Lewis Acid Catalyzed Decarboxylative Annulation of 2-Aminoindole-3-Carboxylate with ynals involving [3+2] spirocycloaddition and 2,3-Aza Migration.

Manda Rajesh, ${ }^{\text {a }}$ Ravi Kumar, ${ }^{\text {b }}$ Surendra Puri, ${ }^{\text {b }}$ Jagadeesh Babu Nanubolu ${ }^{\text {c }}$ and Maddi Sridhar Reddy, ${ }^{\text {a,* }}$
${ }^{\text {a }}$ Department of OSPC, CSIR-Indian Institute of Chemical Technology, Hyderabad, India. Academy of Scientific and Innovative Research, New Delhi, India. ${ }^{\text {b }}$ MPC Division, CSIRCDRI, Lucknow. ${ }^{\text {c Analytical Department, CSIR-IIICT, Hyderabad. }}$
*E-mail: : $\underline{\text { msreddy@cdri.res.in, }}$ msreddy@iict.res.in

Table of Contents

I. General Information and methods S2
II. General Procedures and Characteristic data of compounds S2-S17
III. References S18
IV. Copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra S19-S58
V. X-ray crystallographic data. S59-S69

I. General Information and methods:

All reagents and solvents were purchased from commercial sources and used without purification. NMR spectra were recorded with a $300,400 \mathrm{MHz}$ spectrometers for ${ }^{1} \mathrm{H}$ NMR, $75,100 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$ NMR, NMR Chemical shifts δ are given in ppm relative to the residual signals of tetramethylsilane in CDCl_{3} or deuterated solvent DMSO- d_{6} for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR. Multiplicities are reported as follows: singlet (s), doublet (d), doublet of doublets (dd), doublet of triplets (dt), triplet (t), quartet (q), multiplet (m), broad singlet (bs). HRMS were obtained using the electro spray ionization (ESI) technique and a time-of-flight (TOF) analyzer. Column chromatography was performed using silica gel (100200 mesh) as the stationary phase. All reactions were monitored by thin layer chromatography (TLC). The purity and characterization of these compounds were further established using HRMS/ESI Mass spectroscopy. Melting points were measured on a capillary melting point apparatus and are uncorrected.

II. General Procedure for the preparation of starting materials and final compounds and chareteristic data of compounds:

Starting materials $\mathbf{1},{ }^{1} \mathbf{2},{ }^{2} \mathbf{5}^{3}, \mathbf{6}^{4}$ and $\mathbf{7}^{5}$ were prepared following the literature procedures.

General Procedure A for the synthesis of dihydrochromeno $\boldsymbol{\delta}$-carbolines (3aa-3ja

 and 3ab-3at) taking Synthesis of 3aa as an example.

To a 15 mL Schlenk tube was added ethyl 2-amino-1H-indole-3-carboxylate (1a) (102 $\mathrm{mg}, 0.5 \mathrm{mmol}$), 2-((3-phenylprop-2-yn-1-yl)oxy) benzaldehyde (2a) ($118 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathrm{Yb}(\mathrm{OTf})_{3}(31 \mathrm{mg}, 10 \mathrm{~mol} \%)$ in anhydrous $\mathrm{MeCN}(3 \mathrm{~mL})$ and the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ (oil bath temperature) until complete conversion of starting material (monitored by TLC, 14 h for 3aa-3da, 16 h for 3ea-3ja 14 h for $\mathbf{3 a g} \mathbf{- 3 a j}$ and 18 h for 3ak-3at). After completion of the reaction, the solvent was removed under reduced pressure, the crude material was purified on silica gel using $20 \% \mathrm{EtOAc} /$ hexane to get 3aa (118 mg, 68\%) as off-colorless solid.

Synthesis of dihydrochromeno $\boldsymbol{\delta}$-carboline 3aa in $2 \mathbf{m m o l}$ Scale.

To a 25 mL round bottom flask was added ethyl 2 -amino- $1 H$-indole-3-carboxylate (1a) ($410 \mathrm{mg}, 2 \mathrm{mmol}$), 2-((3-phenylprop-2-yn-1-yl)oxy) benzaldehyde (2a) (472 mg, 2 $\mathrm{mmol})$ and $\mathrm{Yb}(\mathrm{OTf})_{3}(124 \mathrm{mg}, 10 \mathrm{~mol} \%)$ in anhydrous $\mathrm{MeCN}(12 \mathrm{~mL})$ and the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ (oil bath temperature) until complete conversion of starting material (monitored by TLC, 15 h). After completion of the reaction, the solvent was removed under reduced pressure, the crude material was purified on silica gel using 20%

EtOAc/hexane to get 3aa ($446 \mathrm{mg}, 64 \%$) as off-colorless solid along with minor amount of $\mathbf{4 a a}$ ($112 \mathrm{mg} \mathrm{13} \mathrm{\%}$).

7-phenyl-6,8-dihydrochromeno[3',4':5,6]pyrido[3,2-b]indole (3aa):

3aa (118 mg) was obtained from 1a (102 mg) following general procedure \mathbf{A}; Off-colorless solid; R_{f} $=0.30$ (20% EtOAc/Hexanes); mp: 304-306 ${ }^{\circ} \mathrm{C}$; Yield (68\%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 11.19$ (s, 1H), 8.42 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.29$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.69$ $-7.61(\mathrm{~m}, 3 \mathrm{H}), 7.58(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{dd}, J=$ $15.5,8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.19$ (t, $J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~s}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 155.6,141.9,141.3,140.9,133.3,131.4,130.4,129.7,129.6$, $129.3,129.0,128.0,124.8,124.7,122.7,121.9,121.3,120.6,120.2,117.0,112.7,66.5$; IR (KBr) v 3178, 2966, 1545, 1446, 1239, 848, $652 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 349.1341$ found 349.1325 .

11-methyl-7-phenyl-6,8-dihydrochromeno[3',4':5,6]pyrido[3,2-b]indole (3ba)

3ba (107 mg) was obtained from 1b (109 mg) following general procedure \mathbf{A}; Off-colorless solid; R_{f} $=0.32$ (20% EtOAc/Hexanes); mp: 274-276 ${ }^{\circ} \mathrm{C}$; Yield (59\%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 11.06$ (s, 2H), 8.40 (dd, $J=7.7,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.09$ (s, 2H), $7.68-7.60$ (m, 6H), $7.58-7.55(\mathrm{~m}, 4 \mathrm{H}), 7.44(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.35-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.24(\mathrm{~s}, 4 \mathrm{H}), 2.51-2.50(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO): $\delta 155.7,141.2,140.6,140.3,133.5,131.7,130.3,129.8$, 129.6, 129.4, 129.2, 128.9, 128.8, 125.0, 124.7, 122.7, 122.2, 121.1, 120.3, 117.0, 112.4, 66.5, 21.5; IR (KBr) v 3169, 2943, 1554, 1439, 1231, 867, $638 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 363.1497$ found 363.1499.

