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1 Accuracy and robustness of the viscoelastic modeling.

In this section we present some details of the model fitting, especially in relation to the 
viscoelastic exponents. We examine the TiO2 sample to check the modelling, and show some 
results for other systems later in the SI. Here, we point out an inherent limitation of the 
eQCM-D for studying SEI. The solid liquid interface is quite complex in Lithium batteries and 
is frequently comprised of multiple layers. Lithium intercalates into the outer material, 
thereby modifying it while an inner inorganic and outer organic SEI layer forms at the 
interface1-2. Additionally, these layers can vary spatially in homogeneity and porosity. While 
the acoustic shear waves of the QCM are sensitive to these factors, the reliance on a model 
makes these factors difficult to elucidate. This is further complicated by the fact that neither 
the structure nor the physical properties of the layer are known a priori. In this section, in 
addition to exploring the robustness of our fits, we also explore the contributions these 
effects have on our system. 

1.1Third order Perturbation Analysis
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The derivation of Equation S1 (Equation 3 in the main text) relies on the Small Load 
Approximation (SLA), which strictly applies only when layers are thin, and shifts are small.
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To cover for the regimes with thick SEI formation, we use a modified version of equation 3 / 
S1 for our fitting. The third order perturbation equation2 (S2) contains (small) correction 
terms that avoid errors in the SLA due to large shifts. These errors usually show up in the n-
dependence of . For our experimental data, we only see small differences in the model 𝐽𝑓(𝜔)
outputs of the two approaches. The third order perturbation equation mainly improves the 
fits for the half band-width shifts.

1.2Quality of overall fit, as a function of viscoelastic exponents

We first focus on the effect of the viscoelastic exponents on the goodness of fit; the Root 
Mean Squared Error (RMSE):
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𝑛
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Where  is the frequency or half-bandwidth shift and the summation is over the whole 𝑥
experiment for overtones 5 through 13. Fig. S1 shows maps of the RMSE of the frequency 
shift, bandwidth shift and the combination. During fitting, it is the RMSE of the combination 
that is minimized. As predicted by Equation 3 / S1, the RMSE of the frequency shift is most 
dependent on  and that of the half-bandwidth shift on . The overall RMSE shows a shallow 𝛽" 𝛽′

minimum, implying that the choices of   and  are not extremely critical (within a small 𝛽′  𝛽"

range) to the fits. At the minimum, the RMSE is below 20Hz which for our system at overtone 
5 corresponds to a Sauerbrey mass of 6.5x10-7 kgm-2 (i.e. well below the found masses of O 
(10-5 kgm-2). For the other overtones, the fitting error is similar.

Fig S1. Maps of the Root Mean Squared Error (RMSE) for the grid-fit of the QCM data for TiO2 
(all cycles in Fig. 2 of main text), allowing the exponents  and to vary independently within 𝛽′  𝛽"

their physical bounds. Left: frequency, Center: half bandwidth shift and Right: combination 



S3

Fig S2. (A) Experimental frequency shifts normalized by overtone number. (B-F) Experimental 
frequency shift (black) and closest modeled shift (blue) and shifts for 24 nearby combinations 
of the viscoelastic exponents (red) for each overtone. Inset is a zoom of the boxed region.

Fig S3. (A) Experimental half bandwidth shifts for all overtones. (B-F) Half bandwidth shifts 
per overtone from experiments (black), best model fit (blue) and 24 nearby combinations of 
the viscoelastic exponents (red). 
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We now examine 25 model fits from the variation of the combination of  and  around the 𝛽′  𝛽"

best one. From the best combination, each exponent was varied in steps of 0.2 for a total 
range of 0.8 (40% of total range) within the bounding values. Figures S2 and S3 show the 
experimental and modelled frequency- and half-bandwidth- shifts for these combinations. 
From Fig. S2A it is clear that there is a non-zero viscoelastic compliance, as the normalized 
frequency-shift curves do not superimpose. Fig. S3A shows that the half-bandwidth shifts 
almost superimpose, which implies that the layer’s elastic compliance is nearly proportional 
to . This is consistent with the best fits being found for  and . 𝑛 ―2 𝛽′ = ―2  𝛽′′ = 1

