Supporting Information

Deuteration of Formyl Groups via a Catalytic Radical H/D Exchange Approach

Yueteng Zhang, Peng Ji, Yue Dong, Yongyi Wei, and Wei Wang*

Department of Pharmacology and Toxicology, College of Pharmacy, and BIO5 Institute, University of Arizona, 1703 E. Mabel Street, Tucson, AZ 85721-0207, USA

Email: wwang@pharmacy.arizona.edu

Table of Contents

Supporting Information	1
1. General information	2
2. General procedure and optimization of reaction conditions	2
3. Preparation of aldehyde substrates 1	3
4. Reused D₂O in deuteration reaction of 4-methylbenzaldehyde and gram scale synthesis	g
5. Table S2. Cost calculation for the synthesis of 1.0 g 4-Methylbenzaldehyde-for	myl-d1 11
6. Acyl radical intermediate trapping experiment	11
7. Observed side reaction	11
8. General procedure and characterization data for compounds 3	12
9. Reference	76

1. General information

Commercially available reagents were purchased from Sigma Aldrich, Matrix Chemical, AKSci, Alfa Aesar, Acros, AmBeed or TCI, and used as received unless otherwise noted. Merck 60 silica gel was used for chromatography, and Whatman silica gel plates with a fluorescence F254 indicator were used for thin-layer chromatography (TLC) analysis. ¹H and ¹³C NMR spectra were recorded on Bruker Avance 500 MHz or Varian 400 MHz. Chemical shifts in ¹H NMR spectra are reported in parts permillion (ppm) relative to residual chloroform (7.26 ppm) or dimethyl sulfoxide (2.50 ppm) as internal standards. ¹H NMR data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, quint = =quintet, sext = sextet, m = multiplet, br = broad), coupling constant in Hertz (Hz) and hydrogen numbers based on integration intensities. ¹³C NMR chemical shifts are reported in ppm relative to the central peak of CDCl₃ (77.16 ppm) or (CD₃)₂SO (39.52 ppm) as internal standards. Low-resolution mass spectrometry was performed in Analytical and Biological Mass Spectrometry Center. Both blue LED strip and 34 W Kessil Blue LEDs were purchased from Amazon.

2. General procedure and optimization of reaction conditions

Photocatalyst 4CzIPN was synthesized according to reported procedure.¹

General procedure: To an oven-dried 10 mL-Schlenk tube equipped with a stir bar, was added aldehyde (0.2 mmol, 1.0 equiv), photocatalyst 4CzIPN (8 mg, 5 mol%), indicated reagents and 1 mL anhydrous solvents. The mixture was degassed by freeze-pump-thaw method, then sealed with parafilm. The solution was then stirred at room temperature under the irradiation of a blue LED strip for indicated time. After completion of the reaction, the mixture was concentrated. The yield and deuteration ratio were determined by ¹H NMR.

Table S1. Optimization of reaction conditions

entry	PS	thiol (30 mol%)	addictive (30 mol%)	solvent	y (%)	D (%)
1	2a	BnSH	-	MeCN	94	<5
2	4CzIPN	BnSH	-	MeCN	92	30
3	4CzIPN	Benzenethiol	-	MeCN	95	<5
4	4CzIPN	4-Nitrobenzenethiol	-	MeCN	94	<5
5	4CzIPN	BnSSBn	-	MeCN	93	25
6	4CzIPN	BnSH	Na ₂ CO ₃	MeCN	90	<5
7	4CzIPN	2b	-	MeCN	90	40
8	4CzIPN	2c	-	MeCN	90	33
9	Eosin Y	2b	-	MeCN	93	<5
10	Rhodamine B	2b	-	MeCN	95	<5
11	Phenylglyoxylic acid	2b	-	MeCN	92	<5

12	9,10- Phenanthrenequino ne	2b		MeCN	94	<5
13	Methylene Blue	2b	-	MeCN	93	30
14	4CzIPN	2b	2,6-Lutidine	MeCN	89	33
15	4CzIPN	2b		MeCN	92	36
			LN-/			
16	4CzIPN	2b	ОН	MeCN	91	19
			∠N ✓			
17	4CzIPN	2b	OAc	MeCN	92	15
4.0	40 1011	-1	∠'n√.			
18	4CzIPN	2b	Pyridine	MeCN	90	26
19	4CzIPN	2b	DMAP	MeCN	91	12
20	4CzIPN	2b	Quinoline	MeCN	88	14
21	4CzIPN	2b	Sodium dodecyl sulfate	MeCN	88	40
22	4CzIPN	2b	PhCO ₂ Na	MeCN	93	53
23	4CzIPN	2b	PhCO ₂ Na	DMF	93	<5
24	4CzIPN	2b	PhCO ₂ Na	PhCF ₃	96	<5
25	4CzIPN	2b	PhCO ₂ Na	Acetone	97	40
26	4CzIPN	2b	PhCO ₂ Na	THF	94	<5
27	4CzIPN	2b	PhCO₂Na	EtOAc	94	65
28 ^a	4CzIPN	2b	PhCO ₂ Na	EtOAc	92	79
29 ^b	4CzIPN	2b	PhCO₂Na	EtOAc	96	85
30°	4CzIPN	2b	PhCO ₂ Na	EtOAc	95	95
31	4CzIPN	2d	PhCO ₂ Na	EtOAc	95	97
٥.	. 0 = 11		3 0 2 1 1 4	,	(91°)	J.
31 ^e	4CzIPN	2d	PhCO₂Na	EtOAc	94 ´	72
31 ^f	4CzIPN	2d	PhCO ₂ Na	EtOAc	95	93

^aReaction time: 40h; ^bReaction time: 48h; ^cReaction time 72h; ^dIsolated yield; ^e Reaction time 10h; ^f Reaction time 20h. Y: yield; D: deuteration ratio.

3. Preparation of aldehyde substrates 1.

3.1 General procedure for the synthesis of compound (1v, 1y, 1ab)

General procedure: To a dried 10 mL Schlenk tube was added acid (1 mmol, 1.0 equiv) and capped with rubber stopper. The tube is purged with N_2 and protected by N_2 in balloon. 5 mL anhydrous DCM was added under N_2 . The solution was cooled to 0 °C (ice bath) and 178mg (1,1 mmol, 1.1 eq) 1,1'-carbonyldiimidazole (CDI) were added. After stirring for 60 min, the colorless reaction solution was cooled to -78 °C (dry ice/acetone bath) for 15 min. Subsequently, 1.75 mL (2.1 mmol, 2.1 eq) DIBAL-H solution (1.2 M in toluene) were added dropwise with a syringe throughout 10 min. The reaction mixture was stirred at -78 °C for 1h. The reaction mixture was quenched by the addition of 2mL EtOAc followed by 5 mL tartaric acid solution (25 % in H_2O) under vigorous stirring. The mixture was warmed up to RT and stirred vigorously for 15 min. The mixture was extracted with EtOAc (3 x 10 mL) and the combined organic extracts were washed with 1 M HCl (1 x 10 mL), saturated NaHCO₃ (1 x 10 mL) and brine (1 x 10 mL), dried over Na_2SO_4 , filtered and concentrated under reduced pressure. The crude product purified by flash chromatography on silica gel.

Preparation of 3-(benzo[d][1,3]dioxol-5-yl)propanal (1v)²

This substrate was synthesized following the *general procedure*. The crude product was purified by flash chromatography on silica gel (acetone/hexane = 1/9) to afford product (139 mg, 78% yield) as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 9.79 (1H, t, J = 1.2 Hz), 6.72 (1H, d, J = 7.8 Hz), 6.67 (d, J = 1.5 Hz, 1H), 6.63 (dd, J = 7.9, 1.4 Hz, 1H), 5.91 (s, 2H), 2.87 (2H, t, J = 7.4 Hz), 2.72 (t, J = 7.3 Hz, 2H); 13 C NMR (100 MHz, CDCl₃) δ 201.32, 147.88, 146.04, 134.15, 121.15, 108.83, 108.36, 101.10, 45.55, 28.01.

Preparation of 2,3-dihydro-1*H*-indene-2-carbaldehyde (1y) ³

This substrate was synthesized following the *general procedure*. The crude product was purified by flash chromatography on silica gel (Et₂O/hexane = 1/19) to afford product (112 mg, 77% yield) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.78 (d, J = 1.3 Hz, 1H), 7.25 (dd, J = 5.3, 3.5 Hz, 2H), 7.18 (dd, J = 5.4, 3.3 Hz, 2H), 3.35–3.25 (m, 3H), 3.23-3.16 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 202.84, 141.17, 126.86, 124.68, 50.70, 32.99.

Preparation of tert-butyl (3-oxopropyl)carbamate (1ab) 4

This substrate was synthesized following the *general procedure*. The crude product was purified by flash chromatography on silica gel (EtOAc/hexane = 1/3) to afford product (151 mg, 87% yield) as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 9.70 (s, 1H), 5.05 (br, 1H), 3.32 (q, J = 6.0 Hz, 2H), 2.60 (t, J = 5.9 Hz, 2H), 1.32 (s, 9H). 13 C NMR (100 MHz, CDCl₃) δ 201.43, 155.83, 79.25, 44.22, 34.02, 28.29.

3.2 Preparation of 4-oxo-4-phenylbutanal (1ac) ⁵

At 0 $^{\circ}$ C, to the solution of 4-oxo-4-phenylbutanoic acid (356 mg, 2 mmol, 1.0 equiv) in anhydrous THF 5 mL was added BH₃ (1M in THF, 6 mL, 6 mmol, 3.0 equiv) dropwise for 10 min. The reaction was warmed up to room temperature and stirred for 16h. After the completion of reaction, the solvent was removed under vacuum. To the crude mixture was added DCM 5 mL followed by 1.3g (3 mmol, 1.5 equiv) Dess-Martin periodinane, the reaction was stirred at room temperature for 0.5 h indicated by TLC. 5 mL Saturated sodium thiosulfate solution was added to flask to quench reaction and followed by 5 mL saturated NaHCO₃ solution. The mixture was stirred for 15 min till it turns to be clear. The reaction was extracted with DCM (3 x 10 mL) and the combined organic extracts were washed with brine (1 x 10 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel (EtOAc/hexane = 1/2) to afford product 194 mg (60% yield for two steps) as colorless oil. ¹H NMR

(400 MHz, CDCl₃) δ 9.91 (s, 1H), 7.99 (d, J = 7.4 Hz, 2H), 7.58 (t, J = 7.4 Hz, 1H), 7.47 (t, J = 7.7 Hz, 2H), 3.33 (t, J = 6.3 Hz, 2H), 2.94 (t, J = 6.3 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 200.75, 197.94, 136.56, 133.47, 128.79, 128.21, 37.76, 31.16.

3.3 Synthesis of benzyl 4-oxobutanoate (1ad)

To an oven-dried 10 mL-Schlenk tube equipped with a stir bar, was added benzyl acrylate (162mg, 1.0 mmol, 1.0 equiv), 2,2-diethoxyacetic acid (222mg, 1.5 mmol, 1.5 equiv), photocatalyst 4CzIPN (40mg, 5 mol%), Cs₂CO₃ (325mg, 1 mmol, 1.0 equiv), DMF (5 mL, 0.2M). The mixture was degassed by freeze-pump-thaw method, then sealed with parafilm. The solution was then stirred at room temperature under the irradiation of a blue LED strip for 24h. After completion of the reaction, the mixture was diluted by adding 10 ml EtOAc and 30 ml water. The reaction was extracted with EtOA (3 x 10 mL) and the combined organic extracts were washed with brine (1 x 10 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure. 5 ml DCM was added to crude residue followed by 0.75 mL TFA (10 equiv). The reaction mixture was stirred at room temperature for 10 min. 10 mL saturated NaHCO₃ solution was added slowly to quench the reaction. The reaction mixture was extracted with DCM (3 x 10 mL) and the combined organic extracts were washed with brine (1 x 10 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel (acetone/hexane = 1/4) to afford product 163 mg (85% yield for two steps) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.79 (s, 1H), 7.34 (s, 5H), 5.13 (s, 2H), 2.79 (t, J = 6.1 Hz, 2H), 2.67 (t, J = 6.5 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 199.95, 172.11, 135.77, 128.60, 128.60, 128.32, 128.23, 66.63, 38.50, 26.61.

3.4 General procedure for the synthesis of substrates (1ae, 1ai, 1ak)

To a 25 mL Schlenk tube equipped with a stir bar was added with substituted iodobenzene (2.0 mmol, 1.0 equiv), $Pd(OAc)_2$ (4.5 mg, 0.02 mmol, 1 mol%), benzyltriethylammonium chloride (454mg, 2 mmol, 1.0 equiv), $NaHCO_3$ (420 mg, 5 mmol, 2.5 equiv), allyl alcohol (174mg, 1.5 equiv) and DMF (6.0 mL). The mixture was degassed by freeze-pump-thaw method, then sealed with parafilm. The reaction mixture was stirred at 50 °C for 5 h. Upon cooling to room temperature, the reaction mixture was filtrated through a pad of celite, washed with 50 mL of ethyl acetate and washed with brine (2*10.0 mL). The organic layer was separated, dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to provide the corresponding products.

Synthesis of 4-(3-oxopropyl)benzonitrile (1ae)6

This substrate was synthesized following the *general procedure*. The crude product was purified by flash chromatography on silica gel (EtOAc/hexane = 1/3) to afford product (277 mg, 87% yield) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.76 (s, 1H), 7.52 (d, J = 7.5 Hz, 2H), 7.27 (d, J = 7.5 Hz, 2H), 2.96 (t, J = 7.0 Hz, 2H), 2.78 (t, J = 7.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 200.36, 146.16, 132.34, 129.23, 118.87, 110.16, 44.47, 28.02.

Synthesis of 3-(thiophen-2-yl)propanal (1aj)⁷

This substrate was synthesized following the *general procedure*. The crude product was purified by flash chromatography on silica gel (EtOAc/hexane = 1/9) to afford product (255 mg, 91% yield) as orange oil. 1 H NMR (400 MHz, CDCl₃) δ 9.81 (s, 1H), 7.13 (d, J = 4.9 Hz, 1H), 6.92 (s, 1H), 6.82 (s, 1H), 3.18 (t, J = 7.3 Hz, 2H), 2.83 (t, J = 7.2 Hz, 2H).

Synthesis of 3-(2,4-dimethoxypyrimidin-5-yl)propanal(1ak)

$$O \bigvee_{H} O \bigvee_{N} O Me$$

This substrate was synthesized following the *general procedure*. The crude product purified by flash chromatography on silica gel (EtOAc/hexane = 1/1) to afford product (353 mg, 90% yield) as pale yellow oil. 1 H NMR (400 MHz, CDCl₃) δ 9.77 (s, 1H), 8.01 (s, 1H), 3.96 (s, 3H), 3.93 (s, 3H), 2.76 (t, J = 6.4 Hz, 2H), 2.68 (t, J = 6.4 Hz, 2H). 13 C NMR (100 MHz, CDCl₃) δ 201.19, 169.35, 164.46, 157.33, 113.51, 54.77, 54.75, 53.99, 53.97, 42.98, 19.59.

3.5 Synthesis of 4-formylphenyl 2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1*H*-indol-3-yl)acetate (1ap)

At 0 $^{\circ}$ C, to the solution of indomethacin (357 mg, 1 mmol, 1.0 equiv) in 5 ml DCM was added 4-hydroxybenzaldehyde (122mg, 1 mmol, 1.0 equiv) and *N*,*N*-dicyclohexylcarbodiimide (206mg, 1 mmol, 1.0 equiv). The reaction mixture was warmed up to room temperature and stirred for 8 hours. After the completion of the reaction, the mixture was filtrated through a pad of celite, washed with 20 mL DCM. The filtra was concentrated and purified by flash chromatography on silica gel (EtOAc/hexane = 1/3) to afford product (322 mg, 70% yield) as white solid. 1 H NMR (400 MHz, CDCl₃) δ 9.98 (s, 1H), 7.90 (d, J = 8.5 Hz, 2H), 7.68 (d, J = 8.3 Hz, 2H), 7.48 (d, J = 8.3 Hz, 2H), 7.25 (d, J = 8.4 Hz, 2H), 7.04 (d, J = 2.5 Hz, 1H), 6.88 (d, J = 9.0 Hz, 1H), 6.70 (dd, J = 9.0, 2.5 Hz, 1H), 3.94 (s, 2H), 3.84 (s, 3H), 2.47 (s, 3H). 13 C NMR (100 MHz, CDCl₃) δ 190.65, 168.74, 168.43, 156.30, 155.46, 139.61, 136.56, 134.16, 133.85, 131.36, 131.34, 131.00, 130.50, 129.33, 122.36, 115.22, 111.91, 111.59, 101.35, 55.90, 30.74, 13.56.

3.6 Synthesis of (3aR,4R,6S,6aS)-6-methoxy-2,2-dimethyl-*N*-(3-oxopropyl-3-*d*)tetrahydrofuro[3,4-*d*][1,3]dioxole-4-carboxamide (1aq)

At 0 °C, to a solution of (3aR,4R,6S,6aS)-6-methoxy-2,2-dimethyl-*N*-(3-oxopropyl-3-d)tetrahydrofuro[3,4-d][1,3]dioxole-4-carboxamide (1aq-S1, prepared from reported procedure⁸, 218mg, 1mmol, 1.0 equiv) in 10 mL DCM was added EDCI (170 mg, 1.1 mmol, 1.1 equiv), HOBt (149 mg, 1.1 mmol, 1.1 equiv), DIPEA (193 mg, 1.5 mmol, 1.5 equiv) and 3,3-diethoxypropan-1-amine (162 mg, 1.1 mmol). The reaction mixture was warmed up to room temperature and stirred for 8 hours. After the completion of the reaction, the mixture was diluted with 20 mL DCM. The solution was washed by 1M HCl (aq) (10 ml), saturated NaHCO₃ (10 ml) and brine (10 ml). The organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography (EtOAc/hexane = 1/1) on silica gel to provide the corresponding products 249 mg (91% yield for two steps) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.76 (s, 1H), 6.98 (br, 1H), 5.01 (d, J = 10.3 Hz, 2H), 4.52-4.47 (m, 2H), 3.52 (dd, J = 11.6, 5.7 Hz, 2H), 3.41 (s, 3H), 2.81 (s, 1H), 2.69 (t, J = 5.5 Hz, 2H), 1.43 (s, 3H), 1.27 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 201.02, 170.35, 112.78, 111.50, 111.46, 86.49, 84.46, 82.61, 82.60, 56.54, 55.52, 43.72, 32.50, 26.50, 24.98.

3.7 Synthesis of methyl Na-((benzyloxy)carbonyl)-1-(4-oxobutanoyl)-L-tryptophanate (1ar)

To a solution of Boc-L-Trp-OMe (**1ar-S1**, prepared according to reported procedure⁹, 2.4 mmol, 1.0 equiv) in dry 10 mL DCM was added tetrabutylammonium hydrogen sulfate (81mg, 0.24 mmol, 10 mol%), powdered NaOH (480 mg, 12.0 mmol, 5.0 equiv). After stirring of reaction mixture for 15 min at room temperature, acryloyl chloride (648 mg, 7.2 mmol, 3.0 equiv) was added to flask. The reaction mixture was stirred at room temperature for 4h. After the completion of the reaction, the mixture was diluted with 20 mL DCM. The solution was washed by water (10 ml), saturated brine (10 ml). The organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography (EtOAc/hexane = 2/3) on silica gel to provide the corresponding products **1ar-S2** (780 mg, 80% yield) as white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.48 (d, J = 8.2 Hz, 1H), 7.48 (d, J = 7.5 Hz, 1H), 7.39-7.26 (m, 8H), 6.86 (dd, J = 16.7, 10.4 Hz, 1H), 6.64 (d, J = 16.7 Hz, 1H), 6.00 (d, J = 10.3 Hz, 1H), 5.44 (s, 1H), 5.12 (dd, J = 32.0, 12.1 Hz, 2H), 4.77 (d, J = 6.3 Hz, 1H), 3.69 (s, 3H), 3.26 (dt, J = 14.4, 9.7 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 172.05, 163.69, 155.82, 136.27, 136.09, 132.19, 130.69, 128.67, 128.67, 128.39, 128.22, 127.97, 125.62, 124.05, 122.88, 118.84, 117.20, 117.08, 67.18, 53.93, 53.89, 52.93, 52.70, 52.65, 28.14.

To an oven-dried 10 mL-Schlenk tube equipped with a stir bar, was added 1ar-S2 (406 mg, 1mmol, 1.0 equiv), 2,2-diethoxyacetic acid (222mg, 1.5 mmol, 1.5 equiv), photocatalyst 4CzIPN (40mg, 5 mol%). Cs₂CO₃ (325mg, 1 mmol, 1.0 equiv) and DMF (5 mL). The mixture was degassed by freeze-pump-thaw method, then sealed with parafilm. The solution was then stirred at room temperature under the irradiation of a blue LED strip for 24h. After completion of the reaction, the mixture was diluted by adding 10 ml EA and 30 ml water. The reaction was extracted with EtOAc (3 x 10 mL) and the combined organic extracts were washed with brine (1 x 10 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure. 5 ml DCM was added to flask followed by 0.75 mL TFA (10 equiv). The reaction mixture was stirred at room temperature for 10 min. 10 mL saturated NaHCO3 solution was added slowing to quench the reaction. The reaction was extracted with DCM (3 x 10 mL) and the combined organic extracts were washed with brine (1 x 10 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure. The crude product purified by flash chromatography on silica gel (EtOAc/hexane/DCM = 1/2/2) to afford product 349 mg (80% yield for two steps) as pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ ¹H NMR (400 MHz, CDCl₃) δ 9.86 (s, 1H), 8.35 (d, J = 8.0 Hz, 1H), 7.45 (d, J = 7.5 Hz, 1H), 7.33-7.21 (m, 8H), 5.48 (d, J = 7.0 Hz, 1H), 5.09 (dd, J = 30.5, 12.2 Hz, 2H), 4.75 (d, J = 6.3 Hz, 1H), 3.68 (s, 3H), 3.29-3.15 (m, 2H), 3.10 (t, J = 5.6 Hz, 2H), 2.93 (t, J = 5.7 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 199.97, 172.04, 169.42, 155.82, 136.29, 135.87, 130.38, 128.61, 128.30, 128.17, 125.65, 123.82, 122.67, 118.82, 117.36, 116.70, 67.11, 53.87, 52.68, 52.63, 37.85, 28.24, 28.08.

3.8 Synthesis of *tert*-butyl (*S*)-(1-oxo-1-((2-oxo-2-((3-oxopropyl)amino)ethyl)amino)-3-phenylpropan-2-yl)carbamate (1as)

To a solution of Boc-L-phenylalanine (796 mg, 3 mmol, 1.0 equiv) in 10 mL DCM was added Nhydroxysuccinimide (380 mg, 3.3 mmol, 1.1 equiv) and DCC (680 mg, 3.3 mmol, 1.1 equiv). The reaction mixture was stirred at RT for 8 h. after which the reaction mixture was filtrated through a pad of celite and washed by DCM (2 x 10 mL). The filtra was concentrated under vacuum. To the residue in flask was added acetone (10 mL), glycine (248 mg, 3.3 mmol, 1.1 equiv) and 5 mL saturated NaHCO₃. After the reaction mixture was stirred at room temperature for 5h, 20 mL water was added to flask. The reaction mixture was extracted by EtOAc (3 x 10 mL). To the agueous solution was slowly added 2M HCl to pH = 3-4. The acidified solution was extracted by EtOAc (3 x 10 mL). The combined organic layer was dried over Na2SO4. filtrated and concentrated under vacuum to afford crude 1as-S1 (900mg). To a solution of 1as-S1 in 10 mL DCM was added N-hydroxysuccinimide (380 mg, 3.3 mmol) and DCC (680 mg, 3.3 mmol). The reaction mixture was stirred at RT for 8 h, after which the reaction mixture was filtrated through a pad of celite and washed by DCM (2 x 10 mL). To the filtra solution was added 3-aminopropan-1-ol (225 mg, 3 mmol) and TEA (61mg, 0.6 mmol), the reaction mixture was stirred at room temperature for 5h. After the reaction was completed, the reaction is concentrated and by flash chromatography on silica gel (EtOAc/MeOH = 9/1) to afford white foam solid (728 mg, 63% yield for 4 steps). ¹H NMR (400 MHz, CD₃OD) δ 7.77 (s, 1H), 7.36– 7.21 (m, 5H), 6.82 (d, J = 6.3 Hz, 1H), 4.27 (d, J = 6.6 Hz, 1H), 3.91 (d, J = 16.8 Hz, 1H), 3.70 (d, J = 16.8 Hz, 1H), 3.61 (t, J = 6.1 Hz, 2H), 3.35-3.29 (m, 2H), 3.17-3.12 (m, 1H), 2.92 (dd, J = 13.3, 9.0 Hz, 1H), 1.75 (quint, J = 6.4 Hz, 2H), 1.41 (s, 9H). ¹³C NMR (100 MHz, CD₃OD) δ 174.74, 174.69, 171.46, 171.38, 157.79, 138.18, 130.14, 129.32, 127.64, 80.76, 60.19, 57.84, 57.75, 43.46, 43.43, 38.48, 38.45, 37.44, 37.31, 32.92, 28.65.

