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Figure S1(a-h): Temperature distribution within the spreading polymer drop (radius 0.01 mm)  

at different time instants for case 1 (τs<<τp). Here we have τs ≈ 1.1 ms and τp ≈ 66 ms.  

 

 

 

Figure S2(a-h): Temperature distribution within the spreading polymer drop (radius 0.01 mm) at 

different time instants for case 2 (τs~τp). Here we have τs ≈ 1.1 ms and τp ≈ 3.3 ms.  
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Figure S3(a-h): Curing profiles within the spreading polymer drop (radius 0.01 mm) at different 

time instants for case 1 (τs<<τp). Here we have τs ≈ 1.1 ms and τp ≈ 66 ms. In the inset of each 

subfigure, we plot the variation of the curing profile with a much smaller range of the color bar 

for highlighting the curing profiles (or equivalently, a distribution of the monomer concentration) 

within the drop itself at a given time instant.  
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Figure S4(a-h): Curing profiles within the spreading polymer drop (radius 0.01 mm) at different 

time instants for case 2 (τs~τp). Here we have τs ≈ 1.1 ms and τp ≈ 3.3 ms. In the inset of each 

subfigure, we plot the variation of the curing profile with a much smaller range of the color bar 

for highlighting the curing profiles (or equivalently, a distribution of the monomer concentration) 

within the drop itself at a given time instant. 
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Figure S5: Variation of the average temperature of the drop with t/τc for (a) Case 1 and (b) Case 

2 for the drops of three different sizes. The different parameters have been summarized in the 

caption of Fig. 8 of the main paper. 

 
 

 

Figure S6: Variation of the average degree of cure for the drop with t/τc for (a) Case 1 and (b) 

Case 2 for the drops of three different sizes. The different parameters have been summarized in 

the caption of Fig. 8 of the main paper.  
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Figure S7: Velocity distribution within the spreading polymer drop at different time instants for 

case 1 (τs<<τp) for a drop of radius 0.1 mm. Here we have τs ≈ 10.2 ms and τp ≈ 660 ms. Velocity 

profiles within the air have not been shown for the sake of clarity. 

  



	 S7 

 

 
Figure S8: Velocity distribution within the spreading polymer drop at different time instants for 

case 2 (τs~τp) for a drop of radius 0.1 mm. Here we have τs ≈ 10.2 ms and τp ≈ 66 ms. Velocity 

profiles within the air have not been shown for the sake of clarity. 
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Figure S9: Temperature distribution within the spreading polymer drop at different time instants 

at different time instants for case 1 (τs<<τp) for a drop of radius 0.1 mm. Here we have τs ≈ 10.2 

ms and τp ≈ 660 ms.  
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Figure S10: Temperature distribution within the spreading polymer drop at different time 

instants at different time instants for case 2 (τs~τp) for a drop of radius 0.1 mm. Here we have τs ≈ 

10.2 ms and τp ≈ 66 ms.  
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Figure S11: Curing profiles within the spreading polymer drop at different time instants for case 

1 (τs<<τp) for a drop of radius 0.1 mm. Here we have τs ≈ 10.2 ms and τp ≈ 660 ms. 

 

 

 

 

 

 

 

 

 

Figure S12: Progression of the curing front (corresponding to α=0.4) within the spreading 

polymer drop at different time instants for case 1 (τs<<τp) for a drop of radius 0.1 mm. Here we 

have τs ≈ 10.2 ms and τp ≈ 660 ms. 
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Figure S13: Curing profiles within the spreading polymer drop at different time instants for case 

2 (τs~τp) for a drop of radius 0.1 mm. Here we have τs ≈ 10.2 ms and τp ≈ 66 ms. Here we have τs 

≈ 10.2 ms and τp ≈ 66 ms. 

 

 

 

 

Figure S14: Progression of the curing front (corresponding to α=0.1) within the spreading 

polymer drop at different time instants for case 2 (τs~τp) for a drop of radius 0.1 mm. Here we 

have τs ≈ 10.2 ms and τp ≈ 66 ms. 
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Figure S15: Velocity distribution within the spreading polymer drop at different time instants 

for case 1 (τs<<τp) for a drop of radius 1 mm. Here we have τs ≈ 107 ms and τp ≈ 1200 ms. 

