Separation of Benzene and Cyclohexane by Nonporous Adaptive Crystals of a Hybrid[3]arene

Jiong Zhou, Guocan Yu,* Qing Li, Mengbin Wang, and Feihe Huang*

State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China; Fax and Tel: +86-571-8795-3189; Email: <u>guocanyu@zju.edu.cn</u>; <u>fhuang@zju.edu.cn</u>

Supporting Information (18 pages)

1.	Materials	S2
2.	Methods	S2
3.	Synthesis of Hybrid[3]arene 1	S 4
4.	Crystallographic Data	S5
5.	Characterization of Activated 1 Crystals (1α)	S 6
6.	Single-Component Bz/Cy Adsorption Experiments	S 8
7.	Noncovalent Interactions Analysis in Single Crystal Structure of Bz@1	S14
8.	Uptake from a Bz/Cy Mixture by 1 α	S15
9.	Recyclability of 1a	S17
10.	References	S18

1. Materials

All chemicals, including benzene (**Bz**) and cyclohexane (**Cy**), were purchased and used as received. Hybrid[3]arene (1) was synthesized as described previously.^{S1} Activated crystalline 1 (1 α) was recrystallized from acetone and dried under vacuum at 150 °C overnight.

2. Methods

2.1. Solution NMR

Solution ¹H NMR spectra were recorded at 400.13 MHz using a Bruker Avance 400 NMR spectrometer.

2.2. Powder X-Ray Diffraction

Powder X-ray diffraction (PXRD) data were collected on a Rigaku Ultimate-IV X-ray diffractometer operating at 40 kV/30 mA using the Cu K α line ($\lambda = 1.5418$ Å). Data were measured over the range of 5–45° in 5°/min steps over 8 min.

2.3. Thermogravimetric Analysis

Thermogravimetric analysis (TGA) was carried out using a Q5000IR analyzer (TA Instruments) with an automated vertical overhead thermobalance. The samples were heated at 10 $^{\circ}$ C/min using N₂ as the protective gas.

2.4. Single Crystal Growth

Single crystals of Bz@1 were grown by slow evaporation: 5 mg of dry 1 were put in a small vial where 1 mL of Bz was added. The resultant transparent solution was allowed to evaporate slowly to give colorless crystals in 2 to 3 days.

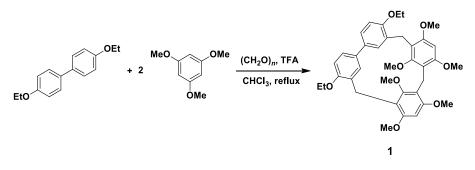
2.5. Single Crystal X-ray Diffraction

Single crystal X-ray diffraction data were collected on a Bruker D8 VENTURE CMOS X-ray diffractometer with graphite monochromated Mo K α radiation ($\lambda = 0.71073$ Å).

2.6. Gas Sorption Measurement

Low-pressure gas adsorption measurements were performed on a Micrometritics Accelerated Surface Area and Porosimetry System (ASAP) 2020 surface area analyzer. Samples were degassed under dynamic vacuum for 12 h at 60 $^{\circ}$ C prior to each measurement. N₂ isotherms were measured using a liquid nitrogen bath (77 K).

2.7. Vapor Sorption Measurement


Bz and **Cy** sorption isotherms were measured via a Micromeritic 3Flex instrument. Samples were degassed under dynamic vacuum for 12 hours at 80 °C prior to each measurement. The isotherms were collected at 25 °C by monitoring the volume changes.

2.8. Gas Chromatography

Head Space Gas Chromatographic (HS-GC) Analysis: HS-GC measurements were carried out using an Agilent 7890B instrument configured with an FID detector and a DB-624 column (30 m × 0.53 mm × 3.0 μ m). Samples were analyzed using headspace injections and were performed by incubating the sample at 100 °C for 10 min followed by sampling 1 mL of the headspace. The following GC method was used: the oven was programmed from 50 °C ramped in 10 °C min⁻¹ increments to 150 °C with 15 min hold; the total run time was 25 min; the injection temperature was 250 °C; the detector temperature was 280 °C with nitrogen, air, and make-up flow rates of 35, 350, and 35 mL min⁻¹, respectively; the helium (carrier gas) flow rate was 3.0 mL min⁻¹. The samples were injected in the split mode (30:1).