To a solution of **1as-S2** (200mg, 0.52 mmol, 1.0 equiv) in 3 mL DCM was added Dess-Martin periodinane (331mg, 0.78 mmol, 1.5 equiv), the reaction was stirred at room temperature for 0.5 h indicated by TLC. 5 mL Saturated sodium thiosulfate solution was added to flask to quench reaction and followed by 5 mL saturated NaHCO₃ solution. The mixture was stirred for 15 min till it turns to be clear. The reaction was extracted with DCM (3 x 10 mL) and the combined organic extracts were washed with brine (1 x 10 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel (EtOAc/MeOH = 9/1) to afford product (147mg, 75% yield) as white foam solid. ¹H NMR (400 MHz, CDCl₃) δ 9.67 (s, 1H), 7.38 (t, J = 5.6 Hz), 7.27–7.13 (m, 5H), 5.51 (d, J = 6.0 Hz, 1H), 4.34 (d, J = 6.7 Hz, 1H), 3.88 (dd, J = 16.7, 5.7 Hz, 1H), 3.75 (dd, J = 16.7, 5.7 Hz, 1H), 3.50-3.41 (m, 2H), 3.09 (dd, J = 13.7, 5.8 Hz, 1H), 2.91 (dd, J = 13.1, 8.2 Hz, 1H), 2.62 (t, J = 6.1 Hz, 2H), 1.32 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 201.19, 172.41, 169.28, 155.82, 136.61, 129.21, 128.54, 80.21, 56.09, 43.42, 43.00, 38.13, 33.08, 28.23.

4. Reused D₂O in deuteration reaction of 4-methylbenzaldehyde and gram scale synthesis Procedure for deuteration in 1st batch

To an oven-dried 25 mL-Schlenk tube equipped with a stir bar, was added 4-methylbenzaldehyde (600 mg, 5.0 mmol, 1.0 equiv), photocatalyst 4CzIPN (80 mg, 2 mol%), PhCOONa (216 mg, 1.5 mmol 30 mol%) and the tube was evacuated and backfilled with N_2 (one time). 12.5 mL anhydrous EtOAc, thiol catalyst triisopropylsilanethiol (**2d**, 0.5 mL 1M, 10 mol%) in EtOAc solution, and D_2O (2.0mL, 20 equiv) were added by syringe under N_2 . The mixture was degassed by freeze-pump-thaw method, then sealed with parafilm. The solution was then stirred at room temperature under the irradiation of a blue LED strip for 36h. After completion of the reaction, the mixture was dumped to 50 mL separatory funnel. Bottom D_2O layer was separated for the usage in next batch. Top organic layer was dried over Na_2SO_4 , filtered and concentrated under reduced pressure. The residue was purified by flash chromatography (acetone/hexane = 1/97) on silica gel to provide the corresponding products 423 mg (70% yield, 97% D) as pale yellow liquid.

Procedure for deuteration in 2nd batch using D₂O from 1st batch

To an oven-dried 25 mL-Schlenk tube equipped with a stir bar, was added 4-methylbenzaldehyde (600 mg, 5.0 mmol, 1.0 equiv) and photocatalyst 4CzIPN (80 mg, 2 mol%), the tube was evacuated and backfilled with N_2 (one time). 12.5 mL anhydrous EtOAc, thiol catalyst triisopropylsilanethiol (**2d**, 0.5 mL 1M, 10 mol%) in EtOAc solution, and D_2O (from 1st batch together with 100 mg, 1.0 equiv to compensate the loss of D_2O) were added by syringe under N_2 . The mixture was degassed by freeze-pump-thaw method, then sealed with parafilm. The solution was then stirred at room temperature under the irradiation of a blue LED strip for 36h. After completion of the reaction, the mixture was dumped to 50 mL separatory funnel. Bottom D_2O layer was separated for the usage in next batch. Top organic layer was dried over Na_2SO_4 , filtered and concentrated under reduced pressure. The residue was purified by flash chromatography (acetone/hexane = 1/97) on silica gel to provide the corresponding products430 mg (71% yield, 94% D) as pale yellow liquid.

Procedure for feuteration of 3rd batch using D2O from 2nd batch

To an oven-dried 25 mL-Schlenk tube equipped with a stir bar, was added 4-methylbenzaldehyde (600 mg, 5.0 mmol, 1.0 equiv) and photocatalyst 4CzIPN (80 mg, 2 mol%), the tube was evacuated and backfilled with N_2 (one time). 12.5 mL anhydrous EtOAc, thiol catalyst triisopropylsilanethiol (**2d**, 0.5 mL 1M, 10 mol%) in EA solution, and D_2O (from 2^{nd} batch together with 100 mg, 1.0 equiv to compensate the loss of D_2O) were added by syringe under N_2 . The mixture was degassed by freeze-pump-thaw method, then sealed with parafilm. The solution was then stirred at room temperature under the irradiation of a blue LED strip for 36h. After completion of the reaction, the mixture was dumped to 50 mL separatory funnel. Bottom D_2O layer was separated for the usage in next batch. Top organic layer was dried over Na_2SO_4 , filtered and concentrated under reduced pressure. The residue was purified by flash chromatography (acetone/hexane = 1/97) on silica gel to provide the corresponding products 423 mg (70% yield, 91% D) as pale yellow liquid.

Gram scale synthesis of 4-methylbenzaldehyde-formyl-d1

To an oven-dried 100 mL-Schlenk tube equipped with a stir bar, was added 4-methylbenzaldehyde (2.64g, 22.0 mmol, 1.0 equiv), photocatalyst 4CzIPN (264 mg, 1.5 mol%), PhCOONa (216 mg, 1.5 mmol 30 mol%) and the tube was evacuated and backfilled with N_2 (one time). 55 mL anhydrous EA, thiol catalyst triisopropylsilanethiol (**2d**, 1.76 mL 1M, 8 mol%) in EA solution, and D_2O (8.8 mL, 20 equiv) were added by syringe under N_2 . The mixture was degassed by freeze-pump-thaw method, then sealed with parafilm. The solution was then stirred at room temperature under the irradiation of a blue LED strip for 36h. After completion of the reaction, the mixture was dumped to 125 mL separatory funnel. Top organic layer was dried over Na_2SO_4 , filtered and concentrated under reduced pressure. The residue was purified by flash chromatography (acetone/hexane = 1/97) on silica gel to provide the corresponding products 2.17 g (82% yield, 97% D) as pale yellow liquid.

5. Table S2. Cost calculation for the synthesis of 1.0 g 4-Methylbenzaldehyde-formyl-d1

Item	Vendor	Price	MW	Mmol	Amount	Cost (\$)	
Carbazole, 95%	Aksci	\$250 for 1kg	167.21	10.00	1.67 g	0.42	
Tetrafluoroisophthalonitrile	Ambeed	\$247 for 25g	200.10	2.00	0.4 g	3.95	
Dry THF	Sigma-aldrich	\$92.92 for 2L	_	_	40 ml	1.86	
NaH (60%)	Fisher Scientific	\$128 for 1 kg	24.00	15.00	0.60g	0.077	
						6.307	for 1.51g 4CzIPN
						4.18	for 1.0g 4CzIPN
Item	Vendor	Price	MW	Mmol	Amount	Cost (\$)	
p-Tolualdehyde, 98% (GC)	Aksci	\$180 for 1kg	120.15	22.00	2.64g	0.48	
4CzIPN	Self-made	\$4.18 for 1g	799.00	0.83	0.66g	2.76	
PhCOONa 99%)	Fisher Scientific	\$28.19 for 1kg	144.10	4.4	0.63g	0.18	
Triisopropylsilanethiol (97%)	Sigma-aldrich	\$170 for 5g	190.42	1.76	0.335g	11.39	
Deuterium Oxide	Sigma-aldrich	\$609 for 1kg	20.03	457.60	9.17g	5.58	
Anhydrous EtOAc	Sigma-aldrich	\$62 for 2L	1-	_	55 mL	1.7	
						22.09	for 2.17g product
	_					10.18	for 1.0g product

Through calculation, the cost of synthesizing 1.0 g 4-methylbenzaldehyde (97% D ratio) is only about \$10.18. By comparison, Suzhou Liaojian Pharmaceutical Technology Co., Ltd. offers 2200 RMB (\$314) to prepare 1.0 g same product. This protocol demonstrates its cost-effective advantage in synthesis of deuterated aldehydes.

6. Acyl radical intermediate trapping experiment

Detected by ESI-MS

To an oven-dried 10 mL-Schlenk tube equipped with a stir bar, was added 4-methylbenzaldehyde (0.2 mmol, 1.0 equiv), photocatalyst 4CzIPN (8 mg, 5 mol%), PhCOONa (8.6 mg, 30 mol%), TEMPO (31.2 mg, 0.2 mmol, 1.0 equiv) and the tube was evacuated and backfilled with N_2 (one time). 1 mL anhydrous EA, thiol catalyst triisopropylsilanethiol (**2d**, 60 uL, 30 mol%) in EA solution, and D_2O (160 uL, 40 equiv) were added by syringe under N_2 . The mixture was degassed by freeze-pump-thaw method, then sealed with parafilm. The solution was then stirred at room temperature under the irradiation of a blue LED strip for 36h. After completion of the reaction, the mixture was diluted with Et_2O (20 mL). The solution was washed with brine 10 mL. The organic layer was dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. The crude residue was analyzed by ESI-MS and found [M+H]+ 276.1.

7. Observed side reaction

Byproduct detected by ESI-MS

The crude residue was analyzed by ESI-MS and found [M+Na]+ 263.98.

8. General procedure and characterization data for compounds 3

8.1 Preparation of hydrogen isotope exchanged thiol catalyst 2d in EtOAc solution

To an oven-dried 3 mL borosilicate glass vial equipped with a stir bar, was added **2d** in (1.0 mmol, 190 mg, 1.0 equiv), anhydrous EtOAc (1.0 mL) and D_2O (10.0 mmol, 200 μ L, 10.0 equiv). The mixture was stirred at room temperature for 1 h. After the stirring was stopped, the top EA layer was used in reaction as the stock solution (1.0 M).

8.2 General procedure for the synthesis of deuterated aldehyde

General Procedure $\bf A$: To an oven-dried 10 mL-Schlenk tube equipped with a stir bar, was added aldehyde (0.2 mmol, 1.0 equiv), photocatalyst 4CzIPN (8 mg, 5 mol%), PhCOONa (8.6 mg, 30 mol%) and the tube was evacuated and backfilled with N_2 (one time). 1 mL anhydrous EtOAc, thiol catalyst triisopropylsilanethiol ($\bf 2d$, 60 uL, 30 mol%) in EtOAc solution, and $\bf D_2O$ (160 uL, 40 equiv) were added by syringe under $\bf N_2$. The mixture was degassed by freeze-pump-thaw method, then sealed with parafilm. The solution was then stirred at room temperature under the irradiation of a blue LED strip for 36h. After completion of the reaction, the mixture was concentrated and purified by flash chromatography on silica gel.

General Procedure **B**: To an oven-dried 10 mL-Schlenk tube equipped with a stir bar, was added aldehyde (0.2 mmol, 1.0 equiv), photocatalyst 4CzIPN (8.0 mg, 5 mol%), PhCOONa (8.7 mg, 30 mol%), 1 mL anhydrous EtOAc and D_2O (40 ul, 10 equiv). The tube was stirred at room temperature for 10 min to exchange active protium with deuterium. The solvent was removed under reduced pressure and the tube was evacuated and backfilled with N_2 (one time). 1 mL anhydrous EA, thiol catalyst triisopropylsilanethiol (2d, 60 uL, 30 mol%) in EtOAc solution, and D_2O (160 uL, 40 equiv) were added by syringe under N_2 . The mixture was degassed by freeze-pump-thaw method, then sealed with parafilm. The solution was then stirred at room temperature under the irradiation of a blue LED strip for 36h. After completion of the reaction, the mixture was concentrated and purified by flash chromatography on silica gel.

4-Methylbenzaldehyde-formyl-d1 (3a)

The reaction was carried out according to the general procedure **A**. 4-Methylbenzaldehyde (48.0 mg, 0.4 mmol, 1.0 equiv), 4CzIPN (16.0 mg, 0.02 mmol, 5 mol%), PhCOONa (17.4 mg, 0.06 mmol, 30 mol%), **2d** (120 uL, 1M in EtOAc), D₂O (320 uL, 40 equiv) and anhydrous EtOAc (2 mL) were used. The reaction mixture was irritated by Blue LED strip for 36 h. The residue was purified by flash column chromatography (Et₂O/hexane = 1/19) to afford product (44mg, 91% yield, 97% D ratio by ¹H NMR) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.93 (s, 0.03H), 7.75 (d, J = 8.1 Hz, 2H), 7.30 (d, J = 7.8 Hz, 2H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 191.74 (t, J = 26.4 Hz), 145.63, 134.22 (t, J = 3.5 Hz), 129.92, 129.79, 21.91. **HRMS** (ESI) calcd for C₈H₈DO [M + H]⁺ 122.0711, found 122.0704.

1-Naphthaldehyde-formyl-d1 (3b)

The reaction was carried out according to the general procedure **A**. 1-Naphthaldehyde (62.4 mg, 0.4 mmol, 1.0 equiv), 4CzIPN (8.0 mg, 0.01 mmol, 2.5 mol%), PhCOONa (17.3 mg, 0.12 mmol, 30 mol%), **2d** (120 uL, 1M in EtOAc), D₂O (320 uL, 40 equiv) and anhydrous EtOAc (8 mL) were used. The reaction mixture was irritated by Blue LED strip for 36 h. The residue was purified by flash column chromatography (Et₂O/hexane = 1/19) to afford product (32mg, 51% yield, 95% D ratio by ¹H NMR) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 10.40 (s, 0.05H), 9.26 (d, J = 8.4 Hz, 1H), 8.09 (d, J = 8.2 Hz, 1H), 7.98 (d, J = 7.0 Hz, 1H), 7.92 (d, J = 8.2 Hz, 1H), 7.69 (t, J = 7.7 Hz, 1H), 7.63–7.57 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 193.32 (t, J = 26.6 Hz), 136.69, 135.41, 133.85, 131.463 (t, J = 3.4 Hz), 130.68, 129.13, 128.60, 127.12, 125.01. **HRMS** (ESI) calcd for C₁₁H₈DO [M + H]⁺ 158.0711, found 158.0712.

[1,1'-Biphenyl]-4-carbaldehyde-formyl-d1 (3c)

The reaction was carried out according to the general procedure **A**. [1,1'-Biphenyl]-4-carbaldehyde (36.4 mg, 0.2 mmol, 1.0 equiv), 4CzIPN (8.0 mg, 0.01 mmol, 5 mol%), PhCOONa (8.6 mg, 0.06 mmol, 30 mol%), **2d** (60 uL, 1M in EtOAc), D₂O (160 uL, 40 equiv) and anhydrous DCE/anhydrous EtOAc (0.5 mL/0.5 mL) were used. The reaction mixture was irritated by 34 W Blue LED strip for 5 h. The residue was purified by flash column chromatography (acetone/hexane = 1/9) to afford product (29mg, 79% yield, 95% D ratio by 1 H NMR) as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 10.06 (s, 0.09H), 7.96 (d, J = 8.1 Hz, 2H), 7.76 (d, J = 8.0 Hz, 2H), 7.66–7.63 (m, 2H), 7.51–7.47 (m, 2H), 7.44-7.40 (m, 1H). 13 C NMR (100 MHz, CDCl₃) δ 191.56 (t, J = 26.5 Hz), 147.12, 139.66, 135.12 (t, J = 3.5 Hz), 130.25, 129.02, 128.49, 127.65, 127.35. **HRMS** (ESI) calcd for $C_{13}H_9DO$ [M + H]+ 184.0867, found 184.0858.

4-Methoxybenzaldehyde-formyl-d1 (3d)

The reaction was carried out according to the general procedure **A**. 4-Methoxybenzaldehyde (54.8 mg, 0.4 mmol), 4CzIPN (16.0 mg, 0.02 mmol, 5 mol%), PhCOONa (17.4 mg, 0.12 mmol, 30 mol%), **2d** (120 uL, 1M in EtOAc, 30 mol%), D₂O (160 uL, 20 equiv) and anhydrous EtOAc (2.0 mL) were used. The reaction

mixture was irritated by Blue LED strip for 36 h. The residue was purified by flash column chromatography (acetone/hexane = 1/9) to afford product (33mg, 92% yield, 91% D ratio by 1 H NMR) as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 9.85 (s, 0.06H), 7.80 (d, J = 8.8 Hz, 2H), 6.97 (d, J = 8.8 Hz, 2H), 3.85 (s, 3H). 13 C NMR (100 MHz, CDCl₃) δ 190.48 (t, J = 26.2 Hz), 190.22, 164.65, 131.98, 129.91 (t, J = 3.5 Hz), 114.35. **HRMS** (ESI) calcd for C_8 H₈DO [M + H]⁺ 138.0600, found 138.0655.

2-Methoxybenzaldehyde-formyl-d1 (3e)

The reaction was carried out according to the general procedure **A**. 2-Methoxybenzaldehyde (54.8 mg, 0.4 mmol, 1.0 equiv), 4CzIPN (8.0 mg, 0.01 mmol, 2.5 mol%), PhCOONa (17.4 mg, 0.12 mmol, 30 mol%), **2d** (120 uL, 1M in EtOAc, 30 mol%), D₂O (320 uL, 40 equiv) and anhydrous EtOAc (2.0 mL) were used. The reaction mixture was irritated by Blue LED strip for 36 h. The residue was purified by flash column chromatography (Et₂O/hexane = 1/9) to afford product (54mg, 99% yield, 92% D ratio by ¹H NMR) as colorless oil. 1H NMR (400 MHz, CDCl₃) δ 10.44 (s, 0.08H), 7.80 (dd, J = 7.7, 1.8 Hz, 1H), 7.54–7.50 (m, 1H), 6.98 (dd, J = 15.9, 8.1 Hz, 2H), 3.89 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 189.49 (t, J = 26.2 Hz), 161.91, 136.02, 128.51, 124.78 (t, J = 3.3 Hz), 120.68, 111.69, 55.68. **HRMS** (ESI) calcd for C₈H₈DO [M + H]⁺ 138.0600, found 138.0653.

2,4,6-Trimethoxybenzaldehyde-formyl-d1 (3f)

The reaction was carried out according to the general procedure **A**. 2,4,6-Trimethoxybenzaldehyde (39.2 mg, 0.2 mmol, 1.0 equiv), 4CzIPN (8.0 mg, 0.01 mmol, 5 mol%), PhCOONa (8.6 mg, 0.06 mmol, 30 mol%), **2d** (60 uL, 1M in EtOAc, 30 mol%), D₂O (160 uL, 40 equiv) and anhydrous EtOAc (1.0 mL) were used. The reaction mixture was irritated by Blue LED strip for 36 h. The residue was purified by flash column chromatography (EtOAc/hexane = 2/1-3/1) to afford product (36mg, 99% yield, 98% D ratio by ¹H NMR) as white solid. ¹H NMR (400 MHz, CDCl₃) δ 10.31 (s, 0.02H), 6.04 (s, 2H), 3.84 (s, s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 187.42 (t, J = 26.2 Hz), 166.31, 164.18, 108.71 (t, J = 3.4Hz). 90.29 (t, J = 2.4Hz), 56.03 (q, J = 4.8 Hz), 55.56 (q, J = 4.8 Hz). **HRMS** (ESI) calcd for C₁₀H₁₂DO₄ [M + H]⁺ 198.0871, found 198.0862.

4-Chlorobenzaldehyde-formyl-d1 (3g)

The reaction was carried out according to the general procedure **A**. 4-Chlorobenzaldehyde (56.0 mg, 0.4 mmol, 1.0 equiv), 4CzIPN (8.0 mg, 0.01 mmol, 2.5 mol%), NaOAc (9.8 mg, 0.12 mmol, 30 mol%) instead of PhCOONa, **2d** (120 uL, 1M in EtOAc, 30 mol%), D₂O (320 uL, 40 equiv) and anhydrous EtOAc (2.0 mL) were used. The reaction mixture was irritated by Blue LED strip for 36 h. The residue was purified by flash column chromatography (Et₂O/hexane = 1/19) to afford product (32mg, 57% yield, 95% D ratio by ¹H NMR) as white solid. ¹H NMR (400 MHz, CDCl₃) δ 9.96 (s, 0.05H), 7.81 (d, J = 8.0 Hz, 2H), 7.49 (d, J = 8.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 190.59 (t, J = 26.7 Hz), 141.01, 134.72 (t, J = 3.6Hz), 130.96, 129.55. **HRMS** (ESI) calcd for C₇H₅DClO [M + H]⁺ 142.0164, found 142.0160.

4-Bromobenzaldehyde-formyl-d1 (3h)

The reaction was carried out according to the general procedure **A**. 4-Bromobenzaldehyde (74.0 mg, 0.4 mmol, 1.0 equiv), 4CzIPN (8.0 mg, 0.01 mmol, 2.5 mol%), PhCOONa (8.6 mg, 0.06 mmol, 30 mol%), **2d** (120 uL, 1M in EtOAc), D₂O (320 uL, 40 equiv) and anhydrous DCE/anhydrous EtOAc (1.0 mL/1.0 mL) were used. The reaction mixture was irritated by Blue LED strip for 36 h. The residue was purified by flash column chromatography (Et₂O/hexane = 1/19) to afford product (61mg, 82% yield, 96% D ratio by ¹H NMR) as white solid. ¹H NMR (400 MHz, CDCl₃) δ 9.96 (s, 0.05H), 7.73 (d, J = 8.8 Hz, 2H), 7.67 (d, J = 8.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 190.82 (t, J = 26.7 Hz), 135.09 (t, J = 3.6Hz), 132.52, 131.05, 129.86. **HRMS** (ESI) calcd for C₇H₅DBrO [M + H]⁺ 185.9659 and 187.9639, found 186.9659 and 187.9639.

4-lodobenzaldehyde-formyl-d1 (3i)

The reaction was carried out according to the general procedure **A**. 4-lodobenzaldehyde (46.4 mg, 0.2 mmol, 1.0 equiv), 4CzIPN (8.0 mg, 0.01 mmol, 5 mol%), PhCOONa (8.6 mg, 0.06 mmol, 30 mol%), **2d** (60 uL, 1M in EtOAc, 30 mol%), D₂O (160 uL, 40 equiv) and anhydrous EtOAc (1.0 mL) were used. The reaction mixture was irritated by Blue LED strip for 36 h. The residue was purified by flash column chromatography (Et₂O/hexane = 1/19) to afford product (23mg, 50% yield, 93% D ratio by ¹H NMR) as white solid. ¹H NMR (500 MHz, CDCl₃) δ 9.95 (s, 0.07H), 7.91 (d, J = 8.5 Hz, 2H), 7.59 (d, J = 8.5 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 191.42 (t, J = 26.3 Hz), 138.66, 135.72 (t, J = 3.7Hz), 131.02, 103.01. **HRMS** (ESI) calcd for C_7H_5DIIO [M + H]+ 233.9521, found 233.9521.