7,11-diphenyl-6,8-dihydrochromeno[3',4':5,6]pyrido[3,2-b]indole (3ca)

3ca (140 mg) was obtained from $\mathbf{1 c}(140 \mathrm{mg})$ following general procedure \mathbf{A}; Colorless solid; $\mathrm{R}_{f}=0.26(20 \%$ EtOAc/Hexanes); mp: 256-258 ${ }^{\circ} \mathrm{C}$; Yield (66%); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO) $\delta 11.27$ (s, 1H), 8.43 (d, $J=$ $6.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.65(\mathrm{~m}$, $5 \mathrm{H}), 7.58$ (ddd, $J=29.8,13.9,7.4 \mathrm{~Hz}, 6 \mathrm{H}), 7.43-7.32$ $(\mathrm{m}, 2 \mathrm{H}), 7.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.27$ (s, 2H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}$) δ
155.7, 142.5, 141.4, 141.1, 140.3, 133.4, 132.1, 130.4, 129.8, 129.6, 129.5, 129.3, 128.9, $127.9,127.5,124.9,124.7,122.7,121.4,121.3,121.1,119.5,117.1,110.5,66.5$; IR (KBr) v 3163, 2964, 1554, 1424, 1214, 837, $637 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+} 425.1654$ found 425.1672 .

10-fluoro-7-phenyl-6,8-dihydrochromeno[3',4':5,6]pyrido[3,2-b]indole (3da)

3da (93 mg) was obtained from $1 \mathbf{1 d}(111 \mathrm{mg})$ following general procedure \mathbf{A}; Off-colorless solid; $\mathrm{R}_{f}=0.34$ ($20 \% \mathrm{EtOAc} /$ Hexanes); mp: 271-273 ${ }^{\circ} \mathrm{C}$; Yield (51\%); ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO) $\delta 11.24$ (s, 1H), 8.33 (dd, $J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{dd}, J=8.6,5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.63-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.53-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.23$ (m, 1H), 7.19 (dd, $J=9.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.01$ (m, 2H), 6.93 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 162.5(\mathrm{~d}, J=242.4 \mathrm{~Hz}$), 155.7, 142.5 (d, $J=13.2 \mathrm{~Hz}$), 141.3, $140.9,133.2,131.9,130.6,129.8,129.6,129.4,129.0,124.7,122.7,122.3,122.2,121.1$, $118.8,117.1,108.6(\mathrm{~d}, J=24.5 \mathrm{~Hz}), 98.8(\mathrm{~d}, J=26.2 \mathrm{~Hz}), 66.4$; ${ }^{19}$ F NMR (376 MHz , DMSO) $\delta-112.90(\mathrm{~s}, 1 \mathrm{~F})$; IR (KBr) v 3126, 2971, 1544, 1426, 1241, $865,631 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{OF}[\mathrm{M}+\mathrm{H}]^{+} 367.1247$ found 367.1236.

11-fluoro-7-phenyl-6,8-dihydrochromeno[3',4':5,6]pyrido[3,2-b]indole (3ea)

3ea (106 mg) was obtained from $\mathbf{1 e}(111 \mathrm{mg})$ following general procedure \mathbf{A}; Off-colorless solid; $\mathrm{R}_{f}=0.34$ ($20 \% \mathrm{EtOAc} /$ Hexanes); mp: 215-217 ${ }^{\circ} \mathrm{C}$; Yield (58\%); ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{DMSO}\right) \delta 11.30$ (s, 1H), 8.40 (dd, $J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{dd}, J=8.5,5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.72-7.55(\mathrm{~m}, 5 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.26(\mathrm{dd}, J=$ $9.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.09$ $(\mathrm{m}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO) $\delta 162.4(\mathrm{~d}, J=241.7 \mathrm{~Hz}), 155.7,142.6(\mathrm{~d}, J=13.4 \mathrm{~Hz}), 141.3$, $140.9,133.2,131.9,130.5,129.7,129.6,129.3,129.0,124.7,122.7,122.3,122.2,121.1$, $118.8,117.0,108.6(\mathrm{~d}, J=24.5 \mathrm{~Hz}), 98.8(\mathrm{~d}, J=24.6 \mathrm{~Hz}), 66.4 ;{ }^{19} \mathrm{~F}$ NMR (376 MHz , DMSO) $\delta-112.86$ (s, 1F); IR (KBr) v 3154, 2939, 1544, 1456, 1236, 842, $629 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{OF}[\mathrm{M}+\mathrm{H}]^{+} 367.1247$ found 367.1279.

11-bromo-7-phenyl-6,8dihydrochromeno[$\left.3^{\prime}, 4^{\prime}: 5,6\right]$ pyrido[3,2-b]indole (3fa)

3fa (126 mg) was obtained from $\mathbf{1 f}(141 \mathrm{mg})$ following general procedure \mathbf{A}; Off-colorless solid; $\mathrm{R}_{f}=0.32$ (20\% EtOAc/Hexanes); mp: 293-295 ${ }^{\circ} \mathrm{C}$; Yield (59\%); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO) $\delta 11.30(\mathrm{~s}, 1 \mathrm{H}), 8.40(\mathrm{dd}$, $J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-$ $7.60(\mathrm{~m}, 4 \mathrm{H}), 7.57(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{dd}, J=$ $8.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO) δ 155.7, $142.5,141.5,140.6,133.1,131.6,130.6,129.7,129.6,129.4,129.3,124.7,124.6,123.1$, 122.7, 122.3, 121.8, 121.1, 120.7, 117.0, 115.2, 66.4; IR (KBr) v 3156, 2988, 1562, 1447, 1265, 858, $662 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{OBr}[\mathrm{M}+\mathrm{H}]^{+} 427.0446$ found 427.0453 .

10,11-dichloro-7-phenyl-6,8-dihydrochromeno[3',4':5,6]pyrido[3,2-b]indole (3ga)

3ga (100 mg) was obtained from $\mathbf{1 g}(136 \mathrm{mg})$ following general procedure \mathbf{A}; Off-colorless solid; R_{f} $=0.34$ ($20 \% \mathrm{EtOAc} /$ Hexanes); mp: 229-231 ${ }^{\circ} \mathrm{C}$; Yield (48\%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 11.41$ (s, 1H), $8.48-8.35(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.61(\mathrm{~m}, 4 \mathrm{H}), 7.56(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.23$ (s, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO) $\delta 155.7,141.9,140.4,139.6$, 132.9, 132.4, 131.9, 130.81, 129.93, 129.75, 129.68, 129.54, 128.75, 124.87, 124.4, 122.7, 122.4, 122.0, 121.6, 117.1, 114.1, 66.3; IR (KBr) v 3191, 2974, 1555, 1459, 1246, 837, $645 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{OCl}_{2}[\mathrm{M}+\mathrm{H}]^{+} 417.0561$ found 417.0551.