3. Synthesis of Hybrid[3]arene 1

Hybrid[3]arene **1** was prepared according to a literature procedure.^{S1}

4. Crystallographic Data

Table S1. Experimental single crystal X-ray data for **Bz@1**.

Formula	Bz@1
Crystallization Solvent	benzene
Collection Temperature (K)	273
Formula	$C_{43}H_{48}O_8$
Formula Weight	692.81
Crystal System	Triclinic
Space Group	P-1
<i>a</i> [Å]	10.7525(3)
<i>b</i> [Å]	13.2311(4)
<i>c</i> [Å]	15.5424(4)
α [°]	105.2250(10)
β [°]	105.9030(10)
γ [°]	108.3520(10)
V [Å ³]	1865.15(9)
Z	2
$D_{\text{calcd}} \text{ [g cm}^{-3} \text{]}$	1.234
Absorption coefficient (mm ⁻¹)	0.084
<i>F</i> (000)	740
Theta range [°]	2.90-26.13
Reflections collected / unique	11849 / 7373 [<i>R</i> (int) = 0.0158]
Data / restraints / parameters	7373 / 0 / 468
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.1118, wR_2 = 0.1118$
R indices (all data)	$R_1 = 0.1186, wR_2 = 0.1186$
Goodness-of-fit on F^2	1.013
Largest difference peak and	0.414 and -0.341
hole [e.A ⁻³]	
CCDC	1962323

5. Characterization of Activated 1 Crystals (1α)

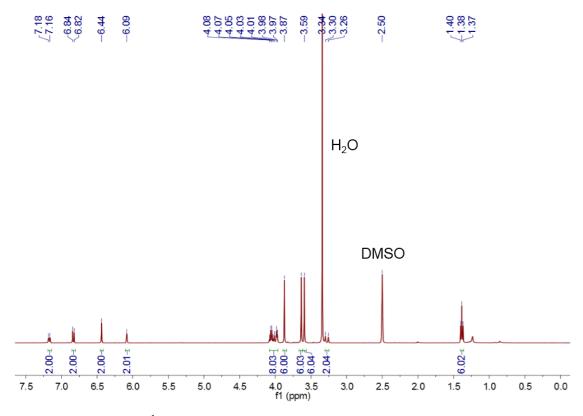
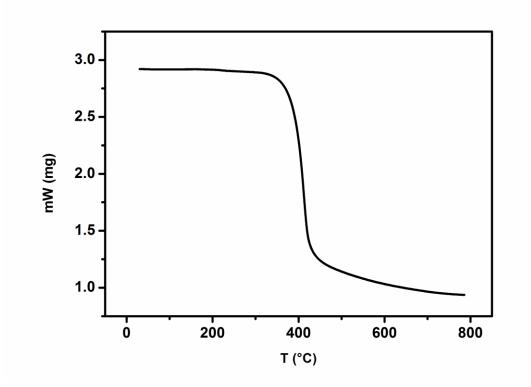



Figure S1. ¹H NMR spectrum (400 MHz, DMSO- d_6 , 293 K) of 1 α .

Figure S2. Thermogravimetric analysis of 1α .

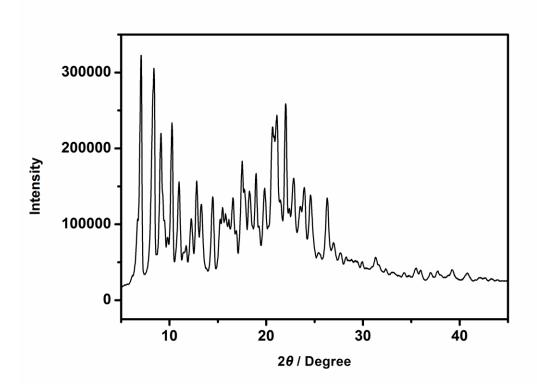
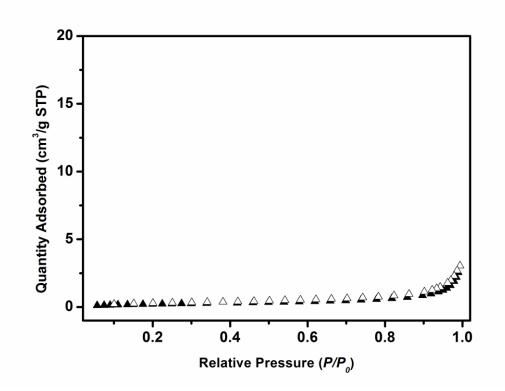



Figure S3. Powder X-ray diffraction pattern of 1α .