4-Hydroxybenzaldehyde-formyl-d1 (3j)

The reaction was carried out according to the general procedure **A**. 4-Hydroxybenzaldehyde (48.8 mg, 0.4 mmol, 1.0 equiv), 4CzIPN (16.0 mg, 0.02 mmol, 5 mol%), PhCOONa (17.4 mg, 0.12 mmol, 30 mol%), **2d** (120 uL, 1M in EtOAc, 30 mol%), D₂O (400 uL, 50 equiv) and anhydrous EtOAc (2.0 mL) were used. The reaction mixture was irritated by Blue LED strip for 36 h. The residue was purified by flash column chromatography (DCM/ EtOAc/hexane = 1/2/7) to afford product (48mg, 99% yield, 97% D ratio by ¹H NMR) as white solid. ¹H NMR (400 MHz, CDCl₃) δ 9.86 (s, 0.03H), 7.82 (d, J = 8.0 Hz, 2H), 6.97 (d, J = 8.0 Hz, 2H), 6.21 (s, 1H). ¹³C NMR (125 MHz, DMSO) δ 190.90 (t, J = 26.5 Hz), 163.56, 132.27, 128.55 (t, J = 3.0 Hz), 116.00. **HRMS** (ESI) calcd for $C_7H_6DO_2$ [M + H]⁺ 124.0503, found 124.0497.

4-Hydroxy-3-methoxybenzaldehyde-formyl-d1(3k)

The reaction was carried out according to the general procedure $\bf B$. To an oven-dried 10 mL-Schlenk tube equipped with a stir bar, was added 4-hydroxy-3-methoxybenzaldehyde (30.4 mg, 0.2 mmol, 1.0 equiv), 4CzIPN (8.0 mg, 0.01 mmol, 5 mol%), NaOAc (4.9 mg, 0.06 mmol, 30 mol%), anhydrous Na₂CO₃ (21.2 mg, 0.2 mmol, 1.0 equiv), 1.0 mL anhydrous EtOAc and D₂O (40 ul, 10 equiv). The tube was stirred at room temperature for 10 min to exchange active protium with deuterium. The solvent was removed under reduced

pressure and the tube was evacuated and backfilled with N_2 (one time). **2d** (60 uL, 1M in EA, 30 mol%), D_2O (160 uL, 40 equiv) and anhydrous EtOAc (1.0 mL) were added to tube under N_2 by syringe. The mixture was degassed by freeze-pump-thaw method, then sealed with parafilm. The reaction mixture was irritated by Blue LED strip for 36 h. The residue was purified by flash column chromatography (DCM/ EtOAc /hexane = 1/1/3) to afford product (30mg, 99% yield, 97% D ratio by ¹H NMR) as white solid. ¹H NMR (400 MHz, CDCl₃) δ 9.81 (s, 0.03H), 7.43-7.40 (m, 2H), 7.03 (d, J = 8.4 Hz, 1H), 6.43 (s, 1H), 3.94 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 190.77 (t, J = 26.5 Hz), 151.88 (s), 147.31 (s), 129.85 (t, J = 3.5 Hz), 127.63, 114.54, 108.94, 56.21. **HRMS** (ESI) calcd for $C_8H_8DO_3$ [M + H]⁺ 154.0609, found 154.0603.

4-Formylphenyl acetate-formyl-d1 (31)

The reaction was carried out according to the general procedure $\bf A$. 4-Formylphenyl acetate (32.8 mg, 0.2 mmol, 1.0 equiv), 4CzIPN (8.0 mg, 0.01 mmol, 5 mol%), PhCOONa (8.6 mg, 0.06 mmol, 30 mol%), $\bf 2d$ (60 uL, 1M in EtOAc), D₂O (160 uL, 40 equiv) and anhydrous EtOAc (1.0 mL) were used. The reaction mixture was irritated by Blue LED strip for 36 h. The residue was purified by flash column chromatography (acetone/hexane = 1/5) to afford product (16mg, 50% yield, 98% D ratio by ¹H NMR) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.98 (s, 0.02H), 7.91 (d, J = 8.4 Hz, 2H), 7.27 (d, J = 8.2 Hz, 2H), 2.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 190.90 (t, J = 26.5 Hz), 168.96, 155.60, 134.14 (t, J = 3.5 Hz), 131.40, 122.56, 21.17. **HRMS** (ESI) calcd for C₉H₈DO₃ [M + H]⁺ 166.0609, found 166.0604.

4-(Allyloxy)benzaldehyde-formyl-d1 (3m)

The reaction was carried out according to the general procedure A. To an oven-dried 10 mL-Schlenk tube equipped with a stir bar, was added 4CzIPN (8.0 mg, 0.01 mmol, 5 mol%), dry CsOAc (11.5 mg, 0.06 mmol, 30 mol%), Cs₂CO₃ (13.0 mg, 0.04 mmol, 20 mol%). The tube was evacuated and backfilled with N₂ (one time). 4-(Allyloxy)benzaldehyde (32.4 mg, 0.2 mmol, 1.0 equiv), 1 mL anhydrous EtOAc, thiol catalyst triisopropylsilanethiol (2d, 60 uL, 30 mol%) in EtOAc solution, and D₂O (160 uL, 40 equiv) were added by syringe under N₂. The mixture was degassed by freeze-pump-thaw method, then sealed with parafilm. The solution was then stirred at room temperature under the irradiation of two 34 W Kessil Blue LEDs instead of Blue LED strip. Electronic fan was used to cool the tube. After 1h, another potion of 4CzIPN (8.0 mg, 0.01 mmol 5 mol%) was added to reaction. The solution was then stirred at room temperature under the irradiation of two 34 W Kessil Blue LEDs for another 5h. Electronic fan was used to cool the tub. After completion of reaction, the mixture was concentrated and purified by flash column chromatography (acetone/hexane = 1/5) to afford product (25mg, 74% yield, 90% D ratio by ¹H NMR) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.88 (s, 0.10H), 7.83 (d, J = 8.8 Hz, 2H), 7.01 (d, J = 8.8 Hz, 2H), 6.10-6.00 (m, 1H), 5.38 (ddd, J = 13.9, 11.8, 1.4 Hz, 2H), 4.62 (dt, J = 5.3, 1.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 190.61 (t, J = 26.2 Hz), 163.74, 132.41, 132.09, 130.10 (t, J = 3.5 Hz), 118.49, 115.14, 69.15. **HRMS** (ESI) calcd for $C_{10}H_{10}DO_3$ [M + H]⁺ 164.0816, found 164.0809.

N-(4-Formylphenyl)acetamide-formyl-d1 (3n)

The reaction was carried out according to the general procedure **A**. *N*-(4-Formylphenyl)acetamide (65.2 mg, 0.4 mmol, 1.0 equiv), 4CzIPN (8.0 mg, 0.01 mmol, 2.5 mol%), PhCOONa (17.4 mg, 0.12 mmol, 30 mol%), **2d** (120 uL, 1M in EtOAc, 30 mol%), D₂O (400 uL, 50 equiv) and anhydrous EtOAc (2.0 mL) were used. The reaction mixture was irritated by Blue LED strip for 36 h. The residue was purified by flash column chromatography (EtOAc/hexane = 2/1-3/1) to afford product (48mg, 85% yield, 97% D ratio by ¹H NMR) as light yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 9.92 (s, 0.02H), 7.85 (d, J = 8.4 Hz, 2H), 7.74 (br, 1H), 7.70 (d, J = 8.4 Hz, 2H), 2.23 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 190.91 (t, J = 26.4 Hz), 168.87, 143.69, 132.30 (t, J = 3.2 Hz), 131.30, 119.36, 24.96. **HRMS** (ESI) calcd for C₉H₉DNO₂ [M + H]⁺ 165.0769, found 165.0763.

4-Morpholinobenzaldehyde-formyl-d1 (3o)

The reaction was carried out according to the general procedure **A**. 4-Morpholinobenzaldehyde (38.2 mg, 0.2 mmol, 1.0 equiv), 4CzIPN (8.0 mg, 0.01 mmol, 5 mol%), PhCOONa (8.7 mg, 0.06 mmol, 30 mol%), Na₂CO₃ (6.4 mg, 0.06 mmol, 30 mol%), **2d** (60 uL, 1M in EtOAc, 30 mol%), D₂O (320 uL, 80 equiv) and anhydrous EtOAc (1.0 mL) were used. The reaction mixture was irritated by Blue LED strip for 36 h. The residue was purified by flash column chromatography (EtOAc/hexane = 1/1) to afford product (32mg, 83% yield, 97% D ratio by ¹H NMR) as brown solid. ¹H NMR (500 MHz, CDCl₃) δ 9.79 (s, 0.03H), 7.76 (d, J = 9.0 Hz, 2H), 6.90 (d, J = 9.0 Hz, 2H), 3.84 (s, 4H), 3.32-3.30 (m, 0.1H, 98% D ratio). ¹³C NMR (125 MHz, CDCl₃) δ 190.46 (t, J = 26.0 Hz), 155.38, 132.00, 127.71 (t, J = 3.3 Hz), 113.53, 66.44, 46.90, 46.74, 46.57, 46.41, 46.23 (quint, J = 20.9 Hz). **HRMS** (ESI) calcd for C₁₁H₉D₅NO₂ [M + H]⁺ 197.1333, found 197.1324.

1*H*-indole-3-carbaldehyde-formyl-d1 (3p)

The reaction was carried out according to the general procedure **A**. 1*H*-indole-3-carbaldehyde (58.4 mg, 0.4 mmol, 1.0 equiv), 4CzIPN (8.0 mg, 0.01 mmol, 2.5 mol%), PhCOONa (17.4 mg, 0.12 mmol, 30 mol%), **2d** (120 uL, 1M in EtOAc, 30 mol%), D₂O (400 uL, 50 equiv) and anhydrous EtOAc (2.0 mL) were used. The reaction mixture was irritated by Blue LED strip for 36 h. The residue was purified by flash column chromatography (EtOAc/hexane/DCM = 1/1/1) to afford product (50mg, 87% yield, 97% D ratio by ¹H NMR) as light brown solid. ¹H NMR (400 MHz, DMSO) δ 12.13 (s, 1H), 9.93 (s, 0.03H), 8.28 (d, J = 2.0 Hz, 1H), 8.10 (s, 1H), 7.52-7.50 (m, 1H), 7.27-7.20 (m, 2H). ¹³C NMR (100 MHz, DMSO) δ 184.70 (t, J = 26.0 Hz), 138.39, 137.03, 124.12, 123.43, 122.09, 120.82, 118.06 (t, J = 3.3 Hz), 112.39. **HRMS** (ESI) calcd for C₉H₇DNO [M + H]⁺ 147.0663, found 147.0657.

1 H-indole-6-carbaldehyde-formyl-d1 (3q)

The reaction was carried out according to the general procedure **A**. 1*H*-indole-3-carbaldehyde (58.4 mg, 0.4 mmol, 1.0 equiv), 4CzIPN (8.0 mg, 0.01 mmol, 2.5 mol%), PhCOONa (17.4 mg, 0.12 mmol, 30 mol%), **2d** (120 uL, 1M in EtOAc, 30 mol%), D₂O (400 uL, 50 equiv) and anhydrous EtOAc (2.0 mL) were used.

The reaction mixture was irritated by Blue LED strip for 36 h. The residue was purified by flash column chromatography (EtOAc/hexane/DCM = 1/1/1) to afford product (54mg, 93% yield, 96% D ratio by 1 H NMR) as light brown solid. 1 H NMR (400 MHz, DMSO) δ 11.69 (s, 1H), 10.01 (s, 0.04H), 8.01 (s, 1H), 7.71–7.67 (m, 2H), 7.55 (d, J = 8.2 Hz, 1H), 6.58 (s, 1H). 13 C NMR (100 MHz, DMSO) δ 192.44 (t, J = 27.2 Hz), 135.27, 132.56, 130.37, 130.11 (t, J = 2.4 Hz), 120.43, 118.82, 115.51, 102.04. **HRMS** (ESI) calcd for C_9H_7DNO [M + H] $^+$ 147.0663, found 147.0657.

Benzo[b]thiophene-3-carbaldehyde-formyl-d1 (2r)

The reaction was carried out according to the general procedure **A**. Benzo[b]thiophene-3-carbaldehyde (64.8 mg, 0.4 mmol, 1.0 equiv), 4CzIPN (8.0 mg, 0.01 mmol, 2.5 mol%), PhCOONa (17.4 mg, 0.12 mmol, 30 mol%), **2d** (120 uL, 1M in EtOAc, 30 mol%), D₂O (320 uL, 40 equiv) and anhydrous EtOAc (2.0 mL) were used. The reaction mixture was irritated by Blue LED strip for 36 h. The residue was purified by flash column chromatography (Et₂O/hexane = 1/9) to afford product (41mg, 63% yield, 95% D ratio by ¹H NMR) as light brown solid. ¹H NMR (400 MHz, CDCl₃) δ 10.13 (s, 0.05H), 8.68 (d, J = 8.1 Hz, 1H), 8.29 (s, 1H), 7.87 (d, J = 7.9 Hz, 1H), 7.48 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 185.18 (t, J = 26.7 Hz), 143.26, 140.53, 136.47 (t, J = 3.7 Hz), 135.24, 126.24, 126.18, 124.90, 122.51, 77.48, 76.84. **HRMS** (ESI) calcd for C₉H₆DOS [M + H]⁺ 164.0275, found 164.0271.

1-(tert-Butyl) 2-(4-formylphenyl) (S)-pyrrolidine-1,2-dicarboxylate-formyl-d1 (3s)

The reaction was carried out according to the general procedure **A**. 1-(*tert*-Butyl) 2-(4-formylphenyl) (*S*)-pyrrolidine-1,2-dicarboxylate (prepared according to reported procedure 10 ,64.0 mg, 0.2 mmol, 1.0 equiv), 4CzIPN (8.0 mg, 0.01 mmol, 5 mol%), PhCOONa (8.7 mg, 0.06 mmol, 30 mol%), **2d** (60 uL, 1M in EtOAc, 30 mol%), D₂O (160 uL, 40 equiv) and anhydrous EtOAc/anhydrous DCE (0.4mL/0.6mL) were used. The reaction mixture was irritated by Blue LED strip for 36 h. The residue was purified by flash column chromatography (EtOAc/hexane/DCM = 1/5/1) to afford product (42mg, 66% yield, 96% D ratio by 1 H NMR) as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 9.79 (s, s, rotamer, 0.04H), 7.9-7.89 (d, d, J = 8.4 Hz, rotamer, 2H), 7.29 (t, J = 8.5 Hz, 2H), 4.50 (dd, dd, J = 8.4, 4.0 Hz, 1H), 3.66-3.43 (m, 1.25H), 2.45-2.31 (m, 1H), 2.28-2.13 (m, 1H), 2.08-1.91(m, 2H), 1.47 and 1.46 (s, s, rotamer, 9H). 13 C NMR (100 MHz, CDCl₃) δ 191.07-190.32 (m, split by D, rotamer), 171.20, 171.12, 155.67, 155.37, 154.63, 153.75, 134.17-134.03 (m, rotamer), 131.40, 131.29, 122.41, 122.30, 80.53, 80.34, 59.34, 59.24, 46.78-46.10 (m, split by D), 31.15, 30.10, 24.61, 23.77. **HRMS** (ESI) calcd for C_{17} H₂₀DNO₅Na [M + Na]+ 343.1375, found 343.1365; calcd for C_{17} H₂₀D₂NO₅ [M + H]+ 322.1618, found 322.1616.

3-Phenylpropanal-formyl-d1 (3t)

The reaction was carried out according to the general procedure $\bf A$. 3-Phenylpropanal (53.6 mg, 0.4 mmol, 1.0 equiv), 4CzIPN (8.0 mg, 0.01 mmol, 2.5 mol%), PhCOONa (17.4 mg, 0.12 mmol, 30 mol%), $\bf 2d$ (120 uL, 1M in EtOAc, 30 mol%), D₂O (320 uL, 40 equiv) and anhydrous EtOAc (1.0 mL) were used. The reaction

mixture was irritated by Blue LED strip for 36 h. The residue was purified by flash column chromatography (acetone/hexane = 1/9) to afford product (53mg, 99% yield, 98% D ratio by 1 H NMR) as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 9.82 (s, 0.02H), 7.31 (t, J = 7.0 Hz, 2H), 7.22 (t, J = 7.4 Hz, 3H), 2.97 (t, J = 7.3 Hz, 2H), 2.78 (t, J = 7.4 Hz, 2H). 13 C NMR (100 MHz, CDCl₃) δ 201.30 (t, J = 26.0 Hz), 140.43, 128.67, 128.36, 126.36, 45.15 (t, J = 3.7 Hz), 28.16. **HRMS** (ESI) calcd for C_9H_6DOS [M + H]⁺ 164.0275, found 164.0271. **HRMS** (ESI) calcd for C_9H_6DONa [M + Na]⁺ 158.0687, found 158.0682.

3-(2-Chlorophenyl)propanal-formyl-d1 (3u)

The reaction was carried out according to the general procedure **A**. 3-(2-Chlorophenyl)propanal (prepared according to reported procedure¹, 67.2 mg, 0.4 mmol), 4CzIPN (8.0 mg, 0.01 mmol, 2.5 mol%), PhCOONa (17.4 mg, 0.12 mmol, 30 mol%), **2d** (120 uL, 1M in EtOAc, 30 mol%), D₂O (320 uL, 40 equiv) and anhydrous EtOAc (1.0 mL) were used. The reaction mixture was irritated by Blue LED strip for 36 h. The residue was purified by flash column chromatography (acetone/hexane = 1/9) to afford product (55mg, 82% yield, 98% D ratio by ¹H NMR) as pale-yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 9.83 (t, J = 1.3 Hz, 0.03H), 7.35 (dd, J = 7.6, 1.6 Hz, 1H), 7.25–7.23 (m, 1H), 7.21–7.14 (m, 2H), 3.06 (t, J = 7.6 Hz, 2H), 2.79 (t, J = 7.6 Hz, 1.74H). ¹³C NMR (120 MHz, CDCl₃) δ 201.16 (t, J = 26.2 Hz), 138.21, 134.07, 130.73, 129.84, 128.10, 127.21, 43.40 (t, J = 3.9 Hz), 26.20. **HRMS** (ESI) calcd for C₉H₈DClONa [M + Na]⁺ 192.0297, found 192.0293.

3-(Benzo[d][1,3]dioxol-5-yl)propanal-formyl-d1 (3v)

The reaction was carried out according to the general procedure **A**. 3-(Benzo[d][1,3]dioxol-5-yl)propanal (35.6 mg, 0.2 mmol, 1.0 equiv), 4CzIPN (8.0 mg, 0.01 mmol, 5 mol%), PhCOONa (8.7 mg, 0.06 mmol, 30 mol%), **2d** (60 uL, 1M in EtOAc, 30 mol%), D₂O (160 uL, 40 equiv) and anhydrous EtOAc (1.0 mL) were used. The reaction mixture was irritated by Blue LED strip for 36 h. The residue was purified by flash column chromatography (acetone/hexane = 1/9) to afford product (30mg, 85% yield, 97% D ratio by ¹H NMR) as pale-yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 9.79 (t, J = 1.2 Hz, 0.03H), 6.72 (d, J = 7.9 Hz, 1H), 6.67 (d, J = 1.5 Hz, 1H), 6.63 (dd, J = 7.9, 1.4 Hz, 1H), 5.91 and 5.89 (s, s, 1.84H, 21% D ratio), 2.87 (t, J = 7.4 Hz, 2H), 2.72 (t, J = 7.3 Hz, 1.58H). ¹³C NMR (100 MHz, CDCl₃) δ 201.35 (t, J = 26.3 Hz), 147.84, 146.08, 134.21, 121.16, 108.86, 108.41, 100.99, 45.46 (t, J = 3.7 Hz), 27.96. **HRMS** (ESI) calcd for C₉H₉DO₃ [M]⁺ 180.0765, found 180.0759.

3-((tert-Butyldimethylsilyl)oxy)propanal-formyl-d1 (3w)

The reaction was carried out according to the general procedure **A**. 3-((*tert*-Butyldimethylsilyl)oxy)propanal (prepared according to reported procedure 11 , 37.6 mg, 0.2 mmol, 1.0 equiv), 4CzIPN (8.0 mg, 0.01 mmol, 5 mol%), PhCOONa (8.7 mg, 0.06 mmol, 30 mol%), **2d** (60 uL, 1M in EtOAc, 30 mol%), D₂O (160 uL, 40 equiv) and anhydrous EtOAc (1.0 mL) were used. The reaction mixture was irritated by Blue LED strip for 36 h. The residue was purified by flash column chromatography (acetone/hexane = 1/9) to afford product (33mg, 87% yield, 96% D ratio by 1 H NMR) as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 9.80 (s, 0.04H), 3.97 (s, 2H), 2.61–2.53 (m, 0.28H, 86% D ratio), 0.87 (s, 9H), 0.06 (s, 6H). 13 C NMR (100 MHz, CDCl₃) δ 202.00 (t, J = 26.9 Hz), 57.48, 46.68–45.63 (m), 25.95, 18.36, -5.31. **HRMS** (ESI) calcd for $C_9H_{19}D_2O_2Si$ [M+H] $^+$ 191.1431, found 191.1425; calcd for $C_9H_{18}D_3O_2Si$ [M+H] $^+$ 192.1494, found 192.1485.

3-(4-(tert-Butyl)phenyl)-2-methylpropanal-formyl-d1 (3x)

The reaction was carried out according to the general procedure **A**. 3-(4-(*tert*-Butyl)phenyl)-2-methylpropanal (40.8 mg, 0.2 mmol, 1.0 equiv), 4CzIPN (8.0 mg, 0.01 mmol, 5 mol%), PhCOONa (8.7 mg, 0.06 mmol, 30 mol%), **2d** (60 uL, 1M in EtOAc, 30 mol%), D₂O (160 uL, 40 equiv) and anhydrous EtOAc (1.0 mL) were used. The reaction mixture was irritated by Blue LED strip for 36 h. The residue was purified by flash column chromatography (Et₂O/hexane = 1/9) to afford product (25mg, 60% yield, 98% D ratio by ¹H NMR) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.73 (d, J = 1.5 Hz, 0.02H), 7.32 (d, J = 8.3 Hz, 2H), 7.11 (d, J = 8.2 Hz, 2H), 3.06 (dd, J = 13.5, 5.8 Hz, 1H), 2.71–2.55 (m, 2H), 1.31 (s, 9H), 1.10 (d, J = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 204.42 (t, J = 26.9 Hz), 149.39, 135.83, 128.80, 125.54, 48.00 (t, J = 3.5 Hz), 36.30, 34.54, 31.51, 13.43. **HRMS** (ESI) calcd for C₁₄H₁₉DONa [M+Na]⁺ 228.1462, found 228.1469.