Fig. S2 also shows that for a reasonable range of the exponents, there is almost no visible 
difference in the modelled frequency-shifts. This implies that the viscous compliance makes 
only a minor contribution to the frequency shift.  As a consequence, the fitted layer mass 
should be largely decoupled from the fitted compliance and depend mainly on the frequency 
shift (approaching the Sauerbrey result: as  , the second term in the bracket of equation 𝐽→0
3 / S1 goes to zero). 

While the RMSE values for the frequency and half bandwidth shift are similar, the differences 
in the modelled half-bandwidth curves for different exponents are larger. This is due to the 
proportional dependence of the half bandwidth shifts on the elastic compliance.

1.3 Fitted mass and compliances as a function of visco-elastic 
exponents

To examine the uncertainties in the fit parameters (i.e. , and ), we calculate the 𝑚𝑓 𝐽′𝑟𝑒𝑓 𝐽"
𝑟𝑒𝑓

Root Mean Squared Difference (RMSD):
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Where  is the parameter for the choice of   and and the summation is over the whole 𝑥 𝛽′  𝛽"

experiment (as before). The RMSD shows us how far a predicted curve for a set of  and  𝛽′ 𝛽"

is from the curve predicted for the lowest RMSE. Figure S4 shows maps of the logarithm of 
the RMSD for , and . As expected from the form of Equation 3 / S1, the  and 𝑚𝑓 𝐽′𝑟𝑒𝑓 𝐽"

𝑟𝑒𝑓 𝑚𝑓
 RMSD depend mainly on  and the  RMSD on . The low values of the  RMSD 𝐽"

𝑟𝑒𝑓 𝛽" 𝐽"
𝑟𝑒𝑓 𝛽′ 𝑚𝑓

around the best fit compared to the mean  throughout the experiment again confirm that 𝑚𝑓
 is rather insensitive to the choice of the exponents. 𝑚𝑓
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Fig S4. Maps of the logarithm of the Root Mean Squared Difference (RMSD) for Left: , 𝑚𝑓
Center:  and Right:  fitted over the whole experiment, as a function of the exponents  𝐽" 𝐽′ 𝛽′

and . Regions with a RMSD below 1% of the mean of the variable are in dark blue. For  and   𝛽" 𝐽′
 the first 1000s are excluded from the RMSD calculation due to the small layer thickness and 𝐽"

hence high uncertainty.

While the RMSD provides a good measure of how sensitively an extracted fit parameter 
depends on chosen constraints (i.e. the values taken for  and ), it does not show how this 𝛽′ 𝛽"

‘error’ manifests in the time-dependent functions. In Fig. S5 we examine the outputs of , 𝑚𝑓
and  for different combinations of the exponents around the best choice. There is a 𝐽′𝑟𝑒𝑓 𝐽"

𝑟𝑒𝑓
negligible difference in the different  curves, again indicating that the fitted value of 𝑚𝑓 𝑚𝑓 
should be accurate, given reasonable choices for the viscoelastic exponents. The and  𝐽′𝑟𝑒𝑓 𝐽"

𝑟𝑒𝑓
curves on the other hand are visibly different. However, the different exponent choices just 
offset the curves. Thus, while their absolute values may be inaccurate, the trends in their 
values over the experiment should be reliable.

Fig S5. Extracted fit parameters (A) , (B)   and (A)  for the best (black) and 24 next  𝑚𝑓  𝐽′′𝑟𝑒𝑓  𝐽′𝑟𝑒𝑓
best (red) combinations of the viscoelastic exponents. Insets are a zoom of the boxed region. 

 and  curves have been Savitz-Golay smoothed to aid visibility.𝐽′′𝑟𝑒𝑓 𝐽′𝑟𝑒𝑓
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1.4 Fitted mass and compliances as a function of estimated layer 
density

We now consider the effect of the estimated layer density on the modelling results in Fig. S6. 
We performed the fitting for layer densities from 1000 to 2000 Kgm-3. Similar to the effect of 
the exponents, there is no effect of the layer density on , while the and  curves 𝑚𝑓 𝐽′𝑟𝑒𝑓 𝐽′′𝑟𝑒𝑓
are offset.

