Supporting Information # Manganese-Promoted Fe₃O₄ Microsphere for Efficient Conversion of CO₂ to Light Olefins Jiandong Jiang, ^{1,2,3,8} Chengyan Wen, ^{4,8} Zhipeng Tian, ^{1,2,6} Yachen Wang, ⁵ Yunpu Zhai, ⁵ Lungang Chen, ^{1,2,6,7} Yuping Li, ^{1,2,6,7} Qiying Liu, ^{1,2,6,7} Chenguang Wang ^{1,2,6,7,*} and Longlong Ma ^{1,2,4,6,7} ¹ Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China ² CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China ³ Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China ⁴ Southeast University, School of Energy and Environment, Nanjing 210009, P. R. China ⁵Research Academy of Environmental Science, College of Chemistry and Molecular Engineering, Zhengzhou University, No.100 Science Rd., Zhengzhou, 450001, Henan, PR China ⁶ Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China 7 University of Chinese Academy of Sciences, Beijing 100049, PR China ⁸ These authors contributed equally ^{*} Corresponding author: wangcg@ms.giec.ac.cn. (Chenguang Wang) ## **Table of Contents** - Figure S1. The profile of N₂ adsorption-desorption isotherms at 77 K. - Figure S2. Deconvolution of Mn2p spectrum of reduction 10Mn-Fe₃O₄ catalyst. - Table S1. Physicochemical properties of the Fe₃O₄ and 10Mn-Fe₃O₄ catalysts. ## **Figures and Tables** Figure S1. N₂ adsorption-desorption isotherms at 77 K **Table S1.** Physicochemical properties of the Fe₃O₄ and 10Mn-Fe₃O₄ catalysts. | Catalyst | BET area (m ² /g) | Pore volume (cm ³ /g) | Pore size (nm) | |-------------------------------------|------------------------------|----------------------------------|----------------| | Fe ₃ O ₄ | 12.3 | 0.07 | 35 | | 10Mn-Fe ₃ O ₄ | 32.9 | 0.18 | 36.8 | N₂ adsorption-desorption isotherms of the pure Fe₃O₄ and the 10Mn-Fe₃O₄ are shown in Fig. S1. All samples displayed a type IV isotherm with an H1-type hysteresis loop,¹ which was attributed to the agglomeration of nanoparticles (corresponding the result of Figure 1). The BET area of 10Mn-Fe₃O₄ (32.9 m²/g) was higher than pure Fe₃O₄ (12.3 m²/g), which indicated the manganese promoter is benefited to increase the specific surface area of Fe₃O₄ microsphere. It implied that Mn-modified Fe₃O₄ has more active sites than pure Fe₃O₄, corresponding to the result of CO₂-TPD. Figure S2. Deconvolution of Mn2p spectrum of reduction 10Mn-Fe₃O₄ catalyst As Fig. S2 shown, the Mn2p peak of lower binding energy (639.3 eV and 640.8 eV) assigned to Mn(II) and Mn(III) respectively.^{2,3} At the same time, the existence of Mn2p satellite feature can also help to identify MnO and Mn₂O₃. This indicated the Mn species was a complex oxide rather than Mn metal in the reduced 10Mn-Fe₃O₄ catalyst. ### **REFERENCES:** - Al-Dossary, M.; Ismail, A. A.; Fierro, J. L. G.; Bouzid, H.; Al-Sayari, S. A. Effect of Mn loading onto MnFeO nanocomposites for the CO₂ hydrogenation reaction. *Appl. Catal.*, B. **2015**, 165, 651-660. - Ilton, E. S.; Post, J. E.; Heaney, P. J.; Ling, F. T.; Kerisit, S. N. XPS determination of Mn oxidation states in Mn (hydr)oxides. *Appl Surf Sci.* **2016**, *366*, 475-485. - Tian, Z.; Wang, C.; Si, Z.; Ma, L.; Chen, L.; Liu, Q.; Zhang, Q.; Huang, H. Fischer-Tropsch synthesis to light olefins over iron-based catalysts supported on KMnO4 modified activated carbon by a facile method. *Appl. Catal. A.* **2017**, *541*, 50-59.