2,3-Dihydro-1*H*-indene-2-carbaldehyde-formyl-d1 (3y)

The reaction was carried out according to the general procedure **A**. 2,3-Dihydro-1H-indene-2-carbaldehyde (29.2 mg, 0.2 mmol, 1.0 equiv), 4CzIPN (8.0 mg, 0.01 mmol, 5 mol%), PhCOONa (8.7 mg, 0.06 mmol, 30 mol%), **2d** (60 uL, 1M in EtOAc, 30 mol%), D₂O (160 uL, 40 equiv) and anhydrous EtOAc (1.0 mL) were used. The reaction mixture was irritated by Blue LED strip for 36 h. The residue was purified by flash column chromatography (Et₂O/hexane = 1/9) to afford product (27mg, 91% yield, 95% D ratio by ¹H NMR) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.78 (s, 0.05H), 7.26-7.23 (m, 2H), 7.18-7.16 (m, 2H), 3.32-3.25 (m, 3H), 3.32-3.16 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 202.66 (t, J = 26.2 Hz), 141.22, 126.93, 124.75, 50.62–50.48 (t, J = 3.5 Hz), 33.04. **HRMS** (ESI) calcd for C₁₀H₉DONa [M+Na]⁺ 170.0687, found 170.0684.

tert-Butyl 4-formylpiperidine-1-carboxylate-formyl-d1 (3z)

The reaction was carried out according to the general procedure **A**. *tert*-Butyl 4-formylpiperidine-1-carboxylate (29.2 mg, 0.2 mmol, 1.0 equiv), 4CzIPN (8.0 mg, 0.01 mmol, 5 mol%), PhCOONa (8.7 mg, 0.06 mmol, 30 mol%), **2d** (60 uL, 1M in EtOAc, 30 mol%), D₂O (160 uL, 40 equiv) and anhydrous DCE (1.0 mL) were used. The reaction mixture was irritated by Blue LED strip for 36 h. The residue was purified by flash column chromatography (Et₂O/hexane = 1/9) to afford product (27mg, 91% yield, 95% D ratio by ¹H NMR) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.62 (s, 0.03H), 3.93 (br, 2H), 2.89 (t, J = 10.9 Hz, 1.73H), 2.40-2.35(m, 1H), 1.89-1.84 (m, 2H), 1.55-1.48 (m, 2H), 1.41 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 202.94 (t, J = 20.9 Hz), 154.85, 79.75, 47.87–47.75 (m), 42.80 (br), 28.39, 25.11. **HRMS** (ESI) calcd for C₁₁H₁₈DNO3 [M+H]+ 215.1500, found 215.1500.

Bicyclo[2.2.1]hept-5-ene-2-carboxaldehyde-formyl-d1 (3aa)

The reaction was carried out according to the general procedure **A**. Bicyclo[2.2.1]hept-5-ene-2-carboxaldehyde (36.6 mg, 0.3 mmol, 1.0 equiv), 4CzIPN (8.0 mg, 0.01 mmol, 3.7 mol%), PhCOONa (13.0 mg, 0.09 mmol, 30 mol%), Cs_2CO_3 (19.0 mg, 0.06 mmol, 20 mol%), **2d** (60 uL, 1M in EtOAc, 20 mol%), D_2O (240 uL, 40 equiv) and anhydrous EtOAc (2.0 mL) were used. The reaction mixture was irritated by Blue LED strip for 36 h. The residue was purified by flash column chromatography (Et_2O /hexane = 1/9) to afford product (19mg, 52% yield, 93% D ratio by ¹H NMR) as colorless oil. ¹H NMR (400 MHz, $CDCI_3$) δ 9.42 (d, J = 2.8 Hz, 1H), 6.21 (dd, J = 5.5, 3.0 Hz, 1H), 5.99 (dd, J = 5.7, 2.8 Hz, 1H), 3.24 (s, 1H), 2.98 (s, 1H), 2.90 (dt, J = 9.0, 3.8 Hz, 0.69H), 1.92–1.87 (m, 1H), 1.50–1.40 (m, 2H), 1.31 (dd, J = 8.3, 1.4 Hz, 1H). ¹³C NMR (100 MHz, $CDCI_3$) δ 204.95 (t, J = 25.9 Hz), 138.28, 131.94, 52.22 (t, J = 3.5 Hz), 49.80, 45.18, 42.90, 27.73. **HRMS** (ESI) calcd for $C_8H_{10}DO$ [M+H]+ 124.0867, found 124.0867.

tert-Butyl (3-oxopropyl)carbamate-formyl-d1 (3ab)

The reaction was carried out according to the general procedure A. *tert*-Butyl (3-oxopropyl)carbamate (34.6 mg, 0.2 mmol, 1.0 equiv), 4CzIPN (8.0 mg, 0.01 mmol, 5 mol%), PhCOONa (8.7 mg, 0.06 mmol, 30 mol%), **2d** (40 uL, 1M in EtOAc, 20 mol%), D₂O (160 uL, 40 equiv) and anhydrous EtOAc (2.0 mL) were used. The reaction mixture was irritated by Blue LED strip for 36 h. The residue was purified by flash column chromatography (acetone/hexane = 1/3) to afford product (28mg, 81% yield, 94% D ratio by ¹H NMR) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.80 (s, 0.06H), 4.89 (s, 1H), 3.46–3.36 (t, J = 5.6 Hz, 1.67H), 2.69 (t, J = 5.3 Hz, 2H), 1.42 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 201.24 (t, J = 26.0 Hz), 155.94, 79.61, 44.25 (t, J = 3.6 Hz), 34.13, 28.51. **HRMS** (ESI) calcd for C₈H₁₄DO₃ [M]⁺ 197.1007, found 197.1000.

4-Oxo-4-phenylbutanal-formyl-d1 (3ac)

The reaction was carried out according to the general procedure **A**. 4-Oxo-4-phenylbutanal (32.4 mg, 0.2 mmol, 1.0 equiv), 4CzIPN (8.0 mg, 0.01 mmol, 5 mol%), PhCOONa (8.7 mg, 0.06 mmol, 30 mol%), **2d** (60 uL, 1M in EtOAc, 30 mol%), D₂O (160 uL, 40 equiv) and anhydrous EtOAc (1.0 mL) were used. The reaction mixture was irritated by Blue LED strip for 36 h. The residue was purified by flash column chromatography (acetone/hexane = 1/3) to afford product (27mg, 84% yield, 98% D ratio by ¹H NMR) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.89 (s, 0.02H), 7.98 (d, J = 8.1 Hz, 2H), 7.57 (t, J = 6.8 Hz, 1H), 7.46 (t, J = 7.2 Hz, 2H), 3.32 (t, J = 6.2 Hz, 2H), 2.92 (t, J = 6.2 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 200.44 (t, J = 26.6 Hz), 197.91, 136.51, 133.41, 128.74, 128.15, 37.50 (t, J = 3.8 Hz), 31.08. **HRMS** (ESI) calcd for C₈H₁₀DO₂ [M+H]⁺ 164.0816, found 164.0811.

Benzyl 4-oxobutanoate-formyl-d1 (3ad)

The reaction was carried out according to the general procedure **A**. Benzyl 4-oxobutanoate (38.4 mg, 0.2 mmol, 1.0 equiv), 4CzIPN (8.0 mg, 0.01 mmol, 5 mol%), PhCOONa (8.7 mg, 0.06 mmol, 30 mol%), **2d** (60

uL, 1M in EtOAc, 30 mol%), D₂O (160 uL, 40 equiv) and anhydrous EtOAc (1.0 mL) were used. The reaction mixture was irritated by Blue LED strip for 36 h. The residue was purified by flash column chromatography (acetone/hexane = 1/3) to afford product (35mg, 84% yield, 97% D ratio by 1 H NMR) as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 9.81 (s, 0.03 H), 7.40-7.26 (m, 5H), 5.13 (s, 2H), 2.81 (t, J = 6.4 Hz, 0.95 H), 2.68 (t, J = 6.4 Hz, 2H). 13 C NMR (100 MHz, CDCl₃) δ 199.71 (t, J = 26.7 Hz), 172.21, 135.82, 128.69, 128.79, 128.42, 128.33 66.76, 38.43 (t, J = 3.8 Hz), 26.67. **HRMS** (ESI) calcd for $C_{11}H_{12}DO_3$ [M+H]+ 194.0922, found 194.0921; calcd for $C_{11}H_{10}D_3O_3$ [M+H]+ 196.1048, found 196.1047.

4-(3-Oxopropyl)benzonitrile-formyl-d1 (3ae)

The reaction was carried out according to the general procedure **A**. 4-(3-Oxopropyl)benzonitrile (38.4 mg, 0.2 mmol), 4CzIPN (8.0 mg, 0.01 mmol, 5 mol%), PhCOONa (8.7 mg, 0.06 mmol, 30 mol%), **2d** (60 uL, 1M in EtOAc, 30 mol%), D₂O (160 uL, 40 equiv) and anhydrous EtOAc (1.0 mL) were used. The reaction mixture was irritated by Blue LED strip for 36 h. The residue was purified by flash column chromatography (acetone/hexane = 1/3) to afford product (35mg, 84% yield, 97% D ratio by ¹H NMR) as pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 9.81 (s, 0.02 H), 7.58 (d, J = 8.0 Hz, 2H), 7.30 (d, J = 7.9 Hz, 2H), 3.01 (t, J = 6.8 Hz, 1.77H), 2.82 (t, J = 7.1 Hz, 1.19H). ¹³C NMR (100 MHz, CDCl₃) δ 200.06 (t, J = 26.7 Hz), 146.20, 132.51, 129.32, 118.97, 110.41, 44.47 (t, J = 3.7 Hz), 28.06 (t, J = 6.1 Hz). **HRMS** (ESI) calcd for C₁₀H₉DNO [M+H]⁺ 161.0820, found 161.0813; calcd for C₁₀H₈D₂NO [M+H]⁺ 162.0882, found 162.0876.

3-Cyano-N-(3-oxopropyl)benzamide-formyl-d1 (3af)

The reaction was carried out according to the general procedure **B**. 3-Cyano-*N*-(3-oxopropyl)benzamide (40.4 mg, 0.2 mmol), 4CzIPN (8.0 mg, 0.01 mmol, 5 mol%), PhCOONa (8.7 mg, 0.06 mmol, 30 mol%), **2d** (60 uL, 1M in EtOAc, 30 mol%), D₂O (160 uL, 40 equiv) and anhydrous EtOAc (1.0 mL) were used. The reaction mixture was irritated by Blue LED strip for 36 h. The residue was purified by preparative TLC plate (EtOAc/hexane = 3/1) to afford product (32mg, 80% yield, 96% D ratio by ¹H NMR) as pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 9.86 (s, 0.04 H), 8.05 (s, 1H), 7.96 (d, J = 7.7 Hz, 1H), 7.77 (d, J = 7.7 Hz, 1H), 7.56 (t, J = 7.8 Hz, 1H), 6.85 (br, 1H), 3.74 (d, J = 5.4 Hz, 2H), 2.90-2.86 (m, 0.79H). ¹³C NMR (100 MHz, CDCl₃) δ 201.90-201.24 (m), 165.39, 135.56, 134.88, 131.26, 130.96, 129.70, 118.09, 113.11, 42.39-42.86 (m), 33.74 (t, J = 5.0 Hz). **HRMS** (ESI) calcd for C₁₁H₁₀DN₂O₂ [M+H]+ 204.0878, found 204.073; calcd for C₁₀H₈D₂NO [M+H]+ 205.0941, found 205.0931.

3-(Pyridin-4-yl)propanal-formyl-d1 (3ag)

The reaction was carried out according to the general procedure $\bf A$. 3-(Pyridin-4-yl)propanal (27.0 mg, 0.2 mmol, 1.0 equiv), 4CzIPN (8.0 mg, 0.01 mmol, 5 mol%), PhCOONa (8.7 mg, 0.06 mmol, 30 mol%), $\bf 2d$ (60 uL, 1M in EtOAc, 30 mol%), D₂O (160 uL, 40 equiv) and anhydrous DCE (1.0 mL) were used. The reaction mixture was irritated by Blue LED strip for 36 h. The residue was purified by preparative TLC plate (EtOAc/hexane = 3/1) to afford product (21mg, 78% yield, 97% D ratio by ¹H NMR) as pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 9.82 (t, J = 1.2 Hz, 1H), 8.52 (d, J = 5.7 Hz, 2H), 7.14 (d, J = 5.8 Hz, 2H), 2.95 (t, J = 7.2 Hz, 1.76H), 2.82 (t, J = 7.2 Hz, 1.05H). ¹³C NMR (100 MHz, CDCl₃) δ 200.35-199.73 (m), 149.77,

123.94, 43.84 (t, J = 3.7 Hz), 27.26 (t, J = 6.1 Hz). **HRMS** (ESI) calcd for C₈H₉DNO [M+H]⁺ 137.0820, found 137.0814.

3-(1*H*-indol-3-yl)propanal-formyl-d1 (3ah)

The reaction was carried out according to the general procedure **B**. 3-(1*H*-indol-3-yl)propanal-*formyl* (prepared according to reported procedure 12 , 34.6 mg, 0.2 mmol, 1.0 equiv), 4CzIPN (8.0 mg, 0.01 mmol, 5 mol%), PhCOONa (8.7 mg, 0.06 mmol, 30 mol%), **2d** (60 uL, 1M in EtOAc, 30 mol%), D₂O (160 uL, 40 equiv) and anhydrous EtOAc (1.0 mL) were used. The reaction mixture was irritated by Blue LED strip for 36 h. The residue was purified by flash column chromatography (EtOAc/hexane/DCM = 3/1/1) to afford product (21mg, 60% yield, 90% D ratio by 1 H NMR) as pale yellow oil. 1 H NMR (400 MHz, CDCl₃) δ 9.85 (s, 0.1 H), 8.00 (br, 1H), 7.60 (d, J = 7.8 Hz, 1H), 7.36 (d, J = 8.1 Hz, 1H), 7.22 (t, J = 7.1 Hz, 1H), 7.17–7.12 (m, 1H), 6.98 (s, 1H), 3.13 (t, J = 7.2 Hz, 2H), 2.85 (t, J = 7.3 Hz, 1.67H). 13 C NMR (100 MHz, CDCl₃) δ 202.45 (t, J = 26.4 Hz), 136.45, 127.19, 122.31, 121.62, 119.54, 118.71, 111.34, 43.94 (t, J = 3.7 Hz), 17.94. **HRMS** (ESI) calcd for C₁₁H₁₁DNO [M+H]+ 175.0976, found 175.0974.

3-(5-Methylfuran-2-yl)butanal-formyl-d1 (3ai)

The reaction was carried out according to the general procedure **A**. 3-(5-Methylfuran-2-yl)butanal (30.4 mg, 0.2 mmol, 1.0 equiv), 4CzIPN (16.0 mg, 0.02 mmol, 10 mol%), NaOAc (4.9 mg, 0.06 mmol, 30 mol%) instead of PhCOONa, Na₂CO₃ (6.4 mg, 0.06 mmol, 30 mol%), **2d** (60 uL, 1M in EtOAc, 30 mol%), D₂O (160 uL, 40 equiv) and anhydrous EtOAc (1.0 mL) were used. The reaction mixture was irritated by two 34 W Kessil Blue LEDs instead of LED strips for 6 h. The residue was purified by flash column chromatography (acetone/hexane = 1/19) to afford product (15mg, 50% yield, 90% D ratio by ¹H NMR) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.76 (s, 0.1H), 5.86 (d, J = 10.6 Hz, 2H), 3.37 (dd, J = 13.7, 6.9 Hz, 1H), 2.77 (dd, J = 16.7, 6.6 Hz, 1H), 2.55 (dd, J = 16.7, 7.2 Hz, 1H), 2.24 (s, 3H), 1.29 (d, J = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 201.55 (t, J = 26.3 Hz), 156.56, 150.94, 105.95, 104.95, 49.25 (t, J = 3.6 Hz), 28.08, 19.23, 13.63. **HRMS** (ESI) calcd for C₉H₁₂DNO₂ [M+H]⁺ 154.0973, found 154.0978.

3-(Thiophen-2-yl)propanal-formyl-d1 (3aj)

The reaction was carried out according to the general procedure **A**. 3-(Thiophen-2-yl)propanal (28.0 mg, 0.2 mmol, 1.0 equiv), 4CzIPN (8.0 mg, 0.01 mmol, 5 mol%), **2d** (60 uL, 1M in EtOAc, 30 mol%), D₂O (160 uL, 40 equiv) and anhydrous EtOAc (1.0 mL) were used. The reaction mixture was irritated by blue LED strip for 36 h. The residue was purified by flash column chromatography (Et₂O/hexane = 1/9-1/5) to afford product (27mg, 95% yield, 91% D ratio by ¹H NMR) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.83 (s, 0.09H), 7.13 (d, J = 4.5 Hz, 1H), 6.91-6.91 (m, 1H), 6.82 (s, 1H), 3.18 (t, J = 7.2 Hz, 2H), 2.84 (t, J = 7.3 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 200.73 (t, J = 26.3 Hz), 143.05, 127.06, 124.88, 123.74, 45.31 (t, J = 3.7 Hz), 22.50. **HRMS** (ESI) calcd for C₇H₇DOSNa [M+Na]⁺ 164.0251, found 164.0250.

3-(2,4-Dimethoxypyrimidin-5-yl)propanal-formyl-d1 (3ak)

The reaction was carried out according to the general procedure **A**. 3-(2,4-Dimethoxypyrimidin-5-yl)propanal (39.2 mg, 0.2 mmol, 1.0 equiv), 4CzIPN (8.0 mg, 0.01 mmol, 5 mol%), **2d** (60 uL, 1M in EtOAc, 30 mol%), D₂O (160 uL, 40 equiv) and anhydrous EtOAc (1.0 mL) were used. The reaction mixture was irritated by blue LED strip for 36 h. The residue was purified by flash column chromatography (EtOAc/hexane/DCM = 5/3/2) to afford product (24mg, 62% yield, 95% D ratio by ¹H NMR) as pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 9.79 (t, J = 1.2 Hz, 0.05H), 8.03 (s, 1H), 3.97 (d, J = 1.2 Hz, 3H), 3.95 (d, J = 1.3 Hz, 3H), 2.81–2.75 (m, 2H), 2.73–2.64 (m, 1.8H). ¹³C NMR (100 MHz, CDCl₃) δ 200.95 (t, J = 26.4 Hz), 169.39, 164.51, 157.36, 113.56, 54.81 (q, J = 3.6 Hz), 54.02 (q, J = 3.5 Hz), 42.85 (t, J = 3.7 Hz), 19.60. **HRMS** (ESI) calcd for C₉H₁₁DN₂O₃ [M+H]⁺ 198.0983, found 198.0978.

Dodecanal-formyl-d1 (3al)

The reaction was carried out according to the general procedure **A**. Dodecanal (36.8 mg, 0.2 mmol, 1.0 equiv), 4CzIPN (8.0 mg, 0.01 mmol, 5 mol%), **2d** (60 uL, 1M in EtOAc, 30 mol%), D₂O (160 uL, 40 equiv) and anhydrous EtOAc (1.0 mL) were used. The reaction mixture was irritated by blue LED strip for 36 h. The residue was purified by flash column chromatography (Et₂O/hexane/ = 1/19) to afford product (24mg, 66% yield, 98% D ratio by ¹H NMR) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.79 (t, J = 1.2 Hz, 0.05H), 2.30 (t, J = 7.4 Hz, 1.29H), 1.57–1.47 (m, 2H), 1.15 (s, 16H), 0.77 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 202.78 (t, J = 26.4 Hz), 43.90 (t, J = 3.5 Hz), 32.05, 29.74, 29.73, 29.58, 29.51, 29.47, 29.32, 22.83, 22.21, 14.26. **HRMS** (ESI) calcd for C₂₂H₂₃DONa [M+Na]⁺ 208.1782, found 207.1785.

Olealdehyde-formyl-d1 (3am)

The reaction was carried out according to the general procedure **A**. Olealdehyde (53.2 mg, 0.2 mmol, 1.0 equiv), 4CzIPN (8.0 mg, 0.01 mmol, 5 mol%), **2d** (60 uL, 1M in EtOAc, 30 mol%), D₂O (160 uL, 40 equiv) and anhydrous EtOAc (1.0 mL) were used. The reaction mixture was irritated by blue LED strip for 36 h. The residue was purified by flash column chromatography (Et₂O/hexane/ = 1/19) to afford product (35mg, 65% yield, 97% D ratio by ¹H NMR, trans/cis = 1/4 by ¹H NMR) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.76 (t, J = 1.7 Hz, 0.03H), 5.43–5.35 (m, 1.37H, cis), 5.35–5.29 (m, 0.33H, trans), 2.41 (t, J = 7.4 Hz, 1.34H), 2.01-1.93 (m, 4H), 1.67–1.57 (m, 2H), 1.28 (dd, J = 17.4, 2.6 Hz, 20H), 0.88 (t, J = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 202.75 (t, J = 25.9 Hz), 130.66 (cis), 130.30 (cis), 130.18 (trans), 129.83 (trans), 43.88 (t, J = 3.5 Hz), 32.75, 32.68, 32.05, 29.80, 29.68, 29.64, 29.47, 29.36, 29.33, 29.29, 29.05, 22.83, 22.20, 14.26. **HRMS** (ESI) calcd for C₁₈H₃₄DO [M+H]+ 268.2745, found 268.2746.

(E)-6-(4-hydroxy-6-methoxy-7-methyl-3-oxo-1,3-dihydroisobenzofuran-5-yl)-4-methylhex-4-enal-formyl-d1 (3an)

The reaction was carried out according to the general procedure **B**. (*E*)-6-(4-Hydroxy-6-methoxy-7-methyl-3-oxo-1,3-dihydroisobenzofuran-5-yl)-4-methylhex-4-enal (prepared according to reported procedure¹⁰, 30.4 mg, 0.1 mmol, 1.0 equiv), 4CzIPN (4.0 mg, 0.005 mmol, 5 mol%), **2d** (30 uL, 1M in EtOAc, 30 mol%),

D₂O (80 uL, 40 equiv) and anhydrous EtOAc (1.0 mL) were used. The reaction mixture was irritated by blue LED strip for 36 h. The residue was purified by flash column chromatography (EtOAc/hexane = 3/7) to afford product (26mg, 85% yield, 96% D ratio by ¹H NMR) as white solid. ¹H NMR (400 MHz, CDCl₃) δ 9.72 (s, 0.04H), 5.24 (t, J = 7.0 Hz, 1H), 5.19 (s, 2H), 3.75 (s, 3H), 3.38 (d, J = 6.9 Hz, 2H), 2.59–2.44 (m, 1.4H), 2.35–2.30 (m, 2H), 2.14 (s, 3H), 1.80 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 202.57-202.02 (m), 173.03, 163.78, 153.74, 144.19, 133.97, 123.05, 122.10, 116.86, 106.52, 70.18, 61.13, 42.21–41.43 (m), 31.83 (t, J = 5.6 Hz), 22.72, 16.41, 11.70. **HRMS** (ESI) calcd for C₁₇H₂₀DO₅ [M+H]⁺ 306.1446, found 306.1439.

