Supporting Information for

Local Order and Rotational Dynamics in Mixed A-Cation Lead Iodide Perovskites

Giuseppe Fisicaro, Antonino La Magna, Alessandra Alberti, Emanuele Smecca,

Giovanni Mannino, and Ioannis Deretzis*

Istituto per la Microelettronica e Microsistemi (CNR-IMM), Z.I. VIII strada 5, 95121 Catania, Italy

E-mail: ioannis.deretzis@imm.cnr.it

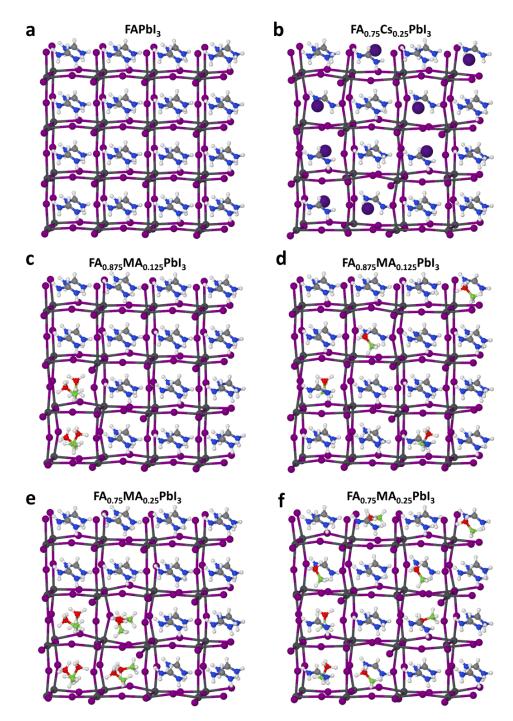


Figure S1: Initial configurations used for the molecular dynamics calculations. (a) FAPbI₃, (b) FA_{0.75}Cs_{0.25}PbI₃, (c) FA_{0.875}MA_{0.125}PbI₃ with the MA⁺ ions clustered in the corner of the computational box (d) FA_{0.875}MA_{0.125}PbI₃ with the MA⁺ ions homogeneously distributed within the computational box, (e) FA_{0.75}MA_{0.25}PbI₃ with the MA⁺ ions clustered in the corner of the computational box (f) FA_{0.75}MA_{0.25}PbI₃ with the MA⁺ ions homogeneously distributed within the computational box. Periodic boundary conditions are applied in all cases. The C and N atoms of MA⁺ and FA⁺ have different colors for clarity.

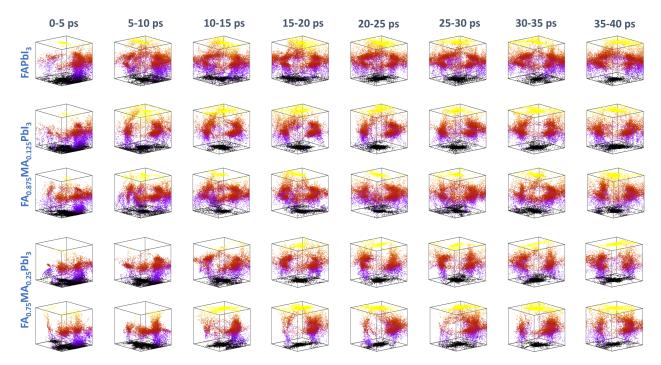


Figure S2: Orientations of the molecular dipoles of the FA⁺ cations projected on the cubic inorganic cage for every 5 ps of simulation time. From upper to lower: FAPbI₃, FA_{0.875}MA_{0.125}PbI₃ with the MA⁺ ions homogeneously distributed within the computational box, FA_{0.875}MA_{0.125}PbI₃ with the MA⁺ ions clustered in the corner of the computational box, FA_{0.75}MA_{0.25}PbI₃ with the MA⁺ ions homogeneously distributed within the computational box, FA_{0.75}MA_{0.25}PbI₃ with the MA⁺ ions clustered in the corner of the computational box, FA_{0.75}MA_{0.25}PbI₃ with the MA⁺ ions clustered in the corner of the computational box.