Figure S4. N₂ adsorption isotherm of 1α . The BET surface area value is 0.8995 m²/g. Adsorption, closed symbols; desorption, open symbols.

6. Single-Component Bz/Cy Adsorption Experiments

¹H NMR experiments were performed by dissolving 1α after vapor sorption in DMSO- d_6 . TGA profiles were recorded using 1α after vapor sorption.

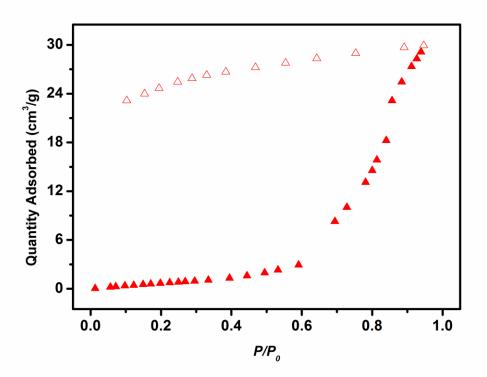


Figure S5. Vapor sorption isotherms of 1α towards Bz. Adsorption, solid symbols; desorption, open symbols.

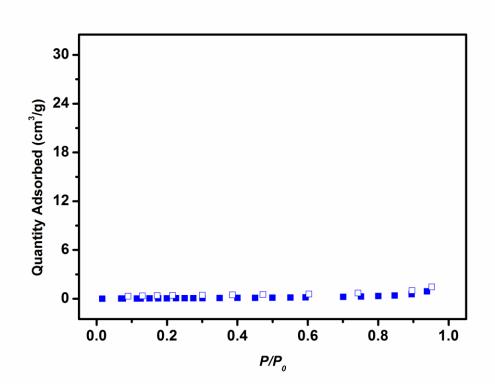


Figure S6. Vapor sorption isotherms of 1α towards Cy. Adsorption, solid symbols; desorption, open symbols.

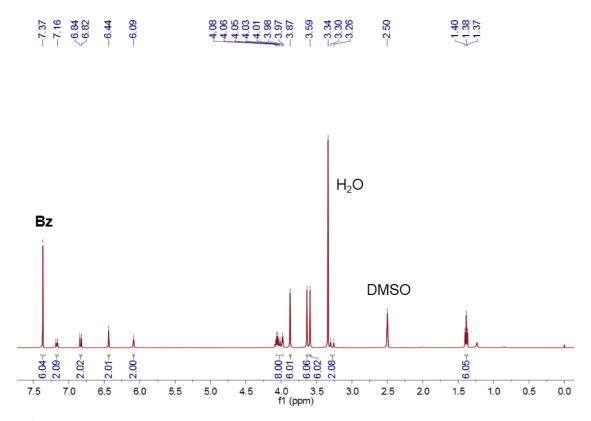


Figure S7. ¹H NMR spectrum (400 MHz, DMSO- d_6 , 293 K) of 1 α after sorption of Bz vapor for 12 h.

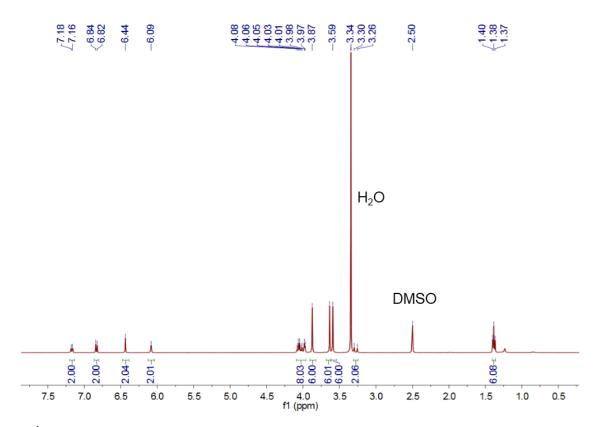


Figure S8. ¹H NMR spectrum (400 MHz, DMSO- d_6 , 293 K) of 1 α after sorption of Cy vapor for 12 h.