7-phenyl-10-(trifluoromethyl)-6,8-dihydrochromeno[3',4':5,6]pyrido[3,2-b]indole
 (3ha)

3ha (98 mg) was obtained from $\mathbf{1 h}(136 \mathrm{mg})$ following general procedure \mathbf{A}; Off-colorless solid; $\mathrm{R}_{f}=0.28$ (20\% EtOAc/Hexanes); mp: 148-150 ${ }^{\circ} \mathrm{C}$; Yield (47\%); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO) $\delta 11.55$ (s, 1H), 8.49 (d, J $=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H})$, $7.71-7.67$ (m, 2H), 7.61 (dt, $J=14.6,7.3 \mathrm{~Hz}, 4 \mathrm{H}$), $7.36(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.02$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO) $\delta 155.8,142.0,140.7$, $140.0,133.0,132.7,130.8,129.8,129.7,129.5,129.2,127.9,127.6,126.5$ (q, $J=256.7$
$\mathrm{Hz}), 124.8,124.5,123.9,122.8(\mathrm{~d}, J=4.1 \mathrm{~Hz}), 121.6,117.1,116.3,109.7(\mathrm{~d}, J=4.2 \mathrm{~Hz})$, $66.4 ;{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{DMSO}$) $\delta-59.76$ (s, 3F); IR (KBr) v 3146, 2949, 1558, 1459, 1239, 846, $651 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{OCF}_{3}[\mathrm{M}+\mathrm{H}]^{+} 417.1215$ found 417.1232.

Methyl 7-phenyl-6,8-dihydrochromeno[3',4':5,6]pyrido[3,2-b]indole-11-carboxylate

 (3ia)

3ia (107 mg) was obtained from $\mathbf{1 i}(131 \mathrm{mg})$ following general procedure \mathbf{A}; Off-colorless solid; $\mathrm{R}_{f}=0.32$ (30\% EtOAc/Hexanes); mp: 290-292 ${ }^{\circ} \mathrm{C}$; Yield (53\%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 11.47$ (s, 1H), $8.47-$ $8.33(\mathrm{~m}, 2 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.73-7.56(\mathrm{~m}, 5 \mathrm{H}), 7.41-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.17$ $(\mathrm{m}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 2 \mathrm{H}), 3.92(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{DMSO}\right) \delta 167.1,155.8,141.8,141.02,140.18,133.11,133.06$, $130.79,129.82,129.70,129.6,129.5,128.8,128.5,125.5,124.8,124.6,122.7,120.6$, $117.1,114.2,66.4,52.6$; IR (KBr) v 3171, 2978, 1567, 1449, 1254, 857, $659 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 407.1396$ found 407.1395.
benzyl 7-phenyl-6,8-dihydrochromeno[3',4':5,6]pyrido[3,2-b]indole-11-carboxylate
 (3ja)

3ja (149 mg) was obtained from $\mathbf{1 j}$ (169 mg) following general procedure A; Off-colorless solid; $\mathrm{R}_{f}=0.34(30 \%$ EtOAc/Hexanes); mp: 222-224 ${ }^{\circ} \mathrm{C}$; Yield (62%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}) \delta 11.46(\mathrm{~s}, 1 \mathrm{H}), 8.41$ (t, $J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 8.24(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-$ $7.62(\mathrm{~m}, 3 \mathrm{H}), 7.59(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{dd}, J=17.6,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.02(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{~s}, 2 \mathrm{H}), 5.28(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO) δ 166.4, 155.8, 141.9, 141.0, 140.1, 136.6, 133.0, 133.0, 130.7, 129.8, 129.6, 129.5, 129.5, 129.03, 128.6, 128.5, 128.4, 125.6, 124.8, 124.6, 122.7, 120.7, 120.7, 117.1, 117.0, 114.3, 66.7, 66.4; IR (KBr) v 3192, 2971, 1714, 1546, 1443, 1245, 886, $649 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{32} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 483.1709$ found 483.1699.

2-methyl-7-phenyl-6,8-dihydrochromeno[$\left.3^{\prime}, 4^{\prime}: 5,6\right]$ pyrido[3,2-b]indole (3ab)

3ab (101 mg) was obtained from $\mathbf{1 a}(102 \mathrm{mg})$ following general procedure A; Off-colorless solid; $\mathrm{R}_{f}=0.32(20 \%$ EtOAc/Hexanes); mp: 272-274 ${ }^{\circ} \mathrm{C}$; Yield (56\%); ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO) $\delta 11.17$ (s, 1H), 8.31 (d, $J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.60(\mathrm{~m}, 3 \mathrm{H})$,
$7.58-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{dd}, J=8.2,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) δ $153.6,141.9,141.2,141.0,133.5,131.4,130.9,129.8,129.5,129.2,128.9,127.9,124.8$, $124.6,122.0,121.50,120.6,120.1,116.8,112.7,66.4,21.0$; IR (KBr) v 3178, 2956, 1559, 1452, 1242, 856, $658 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 363.1497$ found 363.1506 .

3-methyl-7-phenyl-6,8-dihydrochromeno[3',4':5,6]pyrido[3,2-b]indole (3ac)

3ac (107 mg) was obtained from 1a (102 mg) following general procedure \mathbf{A}; Off-colorless solid; R_{f} $=0.32$ ($20 \% \mathrm{EtOAc} / \mathrm{Hexanes}$); mp: 306-308 ${ }^{\circ} \mathrm{C}$; Yield (59\%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 11.16(\mathrm{~s}, 1 \mathrm{H})$, 8.29 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.68-7.47$ (m, 7H), 7.28 (t, J $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H})$, $5.22(\mathrm{~s}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO) $\delta 155.65,141.90,141.20,140.35,133.54$, 131.28, 129.82, 129.57, 129.26, 128.93, 127.90, 124.59, 123.56, 122.29, 122.06, 120.98, $120.63,120.08,117.36,112.70,21.50$; IR (KBr) v 3178, 2944, 1535, 1428, 1251, 845, $637 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}] 363.1497$ found 363.1505.

3-methoxy-7-phenyl-6,8-dihydrochromeno[3',4':5,6]pyrido[3,2-b]indole (3ad)

3ad (119 mg) was obtained from 1a (102 mg) following general procedure \mathbf{A}; Colorless solid; $\mathrm{R}_{f}=$ 0.28 (20% EtOAc/Hexanes); mp: 258-260 ${ }^{\circ} \mathrm{C}$; Yield (63\%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 11.11$ (s, 1H), 8.29 (dd, $J=17.3,8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.72-7.44(\mathrm{~m}, 7 \mathrm{H})$, $7.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.59$ $(\mathrm{s}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO) $\delta 161.5,157.0,141.8,141.3,141.1,133.5$, $130.9,129.8,129.5,129.25,129.01,127.81,125.82,122.04,120.59,120.16,120.0$, $117.8,112.6,109.5,101.9,66.8,55.8$; IR (KBr) v 3154, 2942, 1513, 1472, 1256, 84, 684 cm^{-1}; HRMS (ESI-TOF) calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 379.1447$ found 379.1440.