(R)-4-((3R,5S,7S,8R,9S,10S,13R,14S,17R)-3,7-dihydroxy-10,13-dimethylhexadecahydro-1*H*-cyclopenta[*a*]phenanthren-17-yl)pentanal-*formyl*-d1 (3ao)

The according procedure (R)-4reaction was carried out to the general B. ((3R,5S,7S,8R,9S,10S,13R,14S,17R)-3,7-dihydroxy-10,13-dimethylhexadecahydro-1Hcyclopenta[a]phena -nthren-17-yl)pentanal (prepared according to reported procedure¹⁰, 37.7 mg, 0.1 mmol, 1.0 equiv), 4CzIPN (4.0 mg, 0.005 mmol, 5 mol%), 2d (30 uL, 1M in EtOAc, 30 mol%), D₂O (80 uL, 40 equiv) and anhydrous DCE (1.0 mL) were used. The reaction mixture was irritated by blue LED strip for 36 h. The residue was purified by flash column chromatography (EtOAc/hexane = 1/1-3/1) to afford product (23mg, 60% yield, 91% D ratio by ¹H NMR) as white solid. ¹H NMR (400 MHz, CDCl₃) δ 9.79 (s, 0.09H), 3.66-3.52 (m, 2H), 2.49-2.41 (m, 0.75H), 2.38-2.30 (m,0.75H), 2.01-1.98 (m, 1H), 1.92-1,75 (m, 7H), 1.68-1.57(m, 4H), 1.53-1.40 (m, 6H), 1.36–1.22 (m, 6H), 1.17–1.01 (m, 3H), 0.94–0.89 (m, 6H), 0.67 (s, 3H). 13C NMR (100 MHz, CDCl₃) δ 203.00 (t, J = 25.9 Hz), 71.58, 71.50, 55.85, 55.08, 43.91, 42.57, 40.90 (t, J = 25.9 Hz), 71.58, 71.50, 55.85, 55.08, 43.91, 42.57, 40.90 (t, J = 25.9 Hz), 71.58, 71.50, 55.85, 55.08, 43.91, 42.57, 40.90 (t, J = 25.9 Hz), 71.58, 71.50, 55.85, 55.08, 43.91, 42.57, 40.90 (t, J = 25.9 Hz), 71.58, 71.50, 55.85, 55.08, 43.91, 42.57, 40.90 (t, J = 25.9 Hz), 71.58, 71.50, 55.85, 55.08, 43.91, 42.57, 40.90 (t, J = 25.9 Hz), 71.58, 71.50, 55.85, 55.08, 43.91, 42.57, 40.90 (t, J = 25.9 Hz), 71.58, 71.50, 55.85, 55.08, 43.91, 42.57, 40.90 (t, J = 25.9 Hz), 71.58, 71.50, 55.85, 55.08, 43.91, 42.57, 40.90 (t, J = 25.9 Hz), 71.58, 71.50, 55.85, 55.08, 43.91, 42.57, 40.90 (t, J = 25.9 Hz), 71.58, 71.50, 55.85, 55.08, 43.91, 42.57, 40.90 (t, J = 25.9 Hz), 71.58, 71.50, 55.85, 55.08, 43.91, 42.57, 40.90 (t, J = 25.9 Hz), 71.58, 71.50, 55.85, 55.08, 43.91, 42.57, 40.90 (t, J = 25.9 Hz), 71.58, 71.50, 55.85, 55.08, 43.91, 42.57, 40.90 (t, J = 25.9 Hz), 71.58, 71.50, 71. 2.8 Hz), 40.26, 39.31, 37.43, 37.02, 35.38, 35.06, 34.22, 30.47, 28.81, 28.09, 27.03, 23.52, 21.31, 18.63, 12.28. **HRMS** (ESI) calcd for C₂₄H₃₉DO₃Na [M+Na]⁺ 400.2932, found 400.2918.

4-Formylphenyl 2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1 H-indol-3-yl)acetate-formyl-d1 (3ap)

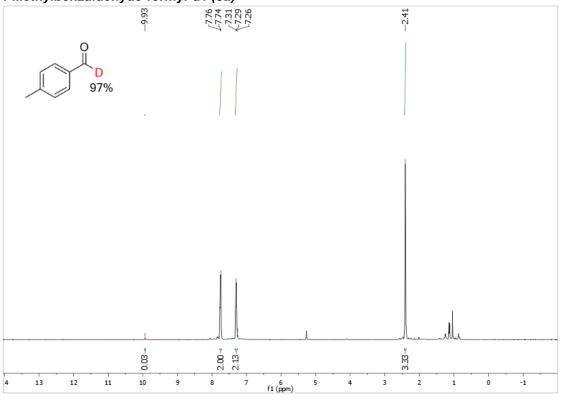
according The reaction (R)-4was carried out to the general procedure ((3R,5S,7S,8R,9S,10S,13R,14S,17R)-3,7-dihydroxy-10,13-dimethylhexadecahydro-1Hcyclopenta[a]phena -nthren-17-yl)pentanal (46.1 mg, 0.1 mmol, 1.0 equiv), 4CzIPN (4.0 mg, 0.005 mmol, 5 mol%), 2d (30 uL, 1M in EtOAc, 30 mol%), D2O (80 uL, 40 equiv) and anhydrous DCE/anhydrous EtOAc (0.8 ml/0.2 mL) were used. The reaction mixture was irritated by blue LED strip for 36 h. The residue was purified by flash column chromatography (EtOAc/hexane/DCM= 1/3/1) to afford product (23mg, 50% yield, 92% D ratio by ¹H NMR) as white solid. ¹H NMR (400 MHz, CDCl₃) δ 9.98 (s, 0.08H), 7.90 (d, J = 8.5 Hz, 2H), 7.68 (d, J = 8.4 Hz, 2H), 7.48 (d, J = 8.3 Hz, 2H), 7.25 (d, J = 8.1 Hz, 2H), 7.04 (s, 1H), 6.88 (d, J = 8.4 Hz, 2H), 7.68 (d, J = 8.4 Hz, 2H), 7.04 (s, 1H), 6.88 (d, J = 8.4 Hz, 2H), 7.68 (d, J = 8.4 Hz, 2H), 7.04 (s, 1H), 6.88 (d, J = 8.4 Hz, 2H), 7.68 (d, J = 8.4 Hz, 2H), 7.04 (s, 1H), 6.88 (d, J = 8.4 Hz, 2H), 7.68 (d, J = 8.4 Hz, 2H), 7.04 (s, 1H), 6.88 (d, J = 8.4 Hz, 2H), 7.04 (s, 1H), 6.88 (d, J = 8.4 Hz, 2H), 7.05 (d, J = 8.4 Hz, 2H), 7.04 (s, 1H), 6.88 (d, J = 8.4 Hz, 2H), 7.05 (d, J = 8.4 Hz, 2H), 7.04 (s, 1H), 6.88 (d, J = 8.4 Hz, 2H), 7.05 (d, J = 8.4 Hz, 2H), 7.04 (s, 1H), 6.88 (d, J = 8.4 Hz, 2H), 7.05 (d, J = 8.4 Hz, 2H), 7.04 (s, 1H), 6.88 (d, J = 8.4 Hz, 2H), 7.05 (d, J = 8.4 Hz, 2H), 7.05 (d, J = 8.4 Hz, 2H), 7.04 (s, 1H), 6.88 (d, J = 8.4 Hz, 2H), 7.05 (d, 9.0 Hz, 1H), 6.70 (dd, J = 9.0, 2.1 Hz, 1H), 3.94 (s, 1.49H), 3.84 (s, 3H), 2.47 (s, 2.25H). ¹³C NMR (100 MHz, CDCl₃) δ 190.65 (t, J = 26.4 Hz), 168.74, 168.43, 156.30, 155.46, 139.61, 136.56, 134.16 (t, J = 3.4Hz), 133.85, 131.36, 131.34, 131.00, 130.50, 129.33, 122.36, 115.22, 111.91, 111.59, 101.35, 55.90, 30.74, 13.56. **HRMS** (ESI) calcd for C₂₆H₂₀DCINO₅ [M+H]⁺ 463.1166, found 463.1151; calcd for C₂₆H₁₉D₂CINO₅ [M+Na]⁺ 464.1228, found 464.1207; calcd for C₂₆H₁₈D₃ClNO₅ [M+Na]⁺ 465.1291, found 465.1260.

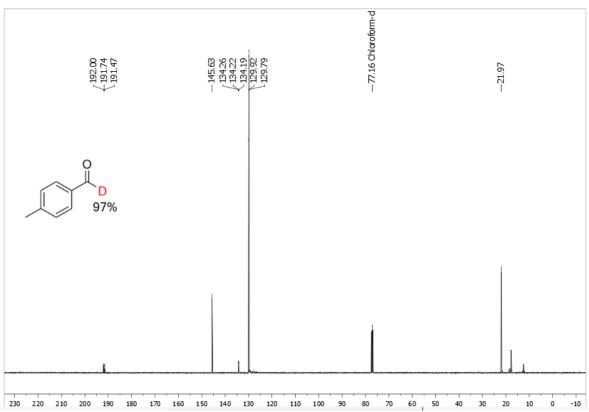
(3aR,4R,6S,6aS)-6-methoxy-2,2-dimethyl-N-(3-oxopropyl)tetrahydrofuro[3,4-d][1,3]dioxole-4-carboxamide-formyl-d1 (3aq)

The reaction was carried out according to the general procedure **B**. (3aR,4R,6S,6aS)-6-methoxy-2,2-dimethyl-*N*-(3-oxopropyl)tetrahydrofuro[3,4-*d*][1,3]dioxole-4-carboxamide (54.6 mg, 0.2 mmol, 1.0 equiv), 4CzIPN (8.0 mg, 0.01 mmol, 5 mol%), **2d** (60 uL, 1M in EtOAc, 30 mol%), D₂O (160 uL, 40 equiv) and anhydrous EtOAc (1.0 mL) were used. The reaction mixture was irritated by blue LED strip for 36 h. The residue was purified by flash column chromatography (EtOAc/MeOH= 19/1-9/1) to afford product (30mg, 55% yield, 97% D ratio by ¹H NMR) as pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 9.80 (s, 0.03H), 6.98 (br, 1H), 5.06 (dd, J = 6.0, 1.3 Hz, 1H), 5.04 (s, 1H), 4.57 (s, 1H), 4.51 (d, J = 6.0 Hz, 1H), 3.55 (t, J = 5.5 Hz, 1.77H), 3.44 (s, 3H), 2.75-2.68 (m, 0.49H), 1.47 (s, 3H), 1.31 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 201.18-200.58 (m), 170.37, 112.88, 111.66, 86.63, 84.58, 82.75, 56.65, 43.71-43.10 (m), 32.52-32.42 (m), 26.60, 25.07. **HRMS** (ESI) calcd for C₁₂H₁₈DNO₆Na [M+Na]⁺ 297.1167, found 297.1151; calcd for C₁₂H₁₈D₂NO₆ [M+H]⁺ 267.1411, found 276.1397.

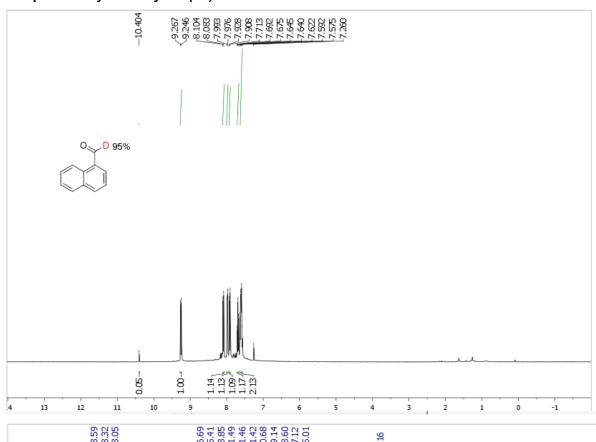
Methyl N^a-((benzyloxy)carbonyl)-1-(4-oxobutanoyl-4-d)-L-tryptophanate-formyl-d1 (3ar)

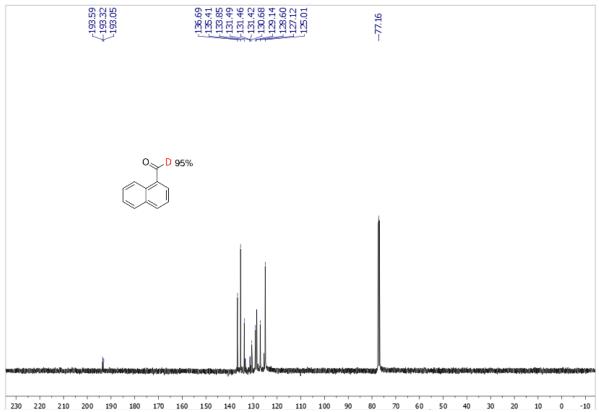
The reaction was carried out according to the general procedure **B**. Methyl N^a -((benzyloxy)carbonyl)-1-(4-oxobutanoyl-4-d)-L-tryptophanate (43.7 mg, 0.1 mmol, 1.0 equiv), 4CzIPN (4.0 mg, 0.005 mmol, 5 mol%), 2d (30 uL, 1M in EtOAc, 30 mol%), D₂O (80 uL, 40 equiv) and anhydrous EtOAc/anhydrous DCE (0.5 mL/0.5 mL) were used. The reaction mixture was irritated by blue LED strip for 36 h. The residue was purified by preparative TLC plate (EtOAc/hexane/DCM= 1/2/2) to afford product (29mg, 66% yield, 91% D ratio by 1 H NMR) as pale yellow oil. 1 H NMR (400 MHz, CDCl₃) 9.90 (s, 0.09H), 8.37 (d, J = 8.2 Hz, 1H), 7.47 (d, J = 7.8 Hz, 1H), 7.36–7.23 (m, 7H), 5.41 (d, J = 8.0 Hz, 1H), 5.12 (dd, J = 30.3, 12.2 Hz, 2H), 4.77 (dd, J = 7.6 Hz, 6.0 Hz, 1H), 3.70 (s, 3H), 3.36–3.09 (m, 4H), 2.97 (t, J = 6.3 Hz, 1.68H). 13 C NMR (100 MHz, CDCl₃) δ 199.64 (t, J = 26.8 Hz), 172.05, 169.44, 155.82, 136.32, 135.94, 130.44, 128.68, 128.37, 128.25, 125.73, 123.89, 122.67, 118.87, 117.41, 116.77, 67.19, 53.91, 52.72 (q, J = 3.7 Hz), 37.93, 37.74 (t, J = 3.3 Hz), 28.29, 28.19. **HRMS** (ESI) calcd for C_{24} H₂₄DN₂O₆ [M+H]⁺ 438.1770, found 438.1759.

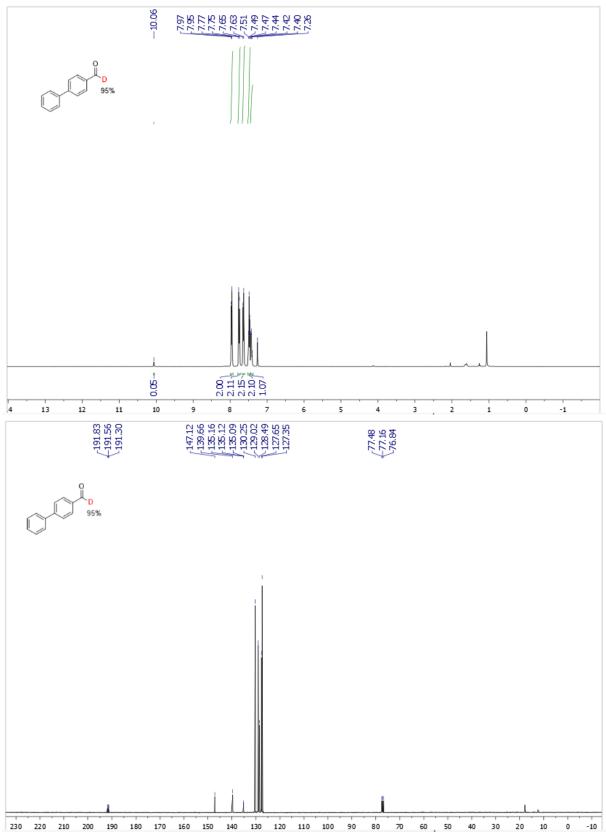

tert-Butyl (S)-(1-oxo-1-((2-oxo-2-((3-oxopropyl)amino)ethyl)amino)-3-phenylpropan-2-yl)carbamate-formyl-d1 (3as)


The reaction was carried out according to the general procedure **B**. *tert*-Butyl (S)-(1-oxo-1-((2-oxo-2-((3-oxopropyl)amino)ethyl)amino)-3-phenylpropan-2-yl)carbamate (75.4mg, 0.2 mmol, 1.0 equiv), 4CzIPN (8.0 mg, 0.01 mmol, 5 mol%), **2d** (60 uL, 1M in EtOAc, 30 mol%), D₂O (160 uL, 40 equiv) and anhydrous EtOAc anhydrous DCE (0.5 mL/0.5 mL) were used. The reaction mixture was irritated by blue LED strip for 36 h. The residue was purified by flash column chromatography (EtOAc/MeOH = 9/1) to afford product (66mg, 88% yield, 95% D ratio by ¹H NMR) as colorless oil. ¹H NMR (400 MHz, CDCl₃) 9.75 (s, 0.09H), 7.32-7.18

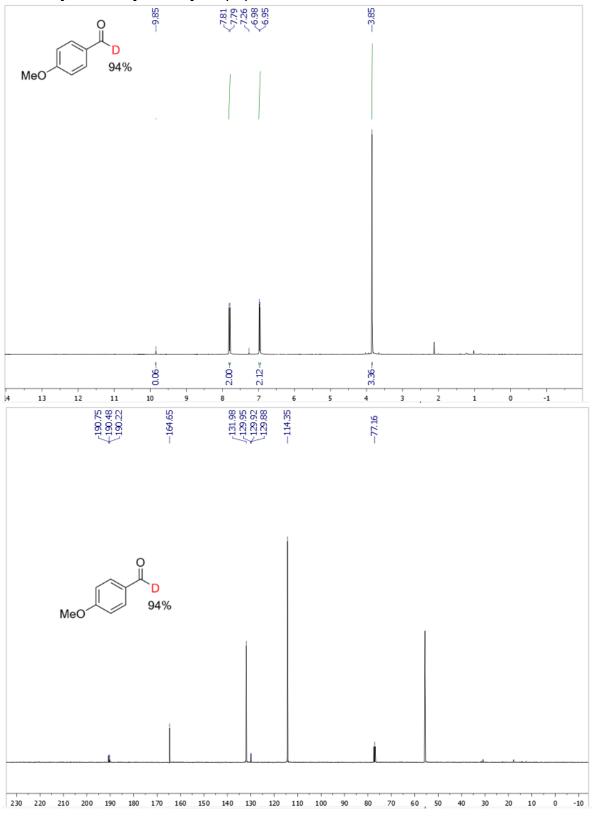
(m, 5H), 6.85 (s, 2H), 5.17 (s, 1H), 4.31 (dd, J= 14.1, 7.1 Hz, 1H), 3.90 (dd, J= 16.7, 6.0 Hz, 1H), 3.78 (dd, J= 16.7, 5.5 Hz, 1H), 3.51-3.48 (m, 2H), 3.12 (dd, J= 13.9, 6.3 Hz, 1H), 2.98 (dd, J= 13.6, 7.7 Hz, 1H), 2.68 (t, J= 6.2 Hz, 0.42H), 1.38 (s, 9H). 13 C NMR (100 MHz, CDCl₃) δ 200.95 (t, J= 26.2 Hz), 172.14, 169.03, 155.94, 136.51, 129.31, 128.86, 127.21, 80.71, 56.41,43.21, 38.13, 33.09, 28.38. **HRMS** (ESI) calcd for C₁₉H₂₇DN₃O₅ [M+H]⁺ 379.2086, found 379.2075; C₁₉H₂₆D₂N₃O₅ [M+H]⁺ 380.2149, found 380.2136; C₁₉H₂₅D₃N₃O₅ [M+H]⁺ 381.2212, found 381.2195.

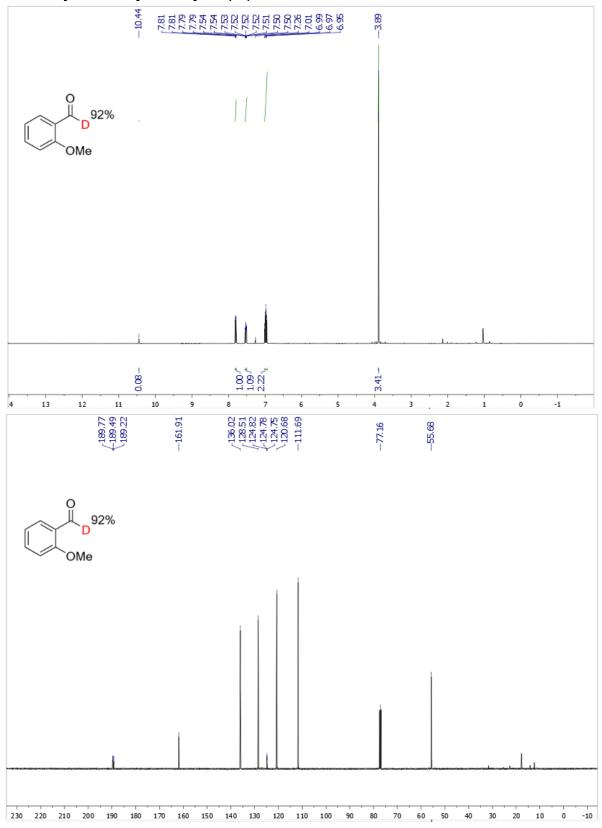

9. Spectra data

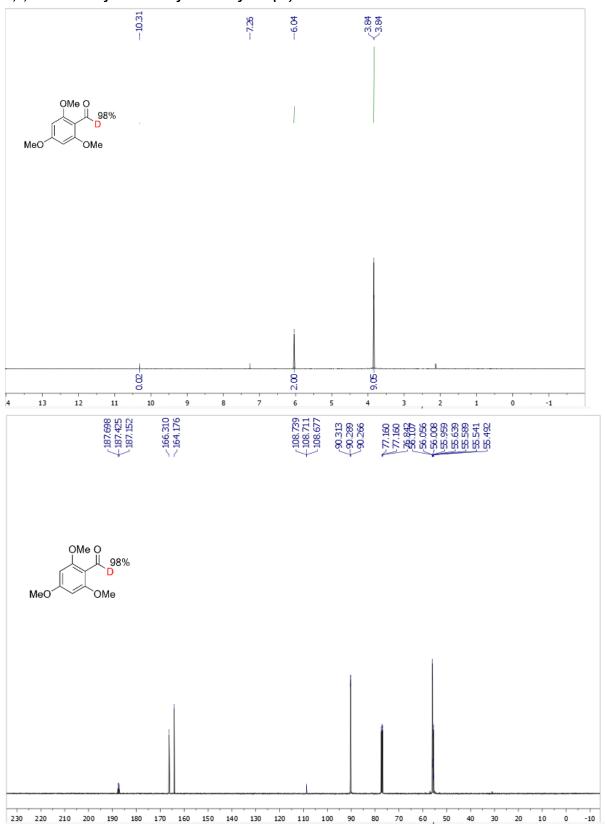

4-Methylbenzaldehyde-formyl-d1 (3a)

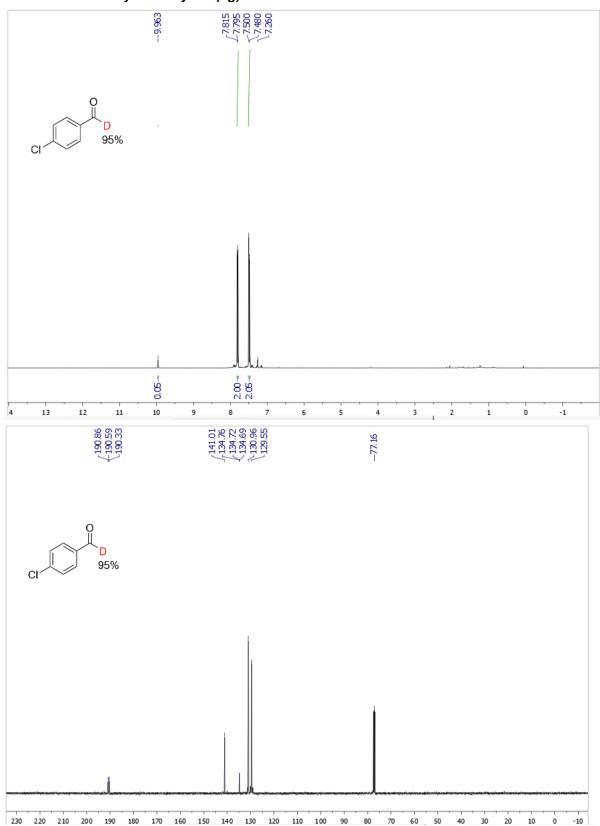


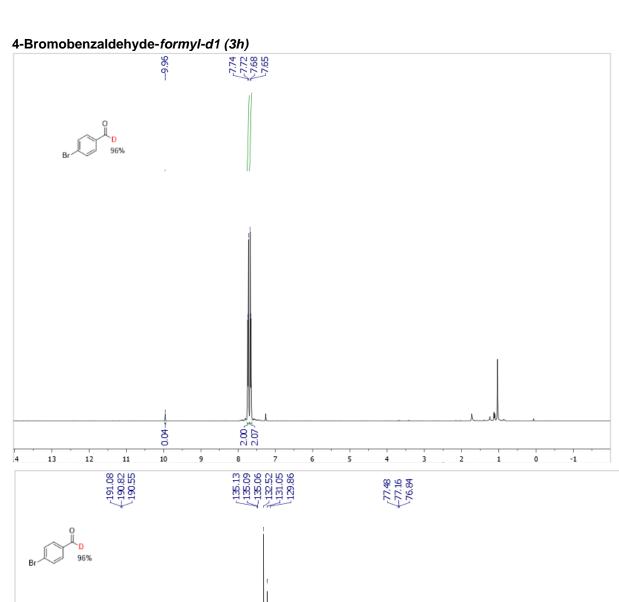
1-Naphthaldehyde-formyl-d1 (3b)