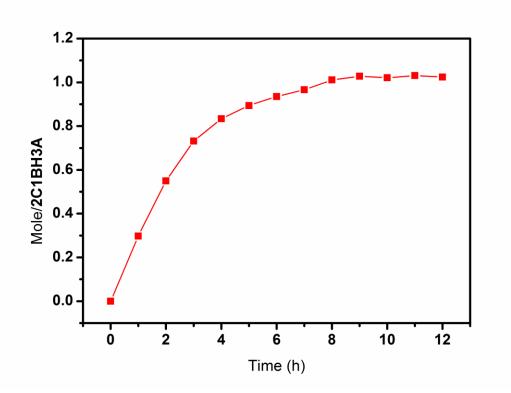


Figure S9. Time-dependent solid-vapor sorption plots of 1α for single-component Bz vapor.

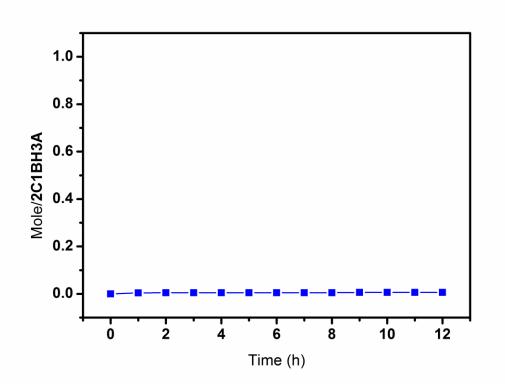
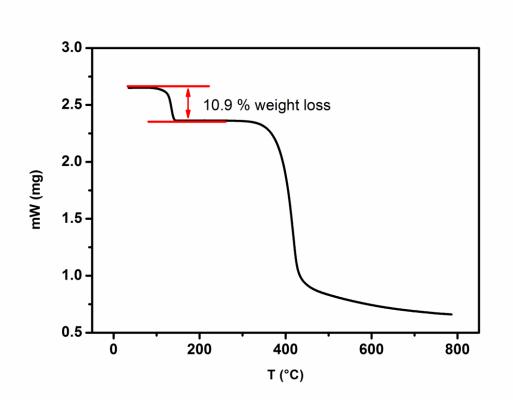



Figure S10. Time-dependent solid-vapor sorption plots of 1α for single-component Cy vapor.

Figure S11. Thermogravimetric analysis of 1α after sorption of **Bz** vapor for 12 h. The weight loss below 150 °C can be calculated as one **Bz** molecule per **1** molecule.

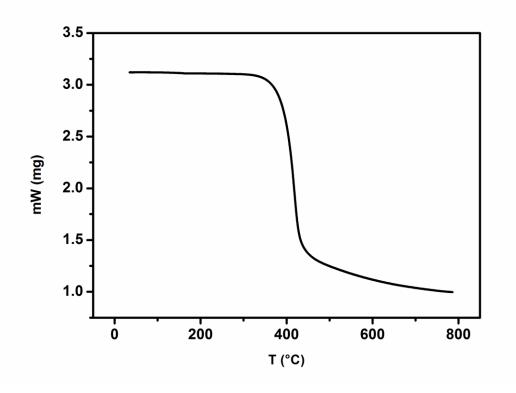
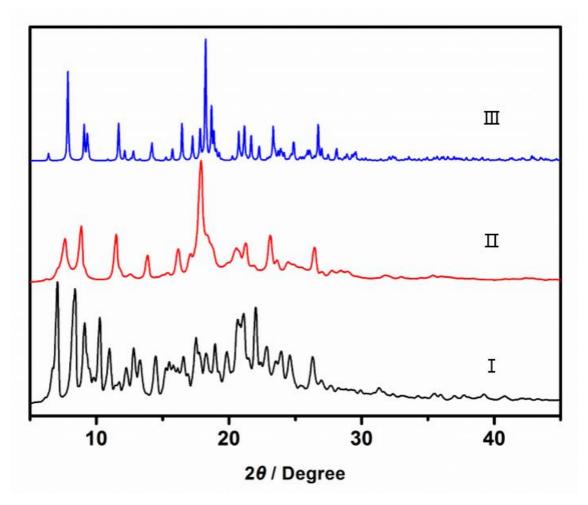
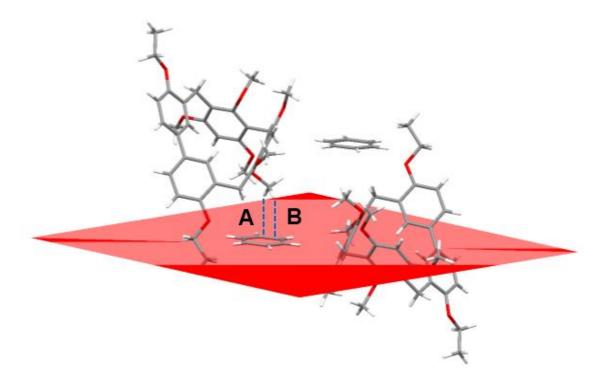