2-methoxy-7-phenyl-6,8-dihydrochromeno[3',4':5,6]pyrido[3,2-b]indole (3ae)

3ae (115 mg) was obtained from 1a (102 mg) following general procedure \mathbf{A}; Off-colorless solid; R_{f} $=0.28$ (30% EtOAc/Hexanes); mp: 190-192 ${ }^{\circ} \mathrm{C}$; Yield (61\%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$): $\delta 11.21$ (s, 1H), 8.31 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.93 (d, $J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-$ 7.48 (m, 7H), 7.29 (t, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-6.88$ (m,

2H), $5.19(\mathrm{~s}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{DMSO}\right) \delta{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO) $\delta 155.0,149.6,141.9,141.2,140.9,133.4,131.5,129.8,129.5,129.3,128.9$, $128.0,125.5,121.9,121.7,120.7,120.1,117.9,116.5,112.7,108.6,66.5,56$; IR (KBr) v 3178 , 2937, 1544, 1435, 1229, 857, $643 \mathrm{~cm}^{-1}$ HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+$ $\mathrm{H}]^{+} 379.1447$ found 379.1428 .

4-ethoxy-7-phenyl-6,8-dihydrochromeno[3',4':5,6]pyrido[3,2-b]indole (3af)

3af (131 mg) was obtained from $\mathbf{1 a}(102 \mathrm{mg})$ following general procedure \mathbf{A}; Off-colorless solid; $\mathrm{R}_{f}=0.26$ (20\% EtOAc/Hexanes); mp: 202-204 ${ }^{\circ} \mathrm{C}$; Yield (67\%); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO) $\delta 11.19$ (s, 1H), 8.28 (d, J $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{dd}, J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-$ 7.65 (m, 2H), $7.63-7.54(\mathrm{~m}, 4 \mathrm{H}), 7.50(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.28(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.05-7.01$ (m, 1H), 5.24 (s, 2H), 4.07 (dd, $J=13.7$, $6.8 \mathrm{~Hz}, 2 \mathrm{H}$), $1.34(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{DMSO}) \delta 148.0,145.2,141.8,141.2,141.1,133.2,131.4,129.7,129.6$, 129.3, 128.9, 128.0, 125.7, 122.3, 121.9, 121.3, 120.6, 120.2, 116.6, 114.6, 112.7, 66.4, 64.5, 15.1; IR (KBr) v 3166, 2972, 1558, 1454, 1234, 878, $653 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 393.1603$ found 393.1601.

2,11-dimethyl-7-phenyl-6,8-dihydrochromeno[3',4':5,6]pyrido[3,2-b]indole (3ag)

3ag (105 mg) was obtained from 1b (109 mg) following general procedure \mathbf{A}; Off-colorless solid; R_{f} $=0.32$ (20% EtOAc/Hexanes); mp: 314-316 ${ }^{\circ} \mathrm{C}$; Yield (56%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.01(\mathrm{~s}, 1 \mathrm{H})$, 8.19 (d, $J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.09$ (s, 1H), $7.66-7.57$ (m, $3 \mathrm{H}), 7.54$ (dd, $J=7.4,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.31$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=8.1,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.86$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.16$ (s, 2H), $2.50(\mathrm{~s}$, 3H), 2.39 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO) $\delta 153.5,141.0,140.8,140.2,133.5$, 131.6, 131.4, 130.9, 129.8, 129.5, 129.4, 129.2, 129.0, 128.8, 124.7, 124.6, 122.1, 121.2, $120.3,116.8,112.4,66.4,21.4,21.0$; IR (KBr) v 3148, 2932, 1559, 1445, 1248, 840, 655 cm^{-1}; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 377.1654$ found 377.1646.

3-methoxy-7,11-diphenyl-6,8-dihydrochromeno[3',4':5,6]pyrido[3,2-b]indole (3ah)

3ah (157 mg) was obtained from 1c (140 mg) following general procedure \mathbf{A}; Off-colorless solid; R_{f} $=0.30$ ($30 \% \mathrm{EtOAc} /$ Hexanes); mp: 289-291 ${ }^{\circ} \mathrm{C}$; Yield (69\%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 11.20(\mathrm{~s}, 1 \mathrm{H})$, 8.33 (dd, $J=8.4,3.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.74 (dd, $J=6.0,4.9$ $\mathrm{Hz}, 3 \mathrm{H}), 7.70-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.59 (dd, $J=12.5,4.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.52(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.41$ (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.80$ (dd, $J=8.6,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.60(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO) δ 161.6, 157.0, 142.4, 141.6, 141.4, 140.9, 140.1, 133.5, 131.6, 129.8, 129.6, 129.5, 129.3, $129.0,127.8,127.4,125.8,121.3,121.1,120.2,119.4,117.8,110.5,109.5,101.9,66.8$, 55.8; IR (KBr) v 3198, 2963, 1527, 1443, 1231, 839, $625 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{31} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 455.1760$ found 455.1737 .

4-ethoxy-11-fluoro-7-phenyl-6,8-dihydrochromeno[3',4':5,6]pyrido[3,2-b]indole

(3ai)
3ai (129 mg) was obtained from $\mathbf{1 e}(111 \mathrm{mg})$ following general procedure \mathbf{A}; Off-colorless solid; $\mathrm{R}_{f}=0.28$ ($20 \% \mathrm{EtOAc} /$ Hexanes); mp: $226-228{ }^{\circ} \mathrm{C}$; Yield (63%); ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO) $\delta 11.30$ (s, 1H), 8.27 (dd, $J=8.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{dd}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.70-7.59(\mathrm{~m}, 3 \mathrm{H}), 7.59-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{dd}, J=$ $9.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.07 (ddd, $J=16.0,9.4,4.4 \mathrm{~Hz}, 3 \mathrm{H}$), $5.22(\mathrm{~s}, 2 \mathrm{H}), 4.09-4.00(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 162.5(\mathrm{~d}, J=241.6 \mathrm{~Hz}), 148.0,145.3,142.5(\mathrm{~d}, J=13.6 \mathrm{~Hz}), 141.6,140.8,133.2$, $131.9,129.8,129.6,129.4,128.9,125.6,122.3,122.2,121.1,118.8,116.6,114.7,108.6$ $(\mathrm{d}, J=24.2 \mathrm{~Hz}), 98.9(\mathrm{~d}, J=26.2 \mathrm{~Hz}), 66.4,64.5,15.2 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{DMSO}$) δ 112.84 (s, 1F); IR (KBr) v 3159, 2974, 1556, 1460, 1238, 847, $634 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~F}[\mathrm{M}+\mathrm{H}]^{+} 411.1509$ found 411.1506.