Fig S6. Model outputs (A) , (B)   and (A)  for eleven different layer densities (1000- 𝑚𝑓  𝐽′′𝑟𝑒𝑓  𝐽′𝑟𝑒𝑓
2000 kgm-3). Insets are a zoom of the boxed region.  and  curves have been SG 𝐽′′𝑟𝑒𝑓 𝐽′𝑟𝑒𝑓
smoothed to aid visibility.

1.5 Effect of multilayers

From the small load approximation, for a layer that has a compliance that varies with the 
thickness , viz. a multilayer, if the densities are very close (  and the layer is thin2,𝑧 𝜌𝑙 ≈ 𝜌𝑓)

∆𝑓
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0
[1 ― 𝑖2𝜋𝑓0𝜂𝑙 𝐽𝑓(𝜔,𝑧)]𝑑𝑧

From this equation, it is clear for a small viscous compliance (~10-8 Pa-1), the real part of the 
second term is small (order 10-4) and thus the effect of a multilayer structure on the predicted 
mass is very small. There will however be an effect on the predicted, now z-dependant, elastic 
compliance. Without prior knowledge on the actual multilayer structure, it is not possible to 
qualify this effect and the predicted compliance becomes an ‘apparent compliance’ for the 
multilayer as a whole.
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1.6 Effect of roughness

The roughness found for typical SEI layers has a lateral scale  much smaller than the shear 𝑙𝑟
wave penetration depth . For a roughness of height , assuming a rigid layer2,𝛿 ℎ𝑟
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2

𝛿2 ]

The case  corresponds to the bare crystal in liquid. For SEI,  is of the order of a few ℎ𝑟 = 0 ℎ𝑟
nm,  close to 1000nm and  a few tens of nanometers. Thus, the second two terms in the 𝛿 𝑙𝑟
bracket are quite small leading to frequency shifts of a few to a few tens of Hertz and a 
bandwidth shift below 1 Hertz. This is well below the fitting error of the experiment and thus 
not expected to play a role.

2 Other Graphs

2.1 Raman Spectroscopy of Sputtered Carbon

The sputtered Carbon layer as used in the eQCM-D experiments was mimicked by DC 
magnetron sputtering Carbon on a Si wafer using a graphite (99.999%) target disk in an Argon 
plasma at a pressure of 6.6 µbar (as in Section 2.2). 

Raman measurements were done with a WiTec alpha 300R Raman microscope connected to 
a 532 nm laser. A 600 g/mm grating was used, providing a spectral resolution of around 2.3 
cm-1. For high spatial resolution, a 100× objective (Zeiss EC “Epiplan-Neofluar” DIC, Numerical 
Aperture (NA) = 0.9) was chosen. Laser power at the sample was measured using an optical 
power meter (Thorlabs) and was kept at 20 mW. Raman mapping was performed by raster 
scanning across a 50 x 50 µm2 region at a resolution of 100 x 100 pixels. For clarity, the 
notation I(D) and I(G) refer to the peak intensity values of the D and G band, observed in the 
Raman spectrum of the carbon coating at 1350 cm-1 and 1542 cm-1 respectively.

Fig S7 : (a) I(D)/I(G) ratio map of a 50 x 50 µm2 region showing uniform distribution of the 
amorphous nature of the carbon coating. (b) Mean Raman spectrum of the same region as in 
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(a), showing a broad D and G band at 1350 cm-1 and 1542 cm-1 respectively, characteristic of 
amorphous carbon. 

