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Figure S1. N; adsorption-desorption isotherms at 77 K

Table S1. Physicochemical properties of the Fe;O4 and 10Mn-Fe;O4 catalysts.

Catalyst BET area (m?/g) Pore volume (cm?/g) Pore size (nm)
Fe;04 12.3 0.07 35
10Mn-Fe304 32.9 0.18 36.8

N adsorption-desorption isotherms of the pure Fe;O4 and the 10Mn-Fe;04 are shown
in Fig. S1. All samples displayed a type IV isotherm with an H1-type hysteresis loop,’
which was attributed to the agglomeration of nanoparticles (corresponding the result
of Figure 1). The BET area of 10Mn-Fe;O4 (32.9 m?/g) was higher than pure Fe;O4
(12.3 m?/g), which indicated the manganese promoter is benefited to increase the
specific surface area of Fe3O4 microsphere. It implied that Mn-modified Fe3O4 has

more active sites than pure Fe3Os, corresponding to the result of CO>-TPD.
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Figure S2. Deconvolution of Mn2p spectrum of reduction 10Mn-Fe3O4 catalyst

As Fig. S2 shown, the Mn2p peak of lower binding energy (639.3 eV and 640.8 eV)
assigned to Mn(II) and Mn(III) respectively.”® At the same time, the existence of
Mn2p satellite feature can also help to identify MnO and Mn2Os. This indicated the
Mn species was a complex oxide rather than Mn metal in the reduced 10Mn-Fe304

catalyst.
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