10-fluoro-3-methyl-7-phenyl-6,8-dihydrochromeno[3',4':5,6]pyrido[3,2-b]indole

(3aj)
3aj (125 mg) was obtained from $\mathbf{1 d}$ (111 mg) following general procedure \mathbf{A}; Off-colorless solid; $\mathrm{R}_{f}=0.30$ (20% EtOAc/Hexanes); mp: 292-294 ${ }^{\circ} \mathrm{C}$; Yield $=125$ mg (66%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 11.26$ (s, $1 \mathrm{H}), 8.28(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{ddd}, J=23.1,14.9$,
$6.8 \mathrm{~Hz}, 5 \mathrm{H}), 7.25(\mathrm{dd}, J=9.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.08(\mathrm{~m}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.82(\mathrm{~s}, 1 \mathrm{H}), 5.21(\mathrm{~s}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO) $\delta 162.7(\mathrm{~d}, J=$ $240.2 \mathrm{~Hz}), 155.6,142.5(\mathrm{~d}, J=12.7 \mathrm{~Hz}), 141.6,140.8,140.4,133.3,131.7,129.7,129.5$, $129.3,128.9,124.6,123.5,122.2,122.1,120.7,118.8,117.3,108.4$ (d, $J=24.4 \mathrm{~Hz}), 98.8$ (d, $J=25.9 \mathrm{~Hz}$), 66.4, 21.4; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{DMSO}$) $\delta-113.02$ (s, 1F); IR (KBr) v 3189, 2971, 1549, 1444, 1236, 857, $652 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OF}[\mathrm{M}+$ $\mathrm{H}]^{+} 381.1403$ found 381.1414 .

10,11-dichloro-2-methyl-7-phenyl-6,8-dihydrochromeno[3',4':5,6]pyrido[3,2b]indole (3ak)

3ak (112 mg) was obtained from $\mathbf{1 g}$ (136 mg) following general procedure \mathbf{A}; Off-colorless solid; R_{f} $=0.36$ (20\% EtOAc/Hexanes); mp: 205-207 ${ }^{\circ} \mathrm{C}$; Yield (52%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 11.53(\mathrm{~s}, 1 \mathrm{H})$, $8.50(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.23$ (s, 1H), 7.84 (s, 1H), 7.71 $-7.56(\mathrm{~m}, 6 \mathrm{H}), 7.16(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~s}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{DMSO}) \delta 154.7,142.0,141.4,139.2,133.1$, 132.7, 131.8, 129.8, 129.6, 129.4, 129.0, 128.3, 127.0, 126.7, 121.8, 121.2, 120.8, 120.3, $119.6,114.5,112.7,66.6,27.4$; IR (KBr) v 3145, 2972, 1544, 1446, 1265, $845,639 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{OCl}_{2}[\mathrm{M}+\mathrm{H}]^{+} 431.0718$ found 431.0711 .

11-bromo-2-methyl-7-phenyl-6,8-dihydrochromeno[3',4':5,6]pyrido[3,2-b]indole

 (3al)

3al (123 mg) was obtained from $\mathbf{1 f}(141 \mathrm{mg})$ following general procedure \mathbf{A}; Off-colorless solid; $\mathrm{R}_{f}=0.30$ ($20 \% \mathrm{EtOAc} /$ Hexanes); mp: 218-220 ${ }^{\circ} \mathrm{C}$; Yield (56\%); ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{DMSO}\right) \delta 11.28(\mathrm{~s}, 1 \mathrm{H}), 8.26-$ $8.18(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.58-7.53(\mathrm{~m}, 2 \mathrm{H})$, 7.41 (dd, $J=8.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 1 \mathrm{H})$, $6.88(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO) δ 153.6, 142.5, 141.7, 140.5, 133.2, 131.6, 131.4, 131.1, 129.7, $129.6,129.4,129.3,124.8,124.3,123.1,122.3,122.0,121.1,120.6,116.8,115.2,66.3$, 21.0; IR (KBr) v 3171, 2946, 1546, 1437, 1244, 856, $644 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OBr}[\mathrm{M}+\mathrm{H}]^{+} 441.0606$ found 441.0600 .

3am (85 mg) was obtained from $\mathbf{1 a}$ (102 mg) following general procedure \mathbf{A}; Off-colorless solid; $\mathrm{R}_{f}=0.30$ (20\% EtOAc/Hexanes); mp: 248-250 ${ }^{\circ} \mathrm{C}$; Yield (47\%); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO) $\delta 11.16$ (s, 1H), 8.42 (d, J $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.44(\mathrm{~m}$, $6 \mathrm{H}), 7.36-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.00$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 2 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) δ 155.6, 141.9, 141.2, 140.8, 138.7, 131.6, 130.4, 130.3, 130.1, 129.7, 128.9, 127.9, 124.9, 124.7, 122.6, 122.0, 121.3, 120.6, $120.1,117.0,112.7,66.5,21.4$; $\mathrm{IR}(\mathrm{KBr})$ v $3168,2945,1554,1459,1266,847,614 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 363.1497$ found 363.1493.

7-(4-(tert-butyl)phenyl)-6,8-dihydrochromeno[3',4':5,6]pyrido[3,2-b]indole (3an)

3an (107 mg) was obtained from 1a (102 mg) following general procedure \mathbf{A}; Off-colorless solid; R_{f} $=0.34$ (30% EtOAc/Hexanes); mp: 234-236 ${ }^{\circ} \mathrm{C}$; Yield (53\%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 11.18(\mathrm{~s}, 1 \mathrm{H})$, 8.41 (dd, $J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.29$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.67(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.50$ (dd, $J=7.5,5.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.35-7.26$ (m, 2H), 7.19 (t, J $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~s}, 2 \mathrm{H})$, 1.41 (s, 9H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO) δ 155.6, 151.6, 141.9, 141.3, 140.9, 131.5, $130.5,130.3,129.5,128.8,127.9,126.3,124.9,124.7,122.6,122.0,121.4,120.6,120.1$, $117.0,112.7,66.5,35.0,31.5$; IR (KBr) v 3172, 2944, 1555, 1456, 1244, 857, $643 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 405.1967$ found 405.1989.