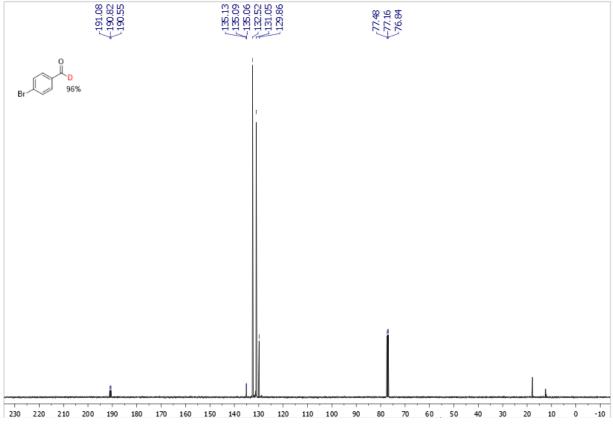


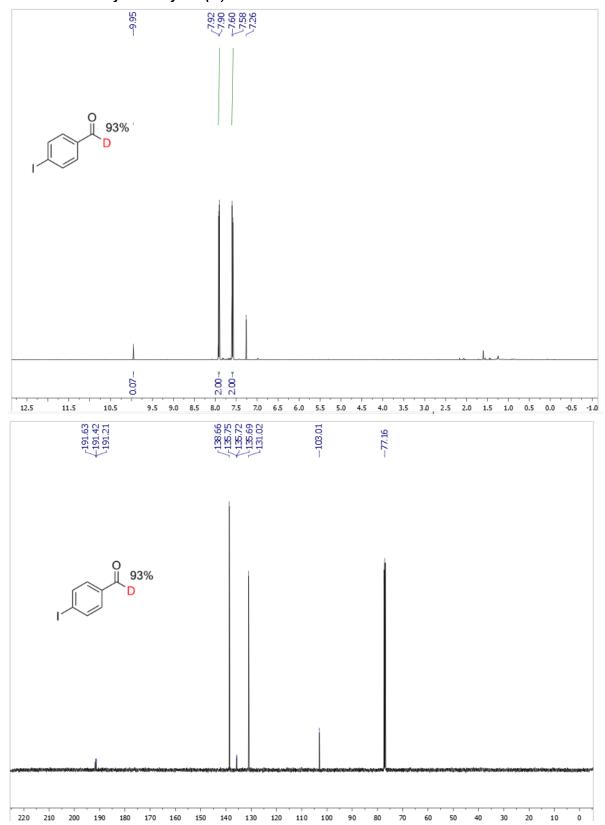

[1,1'-Biphenyl]-4-carbaldehyde-formyl-d1 (3c)

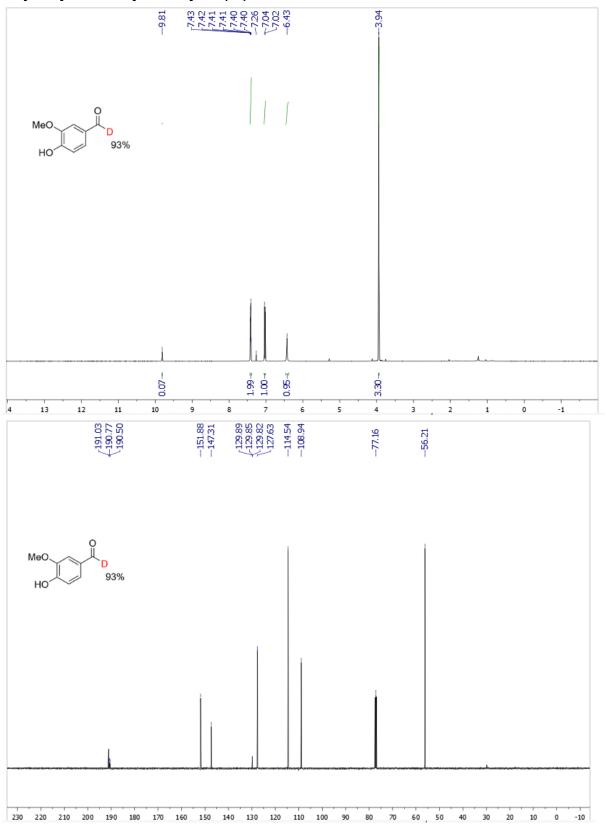

4-Methoxybenzaldehyde-formyl-d1 (3d)

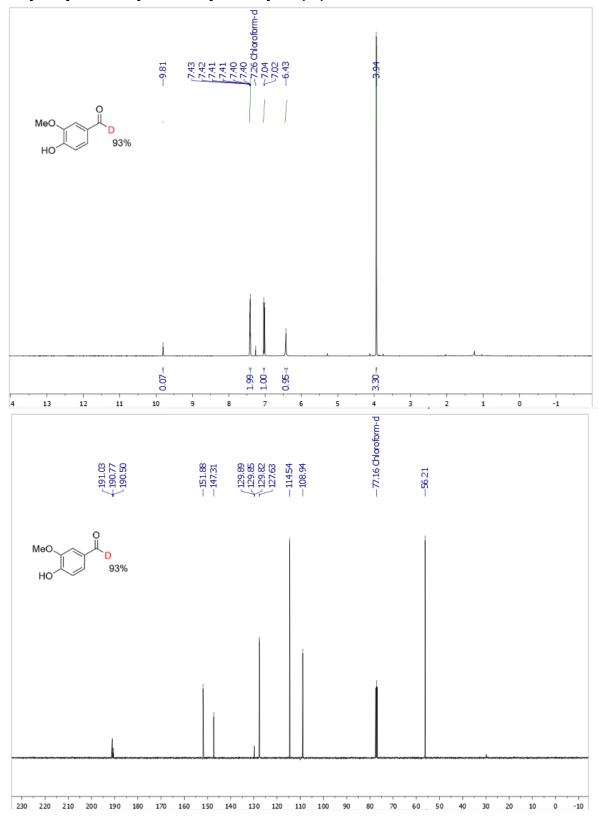

2-Methoxybenzaldehyde-formyl-d1 (3e)

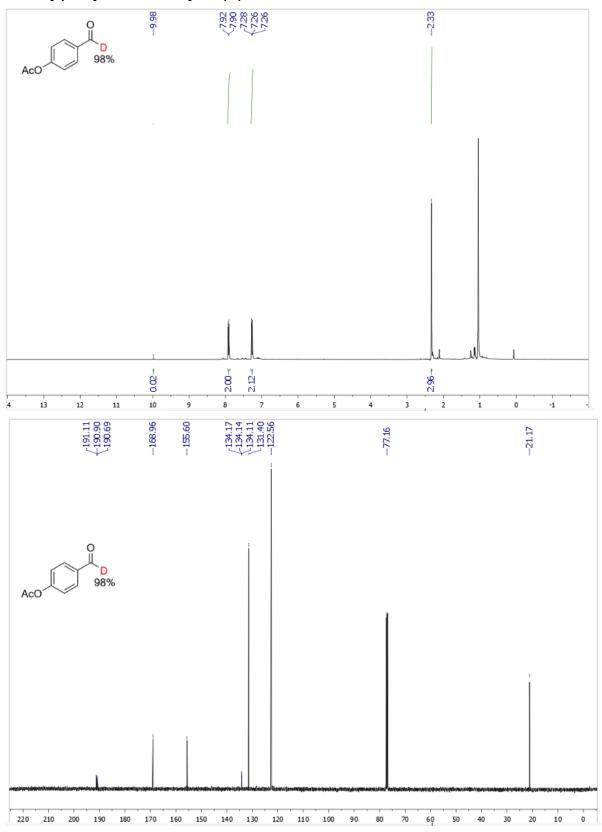


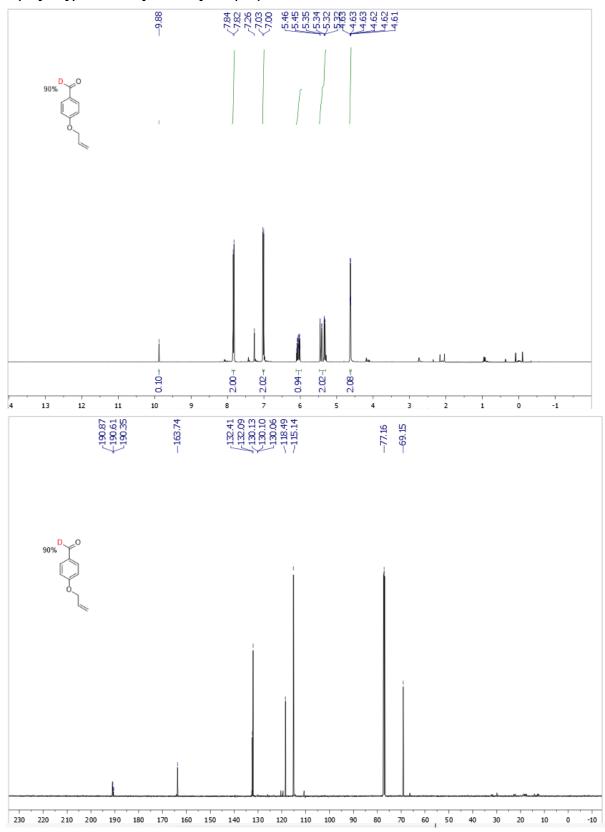

2,4,6-Trimethoxybenzaldehyde--formyl-d1 (3f)

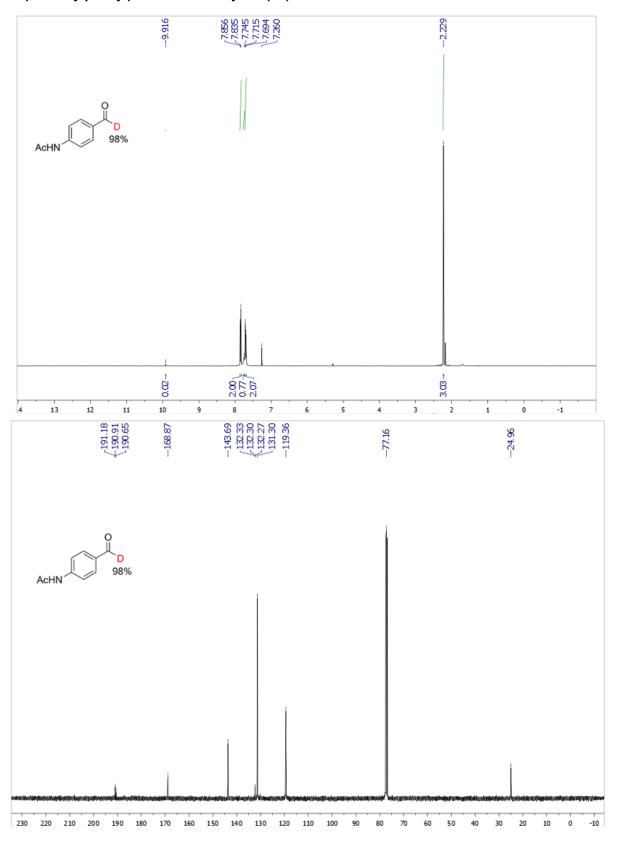

4-Chlorobenzaldehyde-formyl-d1 (3g)

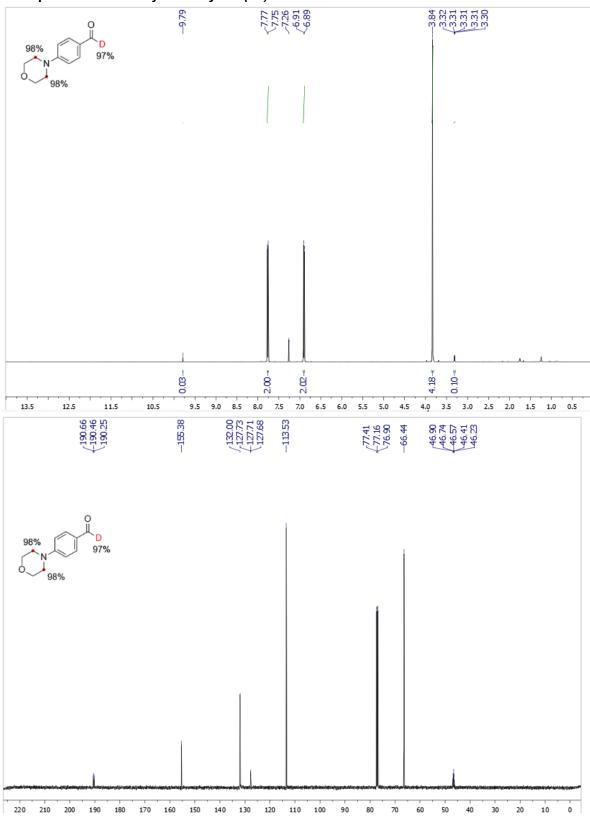


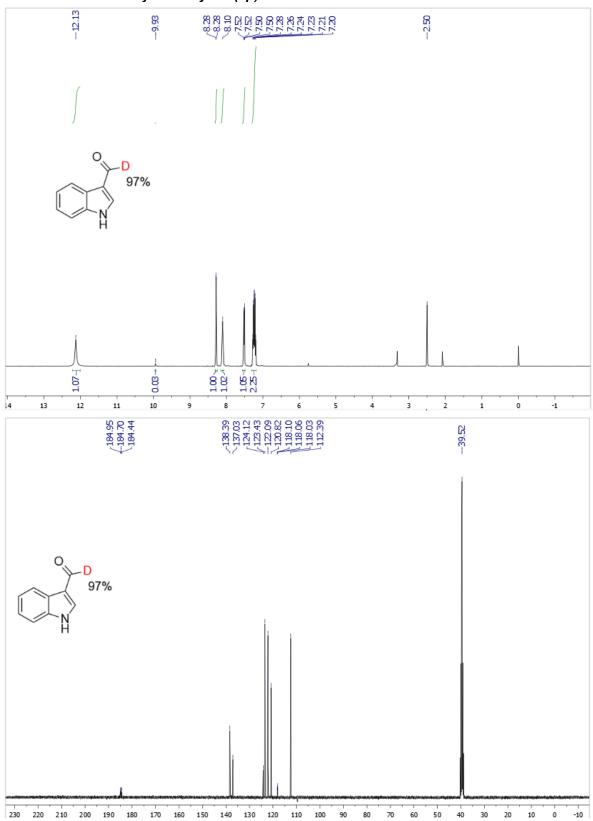

4-lodobenzaldehyde-formyl-d1 (3i)

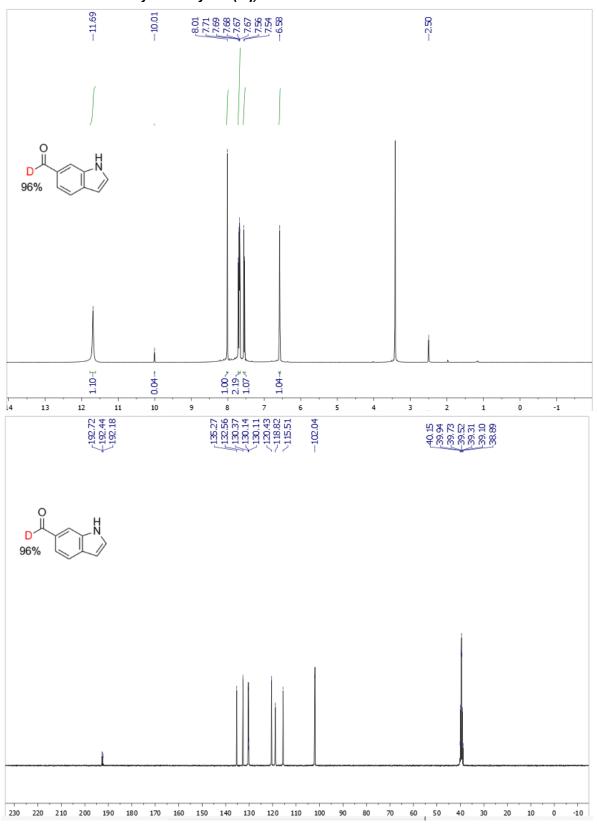

4-Hydroxybenzaldehyde-formyl-d1 (3J)

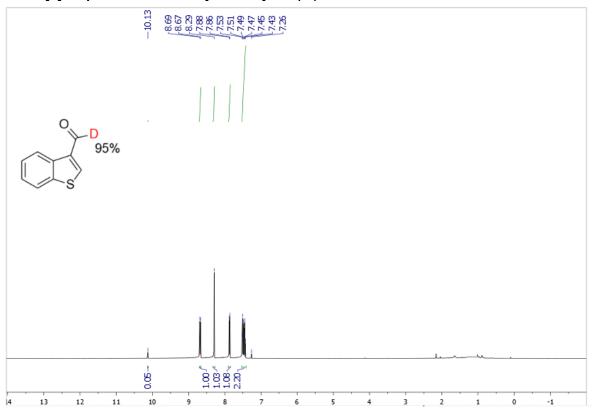

4-Hydroxy-3-methoxybenzaldehyde-formyl-d1 (3k)

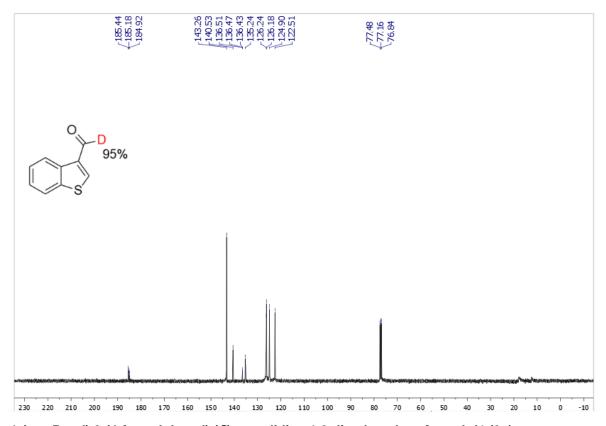

4-Formylphenyl acetate-formyl-d1 (31)


4-(Allyloxy)benzaldehyde-formyl-d1 (3m)

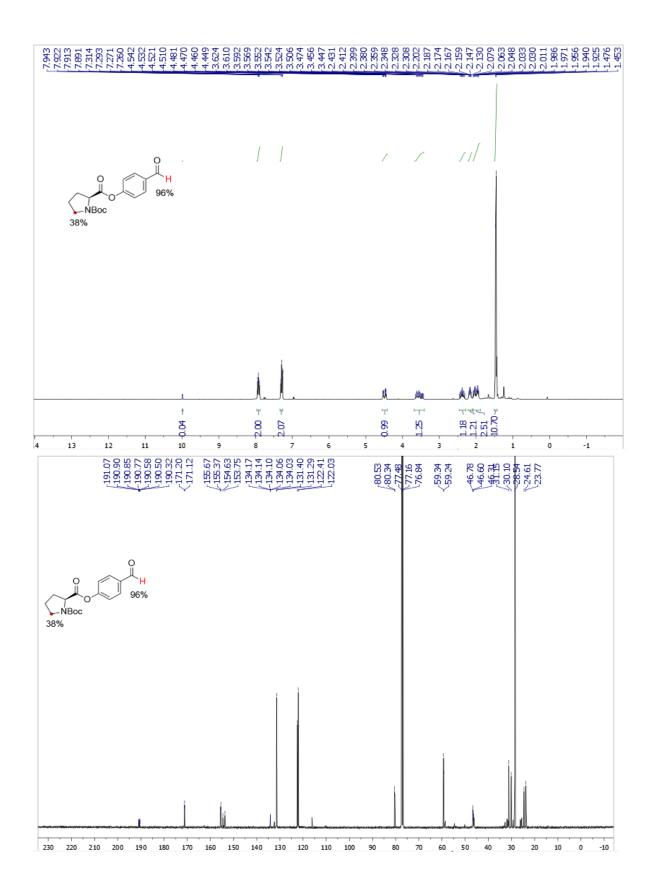

N-(4-Formylphenyl)acetamide-formyl-d1 (3n)


4-Morpholinobenzaldehyde-formyl-d1 (30)

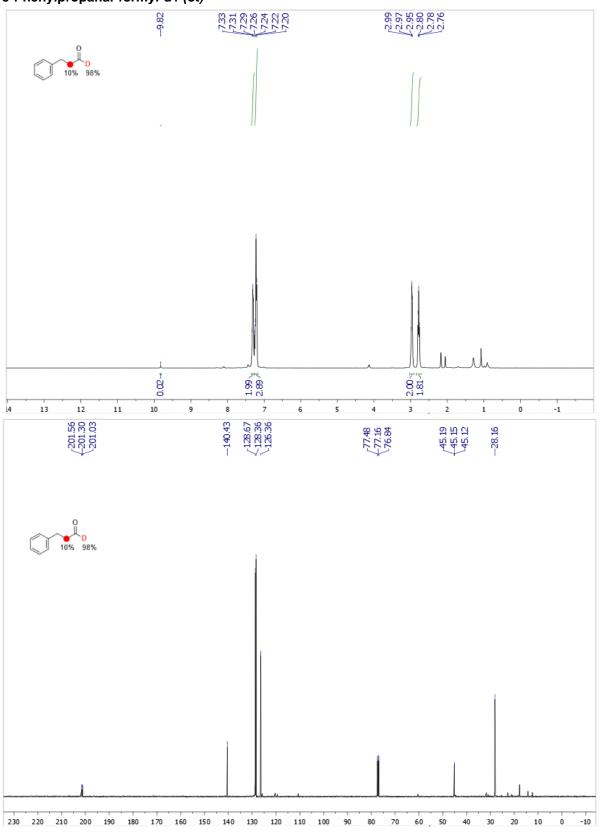

1H-indole-3-carbaldehyde-formyl-d1 (3p)