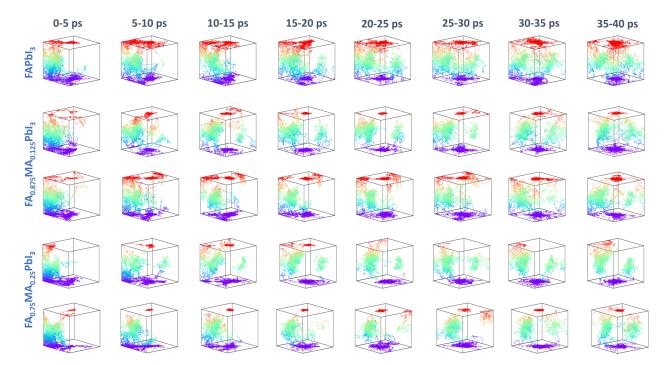


Figure S3: Orientations of the N-N axes of the FA⁺ cations projected on the cubic inorganic cage for every 5 ps of simulation time. From upper to lower: FAPbI₃, FA_{0.875}MA_{0.125}PbI₃ with the MA⁺ ions homogeneously distributed within the computational box, FA_{0.875}MA_{0.125}PbI₃ with the MA⁺ ions clustered in the corner of the computational box, FA_{0.75}MA_{0.25}PbI₃ with the MA⁺ ions homogeneously distributed within the computational box, FA_{0.75}MA_{0.25}PbI₃ with the MA⁺ ions clustered in the corner of the computational box, FA_{0.75}MA_{0.25}PbI₃ with the MA⁺ ions clustered in the corner of the computational box.

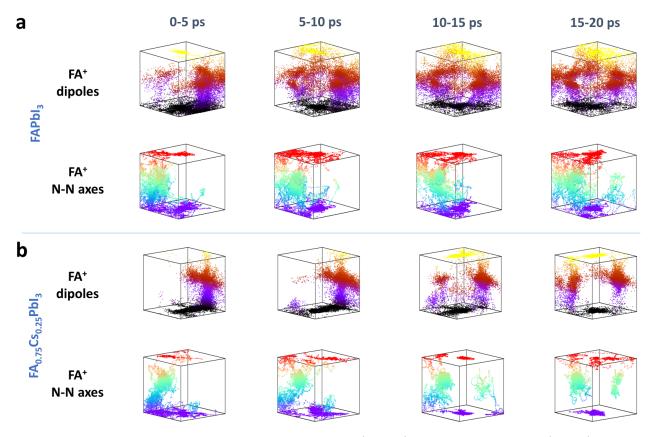


Figure S4: Orientations of the molecular dipoles (upper) and the N-N axes (lower) of the FA⁺ cations projected on the cubic inorganic cage for every 5 ps of simulation time in the case of (a) FAPbI₃ and (b) $FA_{0.75}Cs_{0.25}PbI_3$.

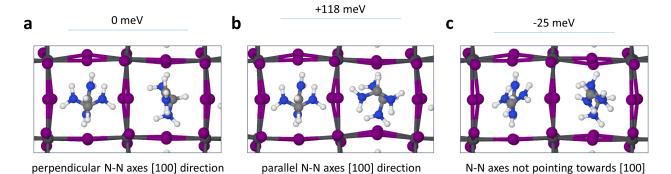


Figure S5: Comparison of the ground state energy for a FAPbI₃ system in a $2 \times 2 \times 2$ supercell having two of the FA⁺ cations with (a) perpendicular N-N axes pointing towards $\langle 100 \rangle$ directions, (b) perpendicular N-N axes pointing towards the same [100] direction and (c) N-N axes not pointing towards $\langle 100 \rangle$ directions.