Figure S12. Thermogravimetric analysis of 1α after sorption of Cy vapor for 12 h.

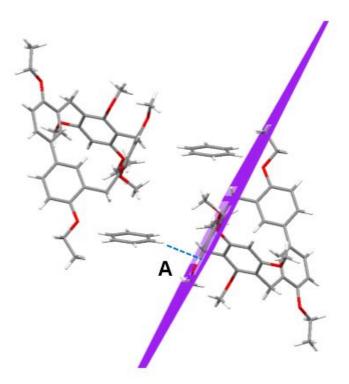


Figure S13. PXRD patterns of 1: (I) original 1α ; (II) after adsorption of **Bz** vapor; (III) simulated from single crystal structure of **Bz@1**.

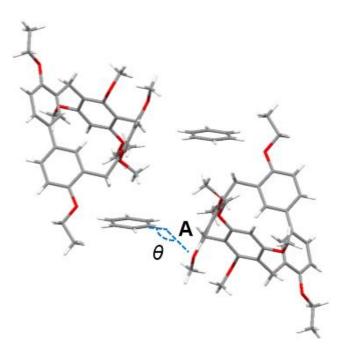

7. Noncovalent Interactions Analysis in Single Crystal Structure of Bz@1

Figure S14. Illustration of C–H··· π interactions between two H atoms on the methyl group of **1** and the benzene ring on **Bz**. H– π -plane distances: **A** = 2.712 Å; **B** = 2.932 Å.

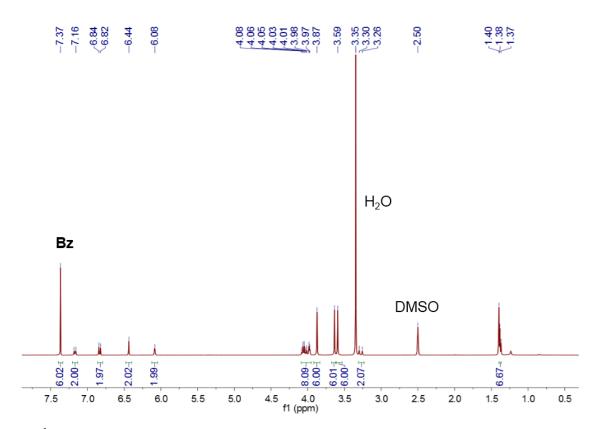
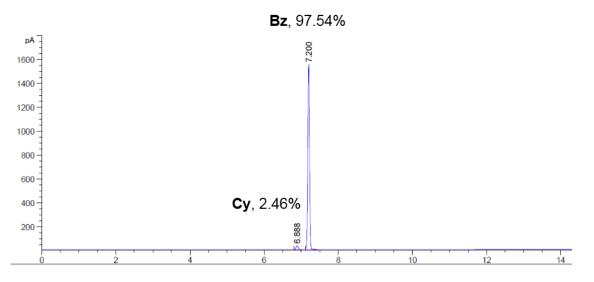
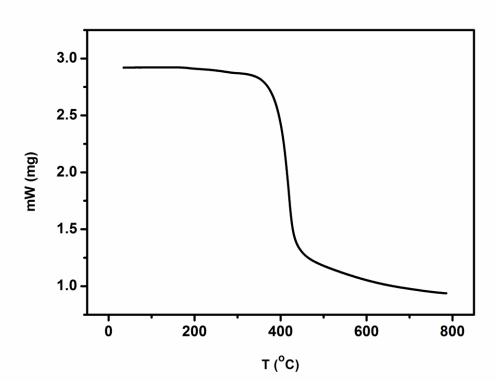
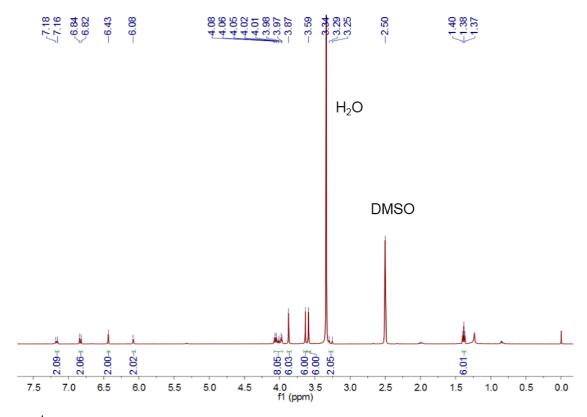