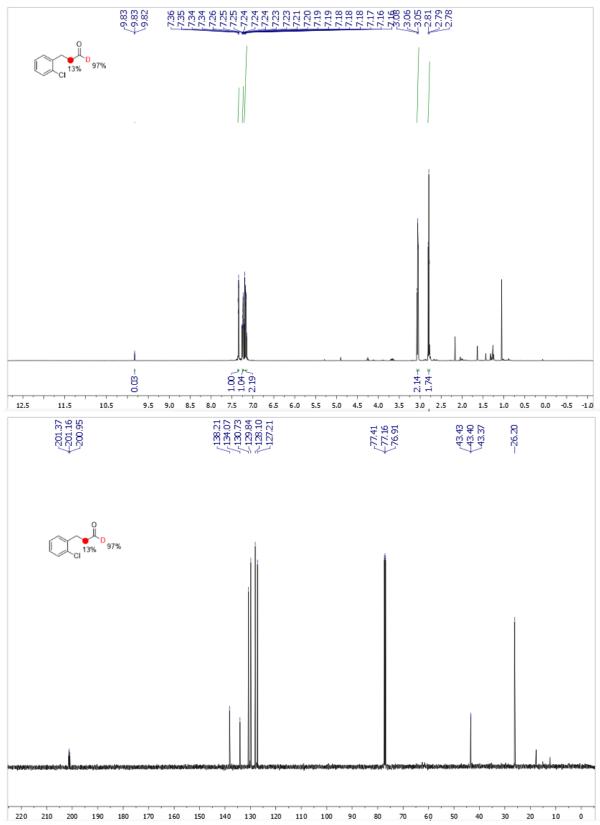


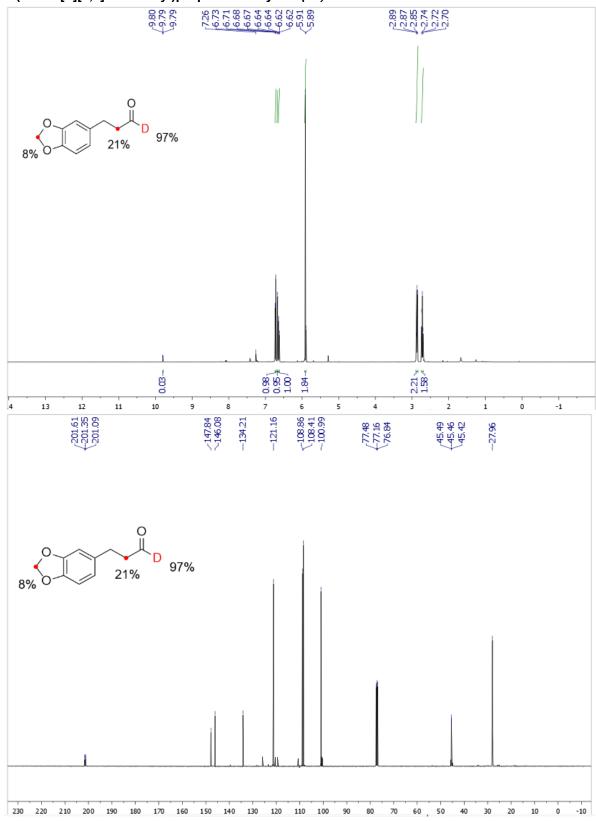
1*H*-indole-6-carbaldehyde-formyl-d1 (3q)

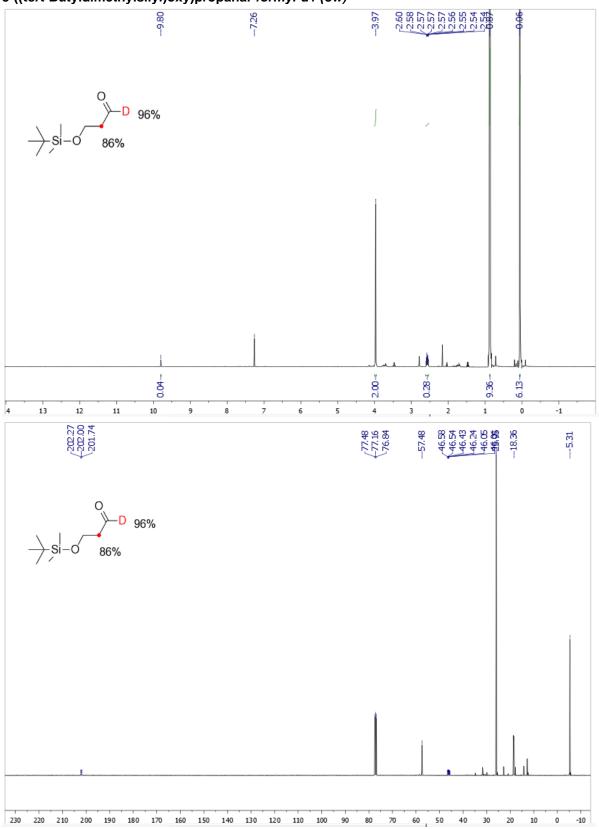


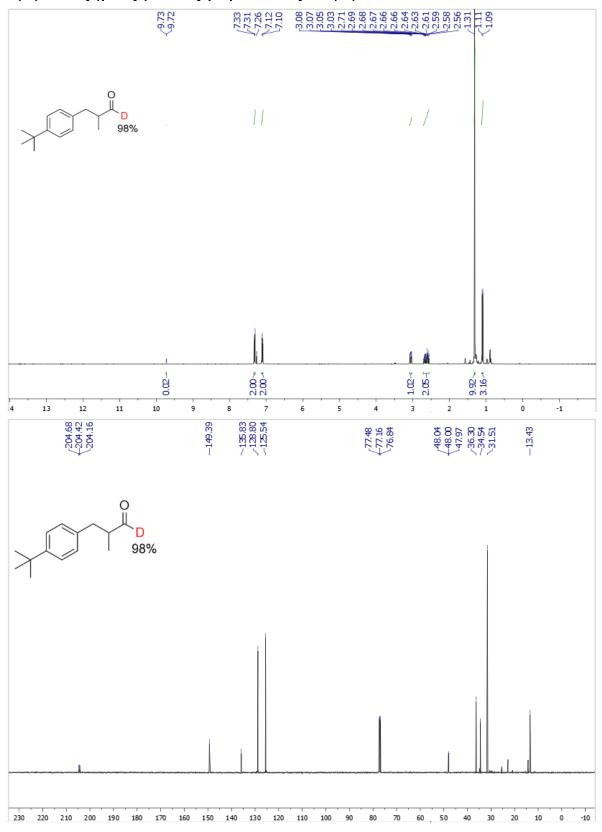
Benzo[b]thiophene-3-carbaldehyde-formyl-d1 (3r)

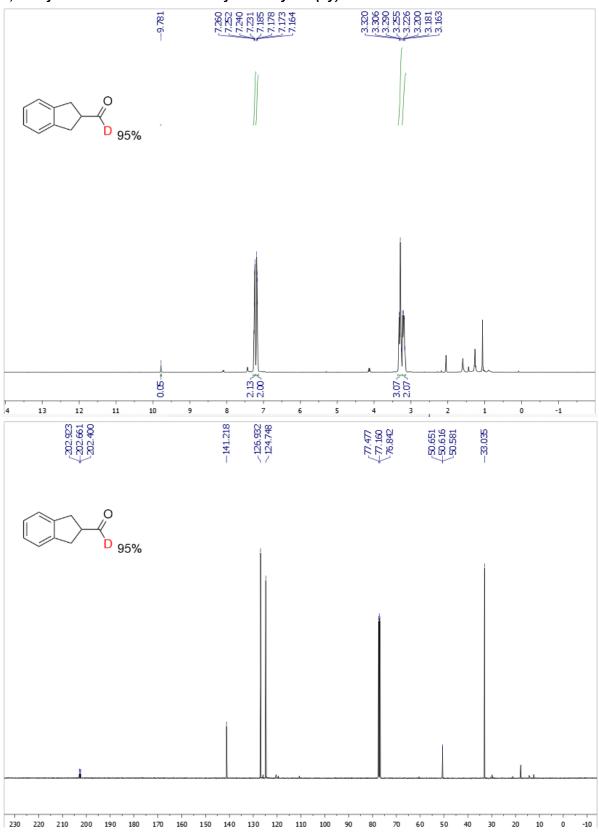


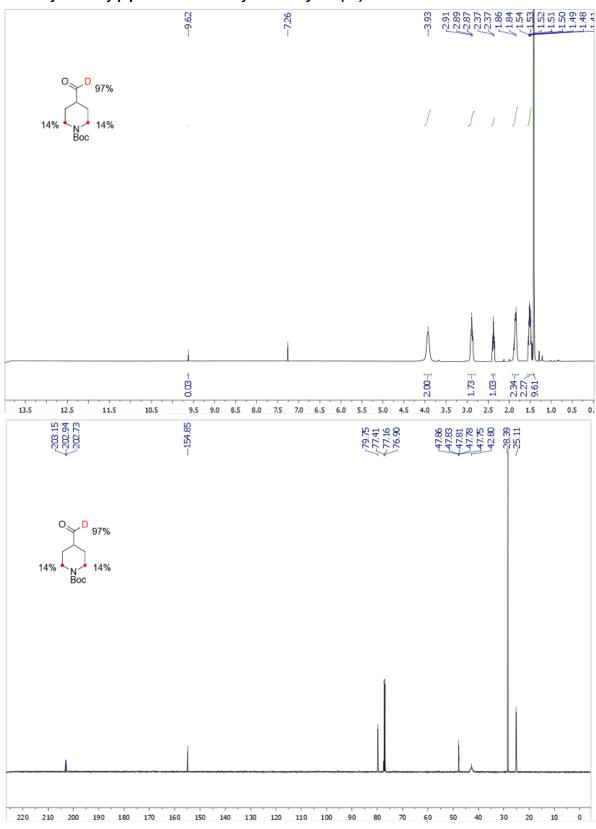

1-(tert-Butyl) 2-(4-formylphenyl) (S)-pyrrolidine-1,2-dicarboxylate-formyl-d1 (3s)

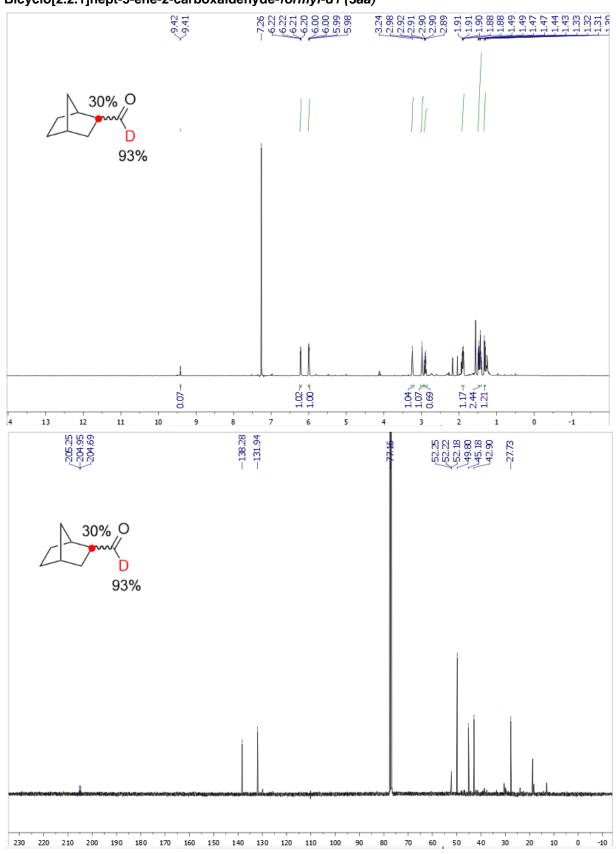

3-Phenylpropanal-formyl-d1 (3t)

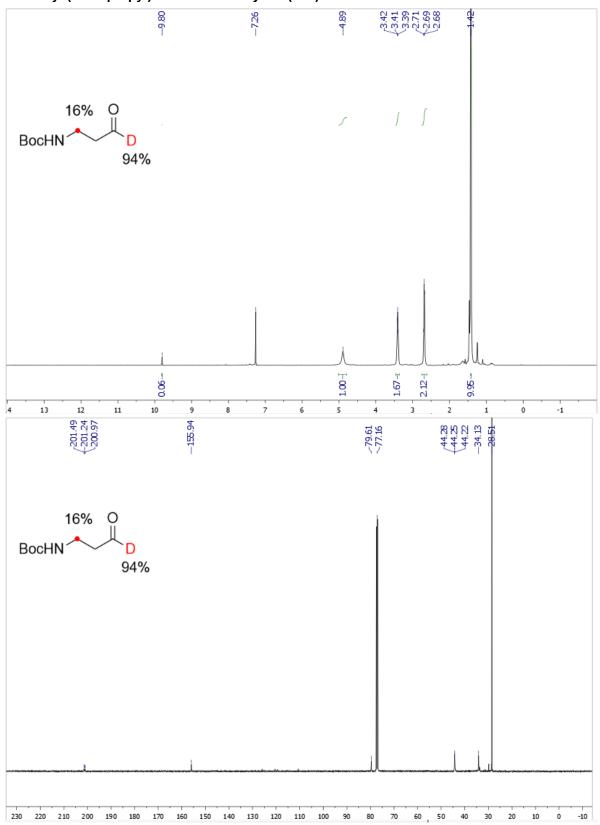

3-(2-Chlorophenyl)propanal-formyl-d1 (3u)

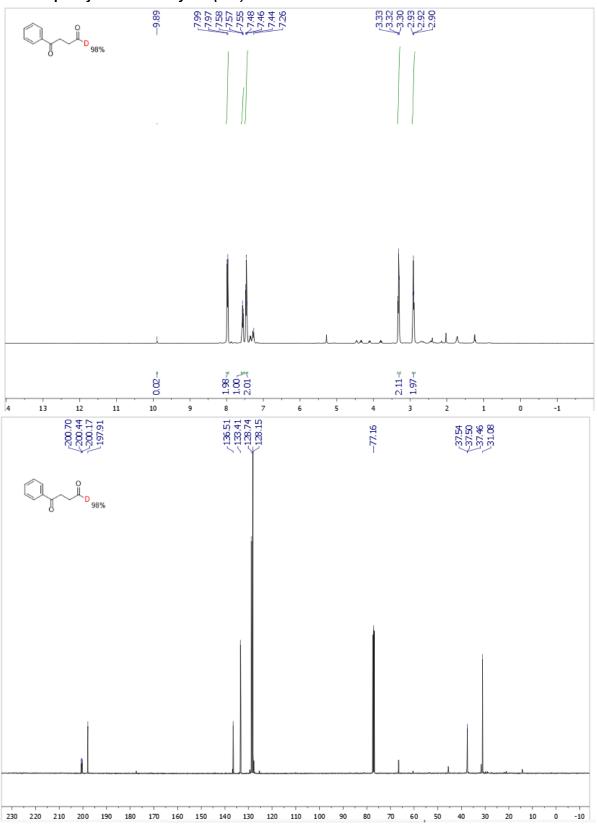

3-(Benzo[d][1,3]dioxol-5-yl)propanal-formyl-d1 (3v)

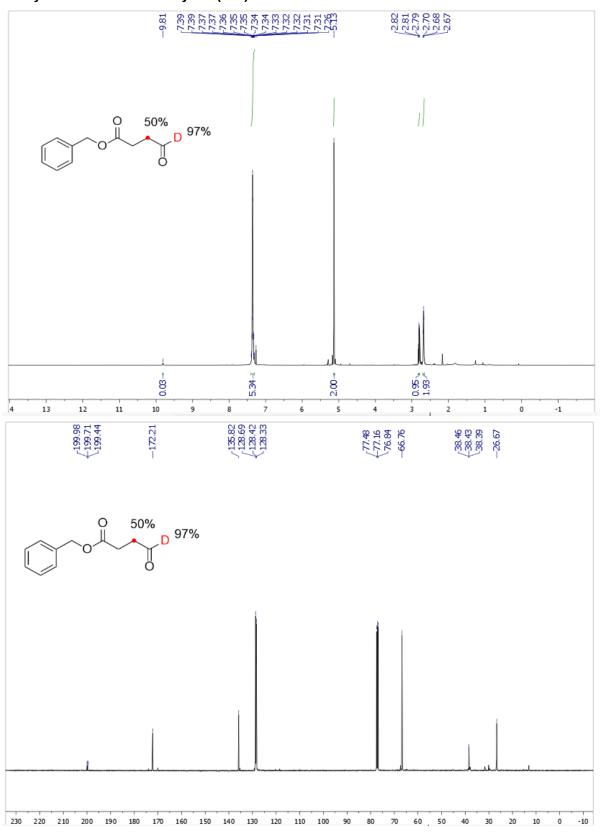


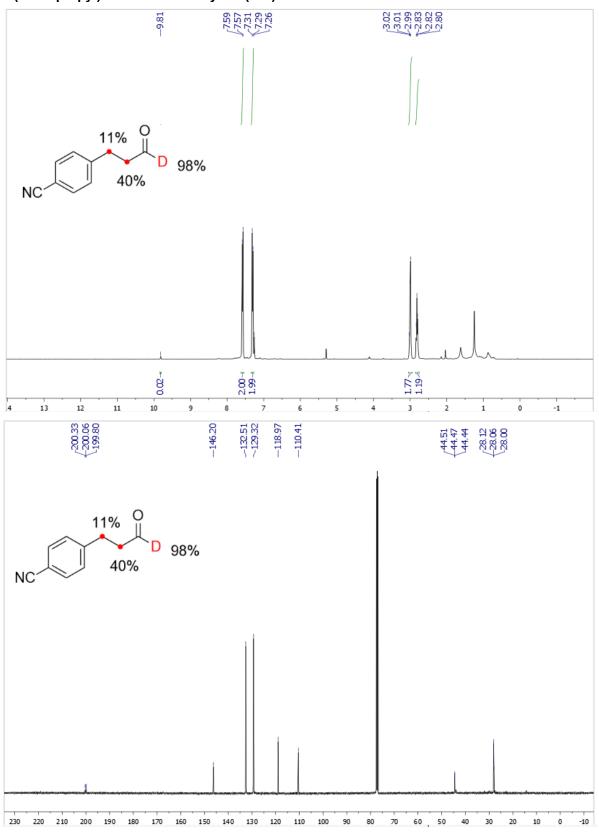

3-(4-(tert-Butyl)phenyl)-2-methylpropanal-formyl-d1 (3x)

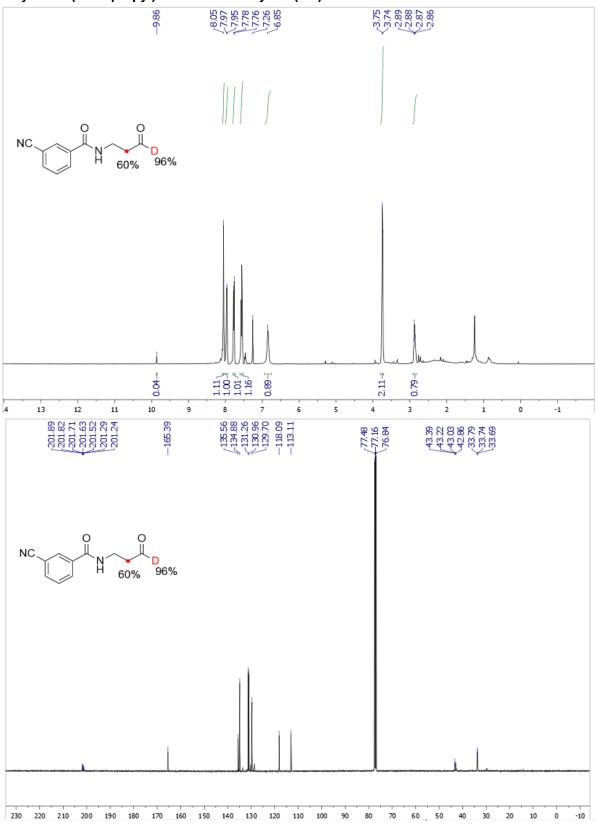

2,3-Dihydro-1*H*-indene-2-carbaldehyde-formyl-d1 (3y)

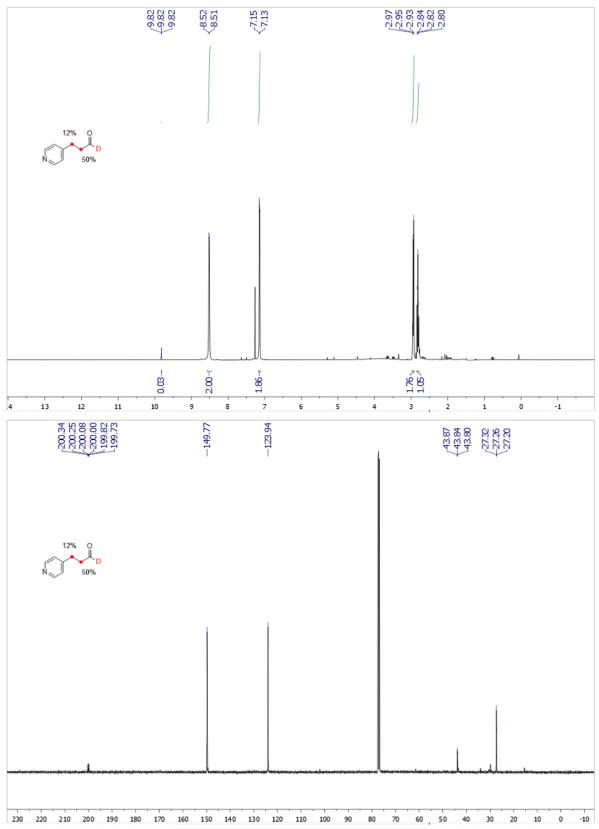

tert-Butyl 4-formylpiperidine-1-carboxylate-formyl-d1 (3z)

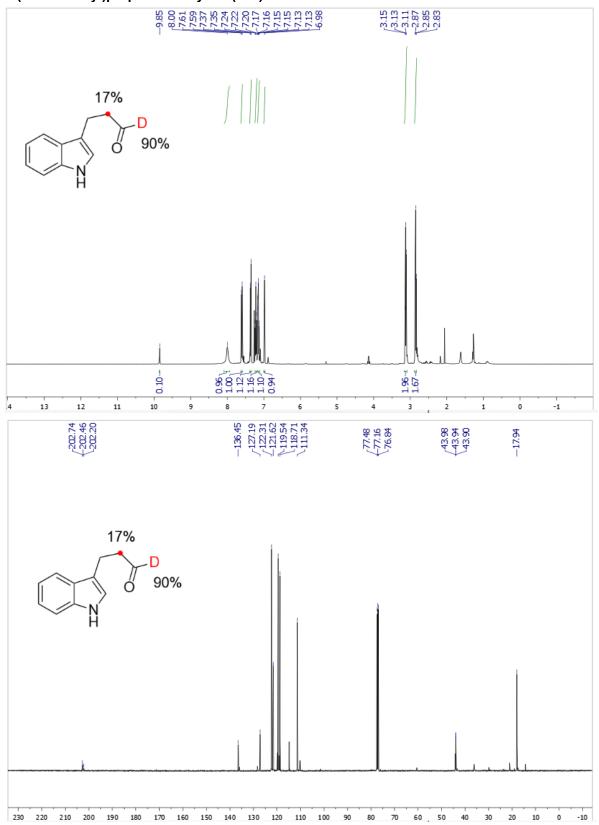

Bicyclo[2.2.1]hept-5-ene-2-carboxaldehyde-formyl-d1 (3aa)

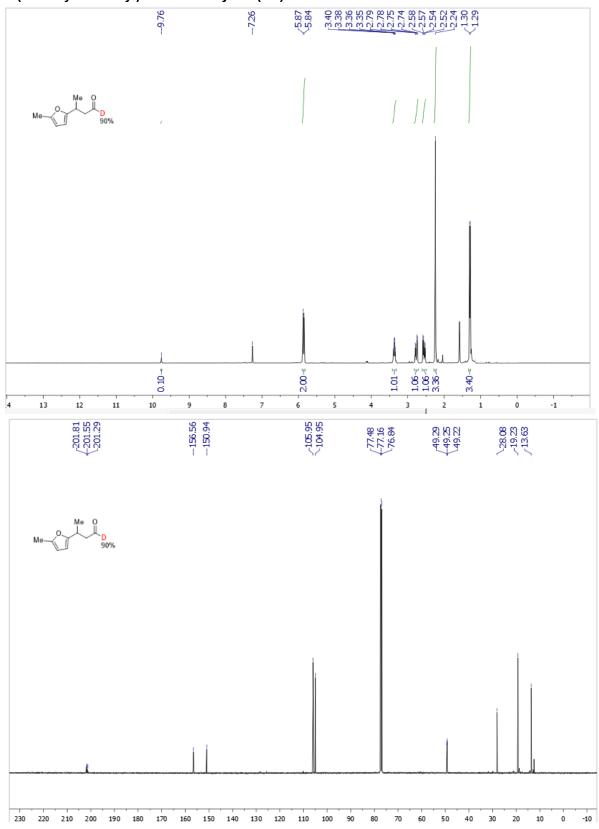



4-Oxo-4-phenylbutanal-formyl-d1 (3ac)