7-(4-methoxyphenyl)-6,8-dihydrochromeno[3',4':5,6]pyrido[3,2-b]indole (3ao)

$\mathbf{3 a o}(104 \mathrm{mg})$ was obtained from $\mathbf{1 a}(102 \mathrm{mg})$ following general procedure \mathbf{A}; Off-colorless solid; $\mathrm{R}_{f}=0.28$ (30\% EtOAc/Hexanes); mp: 215-217 ${ }^{\circ} \mathrm{C}$; Yield (55\%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 11.17$ (s, 1H), 8.40 (dd, $J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-$ 7.45 (m, 4H), 7.31 (ddd, $J=18.0,11.3,4.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.20(\mathrm{dd}, J=13.3,8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, 1H), 5.27 (s, 2H), 3.90 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO) $\delta 160.0,155.7,141.8,141.2,140.9,131.7,131.1,130.3,128.8,127.9,125.4$, $125.0,124.7,122.6,122.1,121.4,120.6,120.1,117.0,115.0,112.7,66.5,55.7$; IR (KBr)
v 3182, 2949, 1551, 1442, 1229, 836, $648 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+$ $\mathrm{H}]^{+} 379.1447$ found 379.1450 .

7-(4-chlorophenyl)-6,8-dihydrochromeno[3',4':5,6]pyrido[3,2-b]indole (3ap)

3ap (97 mg) was obtained from $\mathbf{1 a}(102 \mathrm{mg})$ following general procedure \mathbf{A}; Off-colorless solid; $\mathrm{R}_{f}=0.28$ ($20 \% \mathrm{EtOAc} /$ Hexanes); mp: $264-268{ }^{\circ} \mathrm{C}$; Yield $=97$ mg (51%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 11.23$ (s, $1 \mathrm{H}), 8.41$ (dd, $J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.72$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.56-7.48$ (m, 2H), $7.37-7.26$ (m, 2H), 7.19 (t, $J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~s}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) δ 155.6, 141.9, 141.3, 140.8, 134.1, 132.3, 131.8, 131.4, 130.4, 129.6, 128.1, 127.7, 124.8, 124.7, 122.7, 122.0, 121.3, 120.7, 120.2, 117.0, 112.6, 66.3; IR (KBr) v 3176, 2976, 1554, 1451, 1247, 837, $661 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{OCl}[\mathrm{M}+\mathrm{H}]^{+} 383.0951$ found 383.0942.

7-(4-chlorophenyl)-11-methyl-6,8-dihydrochromeno[3',4':5,6]pyrido[3,2-b]indole
 (3aq)
$\mathbf{3 a q}(107 \mathrm{mg})$ was obtained from $\mathbf{1 a}(102 \mathrm{mg})$ following general procedure \mathbf{A}; Off-colorless solid; $\mathrm{R}_{f}=0.32$ (30% EtOAc/Hexanes); mp: 209-211 ${ }^{\circ} \mathrm{C}$; Yield (54\%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 11.10$ (s, 1H), 8.40 (d, J $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.59 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.38-$ $7.29(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 2 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 155.6,141.2,140.5$, $140.2,134.1,133.7,132.3,131.7,131.6,130.3,129.6,129.0,127.5,124.9,124.6,122.6$, $122.1,121.1,120.3,117.0,112.3,66.4,21.5$; IR (KBr) v 3172, 2941, 1560, 1442, 1235, $849,644 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OCl}[\mathrm{M}+\mathrm{H}]^{+} 397.1108$ found 397.1122.

4-(6,8-dihydrochromeno[3',4':5,6]pyrido[3,2-b]indol-7-yl)benzonitrile (3ar)

3ar (108 mg) was obtained from $\mathbf{1 a}(102 \mathrm{mg})$ following general procedure \mathbf{A}; Light pink solid; $\mathrm{R}_{f}=0.32(20 \%$ EtOAc/Hexanes); mp: 212-214 ${ }^{\circ} \mathrm{C}$; Yield (58\%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}) \delta 11.26$ (s, 1H), 8.42 (dd, $J=$ $7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 8.30 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.82$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.55-7.51$ (m, 2H), $7.36-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}$) δ
155.6, 141.9, 141.5, 140.8, 136.7, 132.7, 131.3, 130.9, 130.5, 128.2, 127.4, 126.4, 124.7, 122.7, 122.1, 121.9, 121.2, 120.7, 120.3, 117.1, 114.9, 112.6, 66.3; IR (KBr) v 3165, 2938, 1537, 1428, 1251, 845, $637 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) calcd for $\mathrm{C}_{25} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+$ $\mathrm{H}]^{+} 374.1293$ found 374.1294.

Methyl 4-(6,8-dihydrochromeno[3',4':5,6]pyrido[3,2-b]indol-7-yl)benzoate (3as)

3as (132 mg) was obtained from $\mathbf{1 a}(102 \mathrm{mg})$ following general procedure \mathbf{A}; Off-colorless solid; $\mathrm{R}_{f}=0.28(20 \%$ EtOAc/Hexanes); mp: $224-226{ }^{\circ} \mathrm{C}$; Yield (65%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}) \delta 11.27(\mathrm{~s}, 1 \mathrm{H}), 8.39(\mathrm{dd}, J=7.7,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, 7.73 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.26$ (m, 2H), 7.18 (td, $J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-6.98(\mathrm{~m}, 1 \mathrm{H})$, 5.24 (s, 2H), $3.94(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO) $\delta 166.5,155.6,141.9,141.4$, $140.8,138.3,131.1,130.6,130.4,130.3,128.2,127.8,124.7,122.8,121.8,121.2,120.7$, $120.3,117.1,112.6,66.3,52.9$; IR (KBr) v 3157, 2987, 1682, 1578, 1436, 1211, 842, 652 $\mathrm{cm}^{-1} ;$ HRMS (ESI-TOF) calcd for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 407.1396$ found 407.1393.

7-(thiophen-2-yl)-6,8-dihydrochromeno[3',4':5,6]pyrido[3,2-b]indole (3at)

3at (103 mg) was obtained from $\mathbf{1 a}(102 \mathrm{mg})$ following general procedure \mathbf{A}; Off-colorless solid; $\mathrm{R}_{f}=0.28$ (20% EtOAc/Hexanes); mp: 307-309 ${ }^{\circ} \mathrm{C}$; Yield (58\%); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO) $\delta 11.34$ (s, 1H), 8.34 (dd, $J=44.1,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.98(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-$ 7.51 (m, 2H), 7.36 (ddd, $J=22.3,15.5,9.8 \mathrm{~Hz}, 4 \mathrm{H}$), $7.19(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.40$ (s, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO) $\delta 155.6,141.9$, $141.4,140.8,132.8,131.8,130.5,130.3,129.2,128.7,128.2,124.7,122.7,122.0,121.8$, 120.7, 120.4, 117.0, 112.9, 66.5; IR (KBr) v 3178, 2966, 1558, 1436, 1246, 838, $657 \mathrm{~cm}^{-}$ ${ }^{1}$; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+} 355.0905$ found 355.0907.

General Procedure B for the synthesis of annelated pyrimidines (4a-c) Taking Synthesis of 4a as an Example.