Figure S15. Illustration of a C–H··· π interaction between an H atom on **Bz** and a phenyl ring of **1**. H– π -plane distance: **A** = 2.651 Å.

Figure S16. Illustration of a C–H···O interaction between an O atom of **1** and an aromatic H atom of **Bz**. H–O distance: $\mathbf{A} = 2.982$ Å; C–H···O angle: $\theta = 125.34^{\circ}$.

8. Uptake from a Bz/Cy Mixture by 1α

An open 5 mL vial containing 0.0200 g of guest-free 1α adsorbent was placed in a sealed 20 mL vial containing 1 mL of an equimolar **Bz/Cy** mixture. Uptake by 1α was measured hour by hour by completely dissolving the crystals and measuring the ratio of **Bz** or **Cy** to 1 by ¹H NMR. The relative uptakes of **Bz** and **Cy** by 1α was also measured by heating the crystals to release the adsorbed vapor and detecting the relative amounts of **Bz** and **Cy** in the released vapor using gas chromatography.

Figure S17. ¹H NMR spectrum (400 MHz, DMSO- d_6 , 293 K) of 1α after sorption of an equimolar **Bz/Cy** mixture vapor for 12 h.

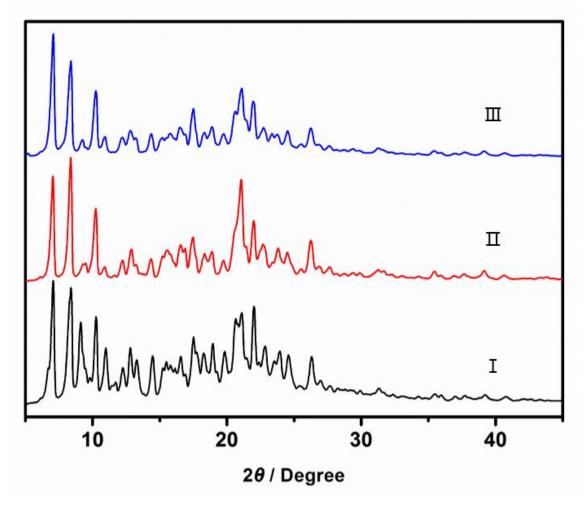

Figure S18. Relative uptakes of Bz and Cy adsorbed in 1α for 12 h using head space gas chromatography.

Figure S19. Thermogravimetric analysis of $Bz@1\alpha$ after heating at 100 °C under vacuum for 2 h.

Figure S20. ¹H NMR spectrum (400 MHz, DMSO- d_6 , 293 K) of **Bz**@1 α after heating at 100 °C under vacuum for 2 h.

Figure S21. Powder X-ray diffraction patterns of 1: (I) original 1α ; (II) 1α after heating at 100 °C under vacuum for 2 h; (III) 1α after 10 cycles.

10. References

S1. Zhou, J.; Yang, J.; Hua, B.; Shao, L.; Zhang, Z.; Yu, G. The Synthesis, Structure, and Molecular Recognition Properties of a [2]Calix[1]biphenyl-Type Hybrid[3]arene. *Chem. Commun.* **2016**, *52*, 1622–1624.