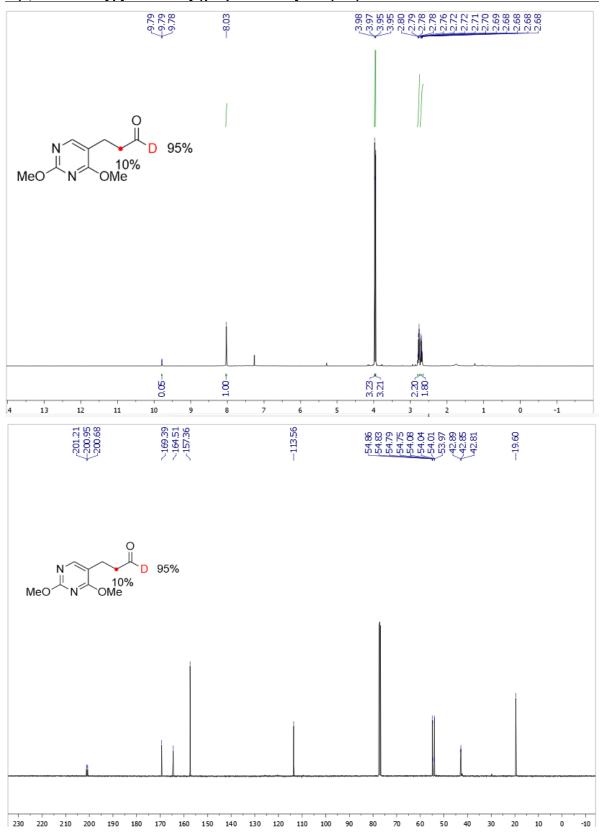

Benzyl 4-oxobutanoate-formyl-d1 (3ad)

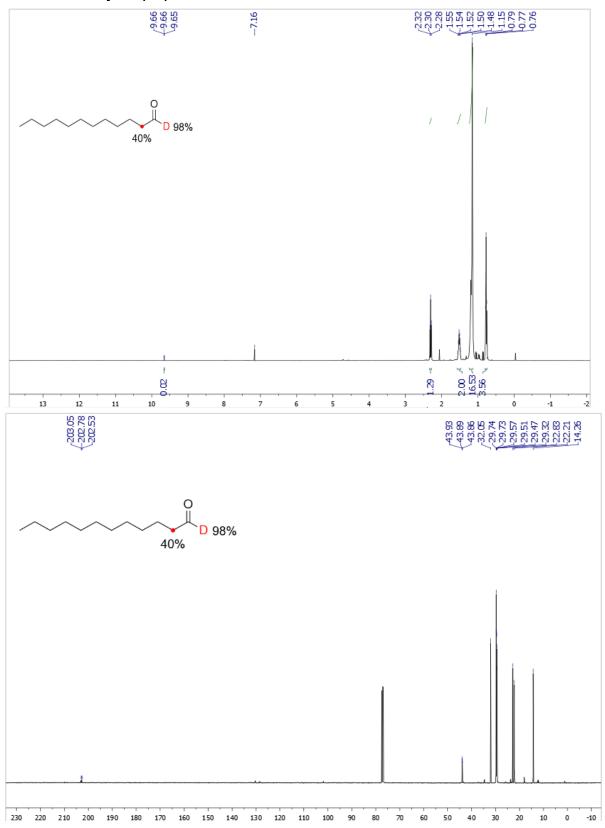

4-(3-Oxopropyl)benzonitrile-formyl-d1 (3ae)

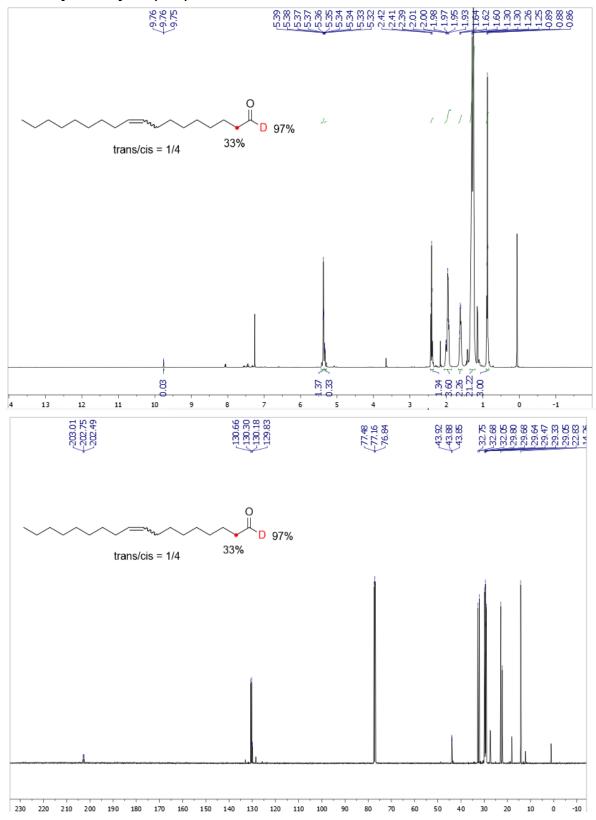

3-Cyano-N-(3-oxopropyl)benzamide-formyl-d1 (3af)

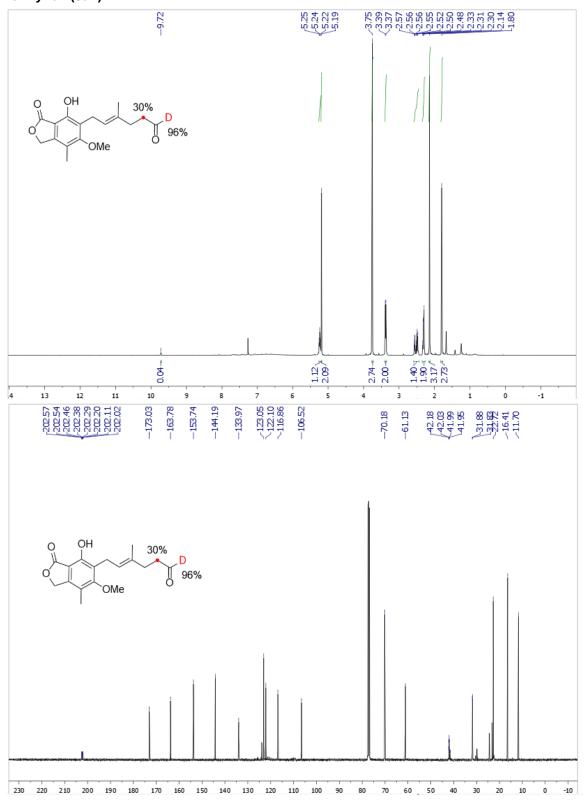

3-(Pyridin-4-yl)propanal-formyl-d1 (3ag)

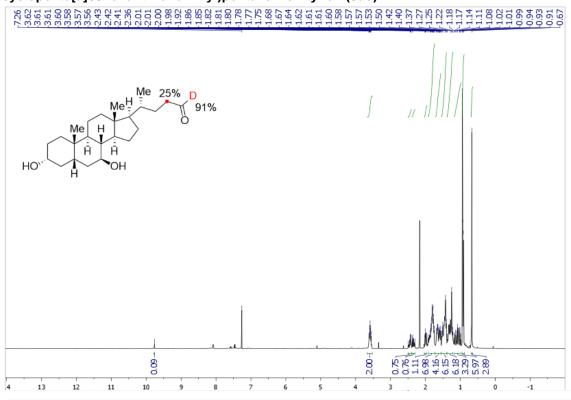
3-(1H-indol-3-yl)propanal-formyl-d1 (3ah)

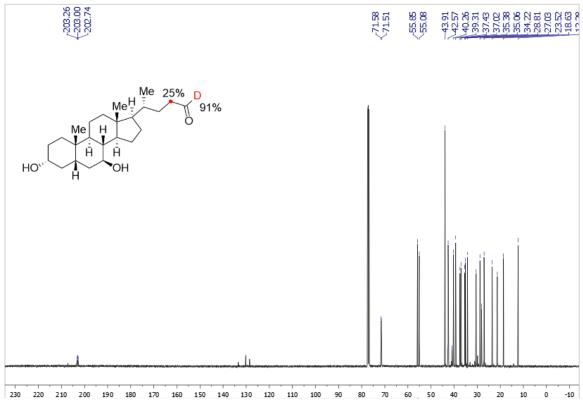

3-(5-Methylfuran-2-yl)butanal-formyl-d1 (3ai)


3-(Thiophen-2-yl)propanal-formyl-d1 (3aj)

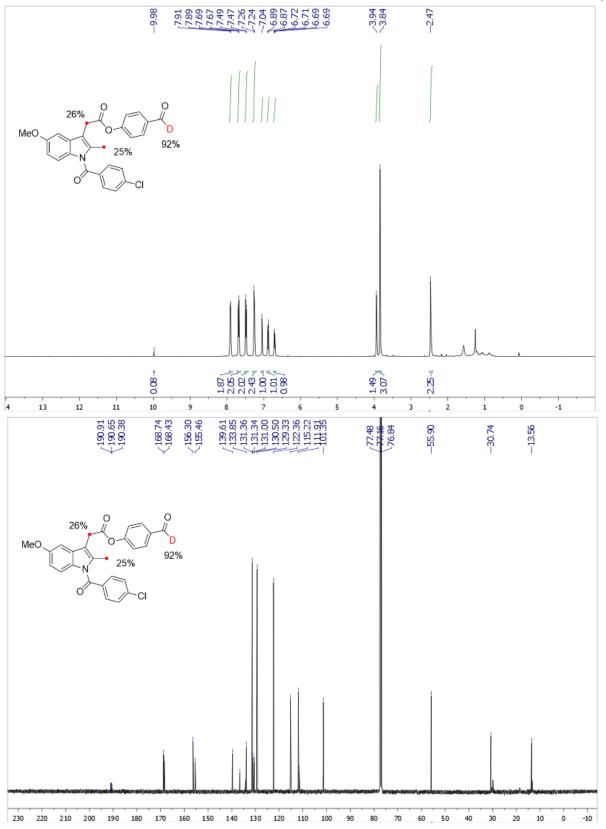

3-(2,4-Dimethoxypyrimidin-5-yl)propanal-formyl-d1 (3ak)


Dodecanal-formyl-d1 (3al)

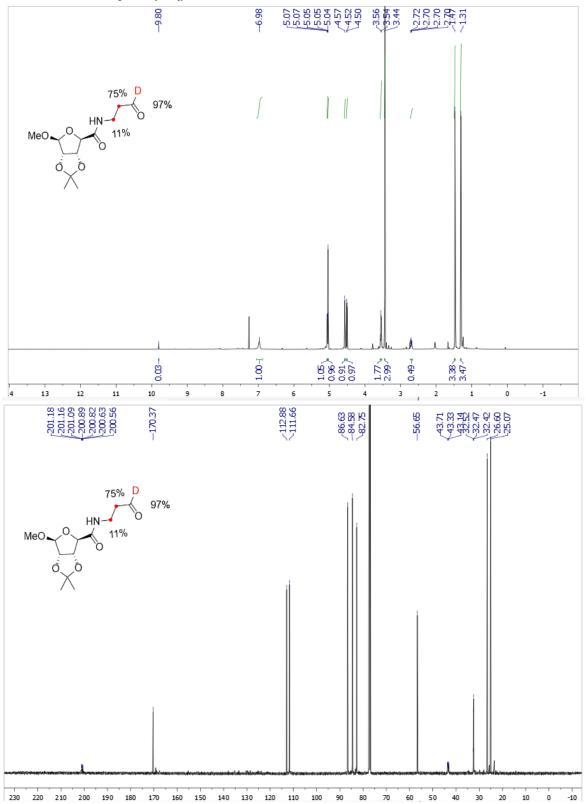

Olealdehyde-formyl-d1 (3am)

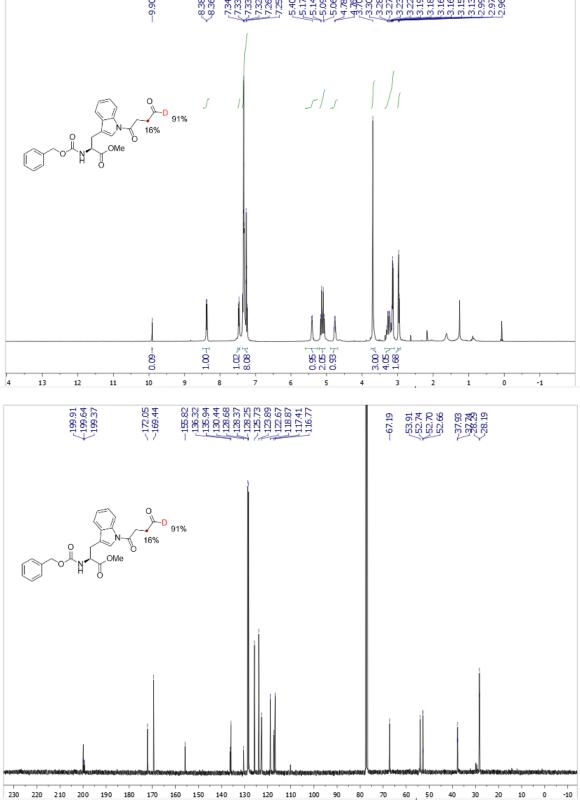


($\it E$)-6-(4-hydroxy-6-methoxy-7-methyl-3-oxo-1,3-dihydroisobenzofuran-5-yl)-4-methylhex-4-enal-formyl-d1 (3an)

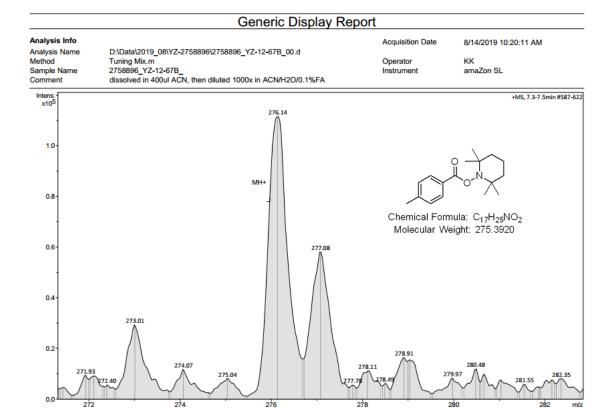


(R)-4-((3R,5S,7S,8R,9S,10S,13R,14S,17R)-3,7-dihydroxy-10,13-dimethylhexadecahydro-1 H-cyclopenta [a] 68 henanthrene-17-yl) pentanal-formyl-d1 (3ao)




4-Formylphenyl 2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetate-formyl-d1 (3ap)

(3aR,4R,6S,6aS)-6-Methoxy-2,2-dimethyl-*N*-(3-oxopropyl)tetrahydrofuro[3,4-d][1,3]dioxole-4-carboxamide-formyl-d1 (3aq)



Methyl N^a-((benzyloxy)carbonyl)-1-(4-oxobutanoyl-4-d)-L-tryptophanate-formyl-d1 (3ar)

tert-butyl (S)-(1-oxo-1-((2-oxo-2-((3-oxopropyl)amino)ethyl)amino)-3-phenylpropan-2-yl)carbamate (3as)

Generic Display Report Analysis Info Acquisition Date 1/8/2020 10:57:36 AM Analysis Name Method D:\Data\2020_01\YZ-3080350\YZ-3080350_YZ-13-32P_inACN_only.d Tuning Mix.m YZ-13-32P 100x dil with ACN Operator ΚK amaZon SL Sample Name Instrument Comment Intens. x10⁷ +MS, 0.7-2.4min #38-178 263.98 467.93 100 1000 m/z 800 900 ×10⁷ 263.98 1.5 но C16H15DO2+Na 1.0 Chemical Formula: C₁₆H₁₅NaDO₂ Molecular Weight: 264.30 C16H15DO2+K 0.5 256.12 260.95 0.0 260 265 m/z +MS, 0.7-2.4min #38-178 x107 2 2M+Na

8/14/2019 10:31:55 AM

by: kk

by: KK

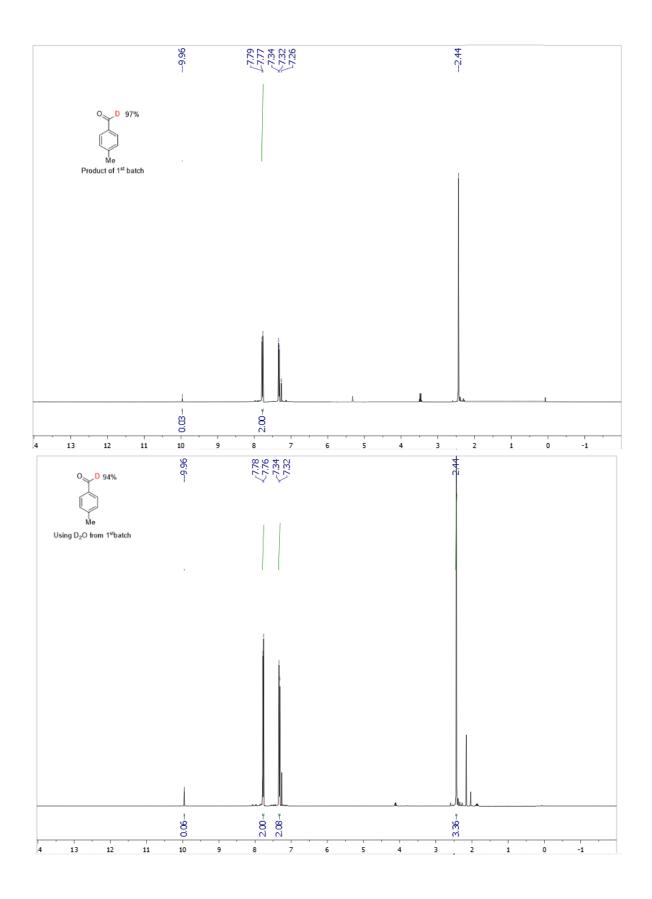
Page 1 of 1

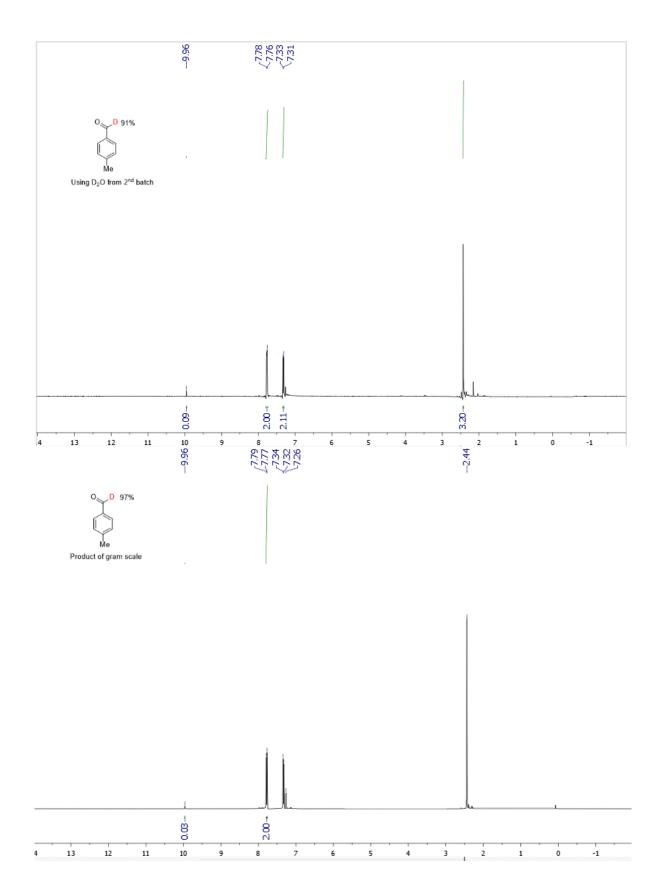
513.72

514

Page 1 of 1

printed:


504


printed:

Bruker Compass DataAnalysis 4.2

Bruker Compass DataAnalysis 4.2

1/8/2020 12:57:32 PM

9. Reference

- (1) Huang, H.; Yu, C.; Zhang, Y.; Zhang, Y.; Mariano, P. S.; Wang, W. Chemo- and regioselective organophotoredox catalyzed hydroformylation of styrenes via a radical pathway. *J. Am. Chem. Soc.* **2017**, *139*, 9799-9802.
- (2) Frost, C. G.; Hartley, B. C. Tandem molybdenum catalyzed hydrosilylations: an expedient synthesis of β-aryl aldehydes. *Org. Lett.* **2007**, *9*, 4259-4261.
- (3) Ezzili, C.; Mileni, M.; McGlinchey, N.; Long, J. Z.; Kinsey, S. G.; Hochstatter, D. G.; Stevens, R. C.; Lichtman, A. H.; Cravatt, B. F.; Bilsky, E. J.; Boger, D. L. Reversible competitive α-ketoheterocycle inhibitors of fatty acid amide hydrolase containing additional conformational constraints in the acyl side chain: orally active, long-acting analgesics. *J. Med. Chem.* **2011**, *54*, 2805-2822.
- (4) Kitajima, M.; Murakami, Y.; Takahashi, N.; Wu, Y.; Kogure, N.; Zhang, R. P.; Takayama, H. Asymmetric total synthesis of novel pentacyclic indole alkaloid, kopsiyunnanine E, isolated from *Kopsia arborea*. *Org. Lett.* **2014**, *16*, 5000-5003.
- (5) Muthukrishnan, S.; Sankaranarayanan, J.; Klima, R. F.; Pace, T. C.; Bohne, C.; Gudmundsdottir, A. D. Intramolecular H-atom abstraction in γ-azido-butyrophenones: formation of 1,5 ketyl iminyl radicals. *Org. Lett.* **2009**, *11*, 2345-2348.
- (6) Colbon, P.; Ruan, J.; Purdie, M.; Mulholland, K.; Xiao, J. Double arylation of allyl alcohol via a one-pot Heck arylation–isomerization–acylation cascade. *Org. Lett.* **2011**, *13*, 5456-5459.
- (7) Shang, Y.; Jie, X.; Jonnada, K.; Zafar, S. N.; Su, W. Dehydrogenative desaturation-relay via formation of multicenter-stabilized radical intermediates. *Nat. Commun.* **2017**, *8*, 2273.
- (8) Ji, P.; Zhang, Y.; Wei, Y.; Huang, H.; Hu, W.; Mariano, P. A.; Wang, W. A visible light-mediated, chemo- and stereo-selective radical process for the synthesis of *C*-glycoamino acids. *Org. Lett.* **2019**, *21*, 3086-3092.
- (9) Xiao, J.; Wong, Z. Z.; Lu, Y. P.; Loh, T. P. Hexahydropyrrolo[2,3-*b*]indoles: A new class of structurally rigid tricyclic skeleton for oxazaborolidine-catalyzed asymmetric borane reduction. *Adv. Synth. Catal.* **2010**, *352*, 1107-1112.
- (10) Zhang, Y.; Ji, P.; Hu, W.; Wei, Y.; Huang, H.; Wang, W. Organocatalytic transformation of aldehydes to thioesters with visible light. *Chem. Eur. J.* **2019**, *25*, 8225-8228.
- (11) Hilpert, L. J.; Sieger, S. V.; Haydl, A. M.; Breit, B. Palladium- and rhodium-catalyzed dynamic kinetic resolution of racemic internal allenes towards chiral pyrazoles. *Angew. Chem. Int. Ed.* **2019**, *58*, 3378-3381.
- (12) Agy, A. C.; Rodrigues, M. T., Jr.; Zeoly, L. A.; Simoni, D. A.; Coelho, F. Palladium-mediated oxidative annulation of δ -indolyl- α , β -unsaturated compounds toward the synthesis of cyclopenta[b]indoles and heterogeneous hydrogenation to access fused indolines. *J. Org. Chem.* **2019**, *84*, 5564-5581.