Ethyl 2-amino-1H-indole-3-carboxylate (1a) (102 mg, 0.5 mmol$)$, 2-((3-phenylprop-2-yn-1-yl)oxy) benzaldehyde (2a) ($118 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathrm{Yb}(\mathrm{OTf})_{3}(31 \mathrm{mg}, 10 \mathrm{~mol} \%)$ in anhydrous $\mathrm{MeCN}(3 \mathrm{~mL})$ in a 15 mL Schlenk tube were added TFA (Triflouro acetic acid) ($0.04 \mathrm{~mL}, 1$ equiv) and the reaction mixture was stirred at $80{ }^{\circ} \mathrm{C}$ (oil bath temperature) until complete conversion of starting material (monitored by TLC, 20 h). After completion of the reaction, the solvent removed under reduced pressure and the crude material was purified on silica gel using $40 \% \mathrm{EtOAc} / \mathrm{hexane}$ to get $\mathbf{4 a}$ (136 mg , 65%) as a dark brick red solid.
ethyl 7-phenyl-6H-chromeno[4',3':4,5]pyrimido[1,2-a]indole-13-carboxylate (4a)

Brick red solid; $\mathrm{R}_{f}=0.28$ ($20 \% \mathrm{EtOAc} / \mathrm{Hexanes}$); mp: $198-200{ }^{\circ} \mathrm{C}$; Yield $=136 \mathrm{mg}(65 \%) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.61-8.47(\mathrm{~m}, 2 \mathrm{H}), 7.77-7.68(\mathrm{~m}$, $3 \mathrm{H}), 7.51-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.19(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.97$ $(\mathrm{d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=11.5,4.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.21(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 2 \mathrm{H}), 4.57(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 1.59(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta \delta 165.1,158.1,151.1,146.5,142.7,133.6$, $131.1,130.4,130.2,128.5,128.4,126.6,125.1,122.8,121.9,121.7,121.5,117.4,114.3$, 110.23, 95.2, 64.8, 59.7, 14.8; IR (KBr) v 2933, 1667, 1378, 1219, $770 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) calcd for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 421.1552$ found 421.1560 .

4b carboxylate (4b)

4b (137 mg) was obtained from $\mathbf{1 a}(102 \mathrm{mg})$ following general procedure \mathbf{B}; Brick red solid; $\mathrm{R}_{f}=0.34(30 \%$ EtOAc/Hexanes); mp: 203-205 ${ }^{\circ} \mathrm{C}$; Yield (63\%); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.56(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}$,
$1 \mathrm{H}), 8.51(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{dd}, J=$ $7.0,4.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 1 \mathrm{H}), 6.98-6.95(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{ddd}, J=8.5,7.1,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.30(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 2 \mathrm{H}), 4.57(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H})$, $1.58(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta 165.1,158.1,151.1,146.6$, $143.0,141.4,133.6,130.8,130.2,128.6,128.2,127.4,126.6,125.0,122.7,121.8,121.7$, $121.4,117.3,114.5,110.3,95.0,64.8,59.7,21.7,14.8$; IR (KBr) v 2933, 1732, 1436, 1220, $770 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) calcd for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 435.1709$ found 435.1707.

ethyl 2-bromo-7-phenyl-6H-chromeno[4',3':4,5]pyrimido[1,2-a]indole-13carboxylate (4c):

4c (169 mg) was obtained from $\mathbf{1 a}(102 \mathrm{mg})$ following general procedure B; Brick red solid; $\mathrm{R}_{f}=0.28(20 \%$ EtOAc/Hexanes); mp: 221-223 ${ }^{\circ} \mathrm{C}$; Yield (68%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.65(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $8.51(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.69(\mathrm{~m}, 3 \mathrm{H}), 7.49$ (ddd, $J=8.1,4.5,2.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.39(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, 6.92 (ddd, $J=8.5,7.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.21(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 2 \mathrm{H}), 4.57(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.61(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta 165.0,156.9,149.6,146.0,143.0,136.1,131.31$, $130.3,129.01,128.5,128.3,125.3,123.2,122.0,121.8,119.3,115.4,114.4,109.6,95.5$, $64.9,59.9,14.6$; IR (KBr) v 2972, 1616, 1496, 1229, $667 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) calcd for $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+} 499.0657$ found 499.0671.
General Procedure \mathbf{C} for the synthesis dihydrochromeno α-carbolines of (7a-c)
Taking Synthesis of 7a as an Example.

To a 15 mL Schlenk tube was added ethyl 1 H -indol-2-amine hydrochloride (7) (84 mg, $0.5 \mathrm{mmol})$, 2-((3-phenylprop-2-yn-1-yl)oxy) benzaldehyde (2a) (118 mg, 0.5 mmol) and $\mathrm{Yb}(\mathrm{OTf})_{3}(31 \mathrm{mg}, 10 \mathrm{~mol} \%)$ in anhydrous $\mathrm{MeCN}(3 \mathrm{~mL})$ and the reaction mixture was stirred at $80{ }^{\circ} \mathrm{C}$ (oil bath temperature) until complete conversion of starting material (monitored by TLC, 18 h). After completion of the reaction, solvent was removed under
reduced pressure and the crude material purified on silica gel using $30 \% \mathrm{EtOAc} / \mathrm{hexane}$ to get $\mathbf{4 a}(107 \mathrm{mg}, 62 \%)$ as a off-colorless solid

7-phenyl-6,9-dihydrochromeno[4',3':4,5]pyrido[2,3-b]indole (8a)

Off-colorless solid; $\mathrm{R}_{f}=0.28$ ($20 \% \mathrm{EtOAc} /$ Hexanes); $\mathrm{mp}: 195-198{ }^{\circ} \mathrm{C}$; Yield $=107 \mathrm{mg}(62 \%)$; ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{DMSO}) \delta 12.11(\mathrm{~s}, 1 \mathrm{H}), 8.34(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.71(\mathrm{dd}, J=5.8,4.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 3 \mathrm{H})$, $7.45-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.06$ (dd, $J=8.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{dd}, J=7.8,1.3 \mathrm{~Hz}, 2 \mathrm{H})$, 5.19 (s, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 156.4$, 152.0, 145.1, 141.3, 139.9, 135.7, 131.5, 129.6, 129.4, $128.8,127.0,125.0,124.3,122.7,121.7,120.0,119.8,117.2,116.3,113.2,111.8,66.2$; IR (KBr) v 3090, 2966, 1592, 1460, 1222, 839, $769 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) calcd for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 349.1341$ found 349.1339.

