instant.

Figure S5: Variation of the average temperature of the drop with t/τ_c for (a) Case 1 and (b) Case 2 for the drops of three different sizes. The different parameters have been summarized in the caption of Fig. 8 of the main paper.

Figure S6: Variation of the average degree of cure for the drop with t/τ_c for (a) Case 1 and (b) Case 2 for the drops of three different sizes. The different parameters have been summarized in the caption of Fig. 8 of the main paper.

Figure S7: Velocity distribution within the spreading polymer drop at different time instants for case 1 ($\tau_s \ll \tau_p$) for a drop of radius 0.1 mm. Here we have $\tau_s \approx 10.2$ ms and $\tau_p \approx 660$ ms. Velocity profiles within the air have not been shown for the sake of clarity.

Figure S8: Velocity distribution within the spreading polymer drop at different time instants for case 2 ($\tau_s \sim \tau_p$) for a drop of radius 0.1 mm. Here we have $\tau_s \approx 10.2$ ms and $\tau_p \approx 66$ ms. Velocity profiles within the air have not been shown for the sake of clarity.

Figure S9: Temperature distribution within the spreading polymer drop at different time instants at different time instants for case 1 ($\tau_s << \tau_p$) for a drop of radius 0.1 mm. Here we have $\tau_s \approx 10.2$ ms and $\tau_p \approx 660$ ms.

Figure S10: Temperature distribution within the spreading polymer drop at different time instants at different time instants for case 2 ($\tau_s \sim \tau_p$) for a drop of radius 0.1 mm. Here we have $\tau_s \approx 10.2$ ms and $\tau_p \approx 66$ ms.

Figure S11: Curing profiles within the spreading polymer drop at different time instants for case 1 ($\tau_s \ll \tau_p$) for a drop of radius 0.1 mm. Here we have $\tau_s \approx 10.2$ ms and $\tau_p \approx 660$ ms.

Figure S12: Progression of the curing front (corresponding to α =0.4) within the spreading polymer drop at different time instants for case 1 ($\tau_s \ll \tau_p$) for a drop of radius 0.1 mm. Here we have $\tau_s \approx 10.2$ ms and $\tau_p \approx 660$ ms.

Figure S13: Curing profiles within the spreading polymer drop at different time instants for case 2 ($\tau_s \sim \tau_p$) for a drop of radius 0.1 mm. Here we have $\tau_s \approx 10.2$ ms and $\tau_p \approx 66$ ms. Here we have $\tau_s \approx 10.2$ ms and $\tau_p \approx 66$ ms.

Figure S14: Progression of the curing front (corresponding to α =0.1) within the spreading polymer drop at different time instants for case 2 ($\tau_s \sim \tau_p$) for a drop of radius 0.1 mm. Here we have $\tau_s \approx 10.2$ ms and $\tau_p \approx 66$ ms.

Figure S15: Velocity distribution within the spreading polymer drop at different time instants for case 1 ($\tau_s \ll \tau_p$) for a drop of radius 1 mm. Here we have $\tau_s \approx 107$ ms and $\tau_p \approx 1200$ ms. Velocity profiles within the air have not been shown for the sake of clarity.

Figure S16: Velocity distribution within the spreading polymer drop at different time instants for case 1 ($\tau_s \sim \tau_p$) for a drop of radius 1 mm. Here we have $\tau_s \approx 107$ ms and $\tau_p \approx 660$ ms. Velocity profiles within the air have not been shown for the sake of clarity.

Figure S17: Temperature distribution within the spreading polymer drop at different time instants at different time instants for case 1 ($\tau_s << \tau_p$) for a drop of radius 1 mm. Here we have $\tau_s \approx$ 107 ms and $\tau_p \approx$ 1200 ms.

Figure S18: Temperature distribution within the spreading polymer drop at different time instants at different time instants for case 1 ($\tau_s \sim \tau_p$) for a drop of radius 1 mm. Here we have $\tau_s \approx$ 107 ms and $\tau_p \approx 660$ ms.

Figure S19: Curing profiles within the spreading polymer drop at different time instants for case 1 ($\tau_s \ll \tau_p$) for a drop of radius 1 mm. Here we have $\tau_s \approx 107$ ms and $\tau_p \approx 1200$ ms.

Figure S20: Progression of the curing front (corresponding to α =0.3) within the spreading polymer drop at different time instants for case 1 ($\tau_s << \tau_p$) for a drop of radius 1 mm. Here we have $\tau_s \approx 107$ ms and $\tau_p \approx 1200$ ms.

Figure S21: Curing profiles within the spreading polymer drop at different time instants for case 2 ($\tau_s \sim \tau_p$) for a drop of radius 1 mm. Here we have $\tau_s \approx 107$ ms and $\tau_p \approx 660$ ms.

Figure S22: Progression of the curing front (corresponding to α =0.4) within the spreading polymer drop at different time instants for case 2 ($\tau_s \sim \tau_p$) for a drop of radius 1 mm. Here we have $\tau_s \approx 107 \text{ ms}$ and $\tau_p \approx 660 \text{ ms}$.

Drop radius	τ_c (miliseconds)	τ_s (miliseconds)	$ au_p$ (miliseconds)	$ au_p$ (miliseconds)
(mm)			for Case 1	for Case 2
1	7.21	107	660	1200
0.1	0.228	10.2	66	660
0.01	7.21×10^{-3}	1.1	66	3.3

Table S1: Different Timescales for Drops of Different Sizes

Table S2: Definition and values of the different parameters used for simulating the the 1mm drop of 1 wt % of carboxymethylcellulose (CMC) solution (those that are not reported are identical to those reported in Table 1 in the main paper) (Here we don't have the literature for the values that dictate the polymerization process of the CMC drop; therefore, we have chosen these values to be such that ensures that $\tau_{s\ll\tau_p}$. Under such conditions, the exact values of these parameters don't matter as long as they ensure $\tau_{s\ll\tau_p}$)

Parameter	Definition	Value	Reference
ρ_m	Density of monomer	1590 [kg/m ³]	Ref. 48 (in the main
ρ _p	Density of polymer	1750 [kg/m ³]	paper) and using the
m	Consistency index	7.234	condition that the
n	Power law index	0.5088	Density variation
σ	Surface tension of the drop/air	0.039 [N/m]	between monomer and
	interface		polymer is usually less
θ		200	than 10% (Refs. 31,33
	Contact angle	20	in the mian paper)
k ₁	Thermal conductivity of drop	0.603 [W/m/K]	Ref. 49 (in the main
			paper)
C _{p1}	Heat capacity (at constant	4250[J/kg/K]	Ref. 50 (in the main
	pressure) of the drop		paper)
H _r	Heat of polymerization	-50 [kJ/mol]	
	reaction		
Ep	Activation energy for the	29.7 [kJ/mol]	
	propagation reaction		

Et	Activation energy for the	22.2 [kJ/mol]	
	termination reaction		Ref. 32 (in the main
A _{p*}	Frequency factor for the	2.5 ×10 ⁹ [L/mol/s]	paper)
	propagation reaction for case 1		
	$(\tau_s << \tau_p)$		
A _t *	Frequency factor for the	10 ¹¹ [L/mol/s]	
	termination reaction		