Velocity profiles within the air have not been shown for the sake of clarity. 
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Figure S16: Velocity distribution within the spreading polymer drop at different time instants 

for case 1 (τs~τp) for a drop of radius 1 mm. Here we have τs ≈ 107 ms and τp ≈ 660 ms. Velocity 

profiles within the air have not been shown for the sake of clarity. 
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Figure S17: Temperature distribution within the spreading polymer drop at different time 

instants at different time instants for case 1 (τs<<τp) for a drop of radius 1 mm. Here we have τs ≈ 

107 ms and τp ≈ 1200 ms.  
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Figure S18: Temperature distribution within the spreading polymer drop at different time 

instants at different time instants for case 1 (τs~τp) for a drop of radius 1 mm. Here we have τs ≈ 

107 ms and τp ≈ 660 ms.  
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Figure S19: Curing profiles within the spreading polymer drop at different time instants for case 

1 (τs<<τp) for a drop of radius 1 mm. Here we have τs ≈ 107 ms and τp ≈ 1200 ms. 

 

 

 

 

Figure S20: Progression of the curing front (corresponding to α=0.3) within the spreading 

polymer drop at different time instants for case 1 (τs<<τp) for a drop of radius 1 mm. Here we 

have τs ≈ 107 ms and τp ≈ 1200 ms. 
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Figure S21: Curing profiles within the spreading polymer drop at different time instants for case 

2 (τs~τp) for a drop of radius 1 mm. Here we have τs ≈ 107 ms and τp ≈ 660 ms. 

 

 

 

 

 

Figure S22: Progression of the curing front (corresponding to α=0.4) within the spreading 

polymer drop at different time instants for case 2 (τs~τp) for a drop of radius 1 mm. Here we have 

τs ≈ 107 ms and τp ≈ 660 ms. 
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Table S1: Different Timescales for Drops of Different Sizes 

Drop radius 

(mm) 

τc (miliseconds) τs (miliseconds) τp (miliseconds) 

for Case 1 

τp (miliseconds) 

for Case 2 

1 7.21 107 660 1200 

0.1 0.228 10.2 66 660 

0.01 7.21×10−3 1.1 66 3.3 
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Table S2: Definition and values of the different parameters used for simulating the the	1-

mm drop of 1 wt % of carboxymethylcellulose (CMC) solution (those that are not reported 

are identical to those reported in Table 1 in the main paper) (Here we don’t have the 

literature for the values that dictate the polymerization process of the CMC drop; 

therefore, we have chosen these values to be such that ensures that τs<<τp. Under such 

conditions, the exact values of these parameters don’t matter as long as they ensure τs<<τp) 

Parameter Definition Value Reference 

ρ! Density of monomer 1590 [kg/m3] Ref. 48 (in the main 

paper) and using the 

condition that the 

Density variation 

between monomer and 

polymer is usually less 

than 10% (Refs. 31,33 

in the mian paper) 

ρ! Density of polymer 1750 [kg/m3] 

m Consistency index 7.234 

n Power law index 0.5088 

σ Surface tension of the drop/air 

interface 

0.039 [N/m] 

θ 
Contact angle 200 

k1 Thermal conductivity of drop  0.603 [W/m/K] Ref. 49 (in the main 

paper) 

Cp1 Heat capacity (at constant 

pressure) of the drop 

4250[J/kg/K] Ref. 50 (in the main 

paper) 

Hr Heat of polymerization 

reaction 

-50 [kJ/mol]  

 

 

 

Ep Activation energy for the 

propagation reaction 

29.7 [kJ/mol] 



	 S20 

Et Activation energy for the 

termination reaction 

22.2 [kJ/mol]  

Ref. 32 (in the main 

paper) Ap* Frequency factor for the 

propagation reaction for case 1 

(τs<<τp)  

2.5 ×109 [L/mol/s] 

At*   Frequency factor for the 

termination reaction  

1011 [ L/mol/s] 

 