Raman spectroscopy is a versatile tool for determination of the crystallinity of carbonaceous 
materials. By monitoring the peak position of the G band and the I(D)/I(G) ratio, one could 
comment on the crystallinity of the substrate.3 Comparing the values with literature (refer 
stage 2 in Fig. 4 of ref. 3), we find that the I(D)/I(G) ratio (~0.98), as shown in Fig. S7a, and the 
G band position (1542 cm-1) as shown in the mean Raman spectrum of the coating in Fig. S7b, 
are close to the values characteristic of amorphous carbon. Crystalline domains could alter 
the I(D)/I(G) ratio and G peak position considerably. By mapping the I(D)/I(G) ratio over a 
certain region (Fig. S7a), we can conclude that the amorphous nature of the coating is 
uniform, with the ratio varying only between 0.97 and 0.99 over a 50 x 50 µm2 region. 

2.2 X-ray Reflectivity and Diffraction on Sputtered Carbon

The same sputtered layer was also studied with X-ray reflectivity and diffraction. Measure-
ments were done using a Bruker D8 Discover X-ray diffractometer with a rotating anode 
microfocus X-ray source (TXS) combined with a focusing mirror (Montel). Cu-Kα radiation was 
used to illuminate the sample.
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Fig S8. Left: X-ray reflectivity versus 2Θ (Θ=incident angle). The periodic pattern for 2Θ > 0.5 
degrees indicates the presence of a ~17 nm thick (Carbon) layer. Right: X-ray diffractogram, 
for 2Θ =21-33 degrees. Absence of the typical (002) reflection at 25.5 degrees indicates that 
the Carbon layer is amorphous. 

To confirm the presence of the Carbon layer, an X-ray reflectivity measurement was done. 
The resulting spectrum in Fig. S8 (left) confirms the presence of a layer with a thickness that 
is in good accordance with the sputtering time. The angle dependent scattered intensity 
showed a very gradually decreasing intensity, without showing even the strongest character-
istic (002) crystalline peak of graphite (expected at 2Θ ~25.5 degrees for Cu-Kα radiation4-5); 
see Fig. S8 (right) for a broad angular range around this peak. This confirms that the Carbon 
layer is amorphous. 
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2.3 Cyclic Voltammetry

Fig S9. Cyclic Voltammograms for Left: TiO2 and Right: Carbon for the experiment in Figure 2 
(main text).The voltage windows are 3.4V to Red: 1.5V Teal: 1V Gray: 0.5V and Black:0V.

2.4 Correlations between mass and elastic compliance in growth and shrink 
stages
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Fig S10. Correlation plots for the shrinkage and growth of  and  for TiO2 and Carbon 𝑚𝑓 𝐽′𝑟𝑒𝑓
within the same charge-discharge cycle, based on Fig. 7. The black line represents a 1:1 
correlation. For  the first 4 cycles have been omitted.𝐽′𝑟𝑒𝑓

References

1. Kim, S.-P.; Van Duin, A. C.; Shenoy, V. B., Effect of electrolytes on the structure and 
    evolution of the solid electrolyte interphase (SEI) in Li-ion batteries: A molecular dynamics 
    study. Journal of Power Sources 2011, 196 (20), 8590-8597.
2. Johannsmann, D., The quartz crystal microbalance in soft matter research. Fundamentals 
    and modeling. Switzerland: Springer International Publishing 2015.
3. Ferrari, A. C.; Robertson, J., Raman spectroscopy of amorphous, nanostructured, 
    diamond–like carbon, and nanodiamond. Philosophical Transactions of the Royal Society 
    of London. Series A: Mathematical, Physical and Engineering Sciences 2004, 362 (1824), 
    2477-2512.
4. Franklin, R. E., the interpretation of diffuse x-ray diagrams of carbon. Acta 
    Crystallographica 1950, 3 (2), 107-121.
5. Li, Z. Q.; Lu, C. J.; Xia, Z. P.; Zhou, Y.; Luo, Z., X-ray diffraction patterns of graphite and 
    turbostratic carbon. Carbon 2007, 45 (8), 1686-1695.