7-(p-tolyl)-6,9-dihydrochromeno[4',3':4,5]pyrido[2,3-b]indole (8b)

$\mathbf{8 b}(107 \mathrm{mg})$ was obtained from $7(84 \mathrm{mg})$ following general procedure \mathbf{C}; Off- colorless solid; $\mathrm{R}_{f}=0.28(20 \%$ EtOAc/Hexanes); mp: 209-211 ${ }^{\circ} \mathrm{C}$; Yield (59\%); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}) \delta 12.11(\mathrm{~s}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.58-7.47(\mathrm{~m}, 5 \mathrm{H}), 7.38(\mathrm{dd}, J=13.4,7.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.20(\mathrm{t}$, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.19(\mathrm{~s}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{DMSO}) \delta 156.4,152.1,145.1,141.4,139.8,138.7$, 132.7, 131.4, 130.1, 128.81, 126.9, 125.0, 124.3, 122.6, $121.8,120.7,119.8,117.2,116.47,113.3,111.8,66.2,21.5$; IR (KBr) v 2934, 1678, 1484, 1216, 827, $769 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 363.1497$ found 363.1497.
methyl 4-(6,9-dihydrochromeno[4',3':4,5]pyrido[2,3-b]indol-7-yl)benzoate (8c)

8c (118 mg) mg was obtained from $7(84 \mathrm{mg}$) following general procedure \mathbf{C}; Off-colorless solid; R_{f} $=0.28$ ($20 \% \mathrm{EtOAc} /$ Hexanes); mp: 204-206 ${ }^{\circ} \mathrm{C}$; Yield (58%); ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{DMSO}\right) \delta 12.22(\mathrm{~s}, 1 \mathrm{H})$, $8.41-8.33(\mathrm{~m}, 2 \mathrm{H}), 8.12(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.39(\mathrm{td}, J=7.6$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J=10.7,4.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.20(\mathrm{~s}$, 2 H), 3.91 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}$) δ $166.5,157.1,152.8,150.7,143.9,140.5,134.6,132.0,130.1,129.9,129.60,128.5,127.7$, $123.0,122.9$, 122.6, 120.3, 119.9, 119.6, 118.06, 112.1, 109.3, 67.3, 52.7; IR (KBr) v

2924, 1725, 1460, 1278, 872, $761 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) calcd for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+$ $\mathrm{H}]^{+} 407.1396$ found 407.1397.

III. References

1. For 2-Amino-1Hindole-3-carboxylate Derivatives (1) see: (a) Yang, X.; Fu, H.; Qiao, R.; Jiang, Y.; Zhao, Y. A Simple Copper-Catalyzed Cascade Synthesis of 2-Amino-1Hindole-3-carboxylate Derivatives. Adv. Synth. Catal. 2010, 352, 1033-1038. Arigela, R. K.; Kumar, R.; Samala, S.; Gupta, S.; Kundu, B. Diversity-Oriented Synthesis of Polycyclic Indoles: Brønsted or Lewis Acid Catalyzed ThreeComponent Reaction for the Synthesis of α-Carbolines and Pyrimidoindoles. Eur. J. Org. Chem. 2014, 6057-6066.
2. For O-(Arylpropynyloxy) Salicylaldehydes (2) see: Acosta, P.; Feresin, G.; Tapia, A.; Estévez-Braun, A. Microwave-Assisted Organocatalytic Intramolecular Knoevenagel/Hetero Diels-Alder Reaction with O-(Arylpropynyloxy) Salicylaldehydes: Synthesis of Polycyclic Embelin Derivatives. J. Org. Chem. 2016, 81, 9738-9756.
3. For 3-amino-1H-indole-2-carboxylates (5) see: Harajani, J.; Tang, A. X.; Norton, R. S.; Baell, J. B. A new methodology for the synthesis of 3 -amino-1H-indole-2carboxylates. Tetrahedron 2014, 70, 8047-8055.
4. For Ethyl 2-Amino-1-methyl-1H-indole-3-carboxylate (6) see: Lauria, A.; Patella, C.; Diana, P.; Barraja, P.; Montalbano, A.; Cirrincione, G.; Dattolo, G.; Almerico, A. M. A New Tetracyclic Ring System of Biological Interest. Indolo[3,2-e][1,2,3]triazolo[1,5-a]pyrimidines Through Domino Reactions of 2-Azidoindole. Heterocycles, 2003, 60, 2669-2675.
5. For 2-Aminoindole Hydrochlorides (7) see: (a) Gupta, S.; Kumar, B.; Kundu, B. Three-Component Tandem Reaction Involving Acid Chlorides, Terminal Alkynes, and 2-Aminoindole Hydrochlorides: Synthesis of $\boldsymbol{\alpha}$-Carboline Derivatives in Aqueous Conditions via Regioselective [3 + 3] Cyclocondensation. J. Org. Chem. 2011, 76, 10154-10162. (b) Forbes, I. T.; Johnson, C. N.; Thompson, M. J. Syntheses of Functionalised Pyrido[2,3-b]indoles. Chem. Soc., Perkin Trans. 1 1992, 275-281.
IV. Spectral data of 3aa-ja, 3ab-3au, 4a-c and 8a-c.

13C
RMSR-091

1	1	1		1	1	1	1	1			1	1			1	1		1
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

${ }_{\text {RMSR-208 }}^{\text {1H }}$ (

13C
RMSR-208

RAJESH-M0034

[^0]

13C NMR
RMSR-197

${ }_{\text {RMSR } 078}^{\text {IH }}$	$\stackrel{\circ}{7}$			
RMSR 078	\#			$\stackrel{\sim}{n}$

13C
RMSR-078

13C
RMSR-130

13C NMR
RMSR-108

13C
RMSR-140

${ }_{\text {RMSR-209 }}^{1 \text { I }}$

$\stackrel{\tilde{N}}{\tilde{m}} \stackrel{\text { an }}{1}$

13C
RMSR-209

BnOOC

13C NMR
13C NMR
RMSR-106

1H NMR
RMSR 193

190	180	170	160	150	140	130	120	110	$\begin{aligned} & 100 \\ & \mathrm{f}_{1}(\mathrm{ppm}) \end{aligned}$	90	80	70	60	50	40	30	20	10	

13C
RMSR-207

13C NMR
RMSR-105

Ph 3ae

13C
RMSR-091-A

13C
RMSR-110

-66.46

												1				1			
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

13C NMR

RAJESH-M0034

13C NMR
RMSR-198

\section*{| N |
| :--- |
| $\stackrel{\text { n }}{1}$ |}

RAJESH-M0034

$\begin{array}{ll}\text { Ravi } \\ \text { RMSR-020 } \\ & \stackrel{\infty}{7} \\ \square\end{array}$
*
$\stackrel{+}{\infty}$ in in io

Ravi

3al

13C
RMSR-094

1		170	16					110			1	70	60	1	10		1	10	
190	180	170	160	150	140	130	120	110	100		80	70	60	50	40	30	20	10	0

1H NMR
RMSR-212

13C NMR
RMSR-212

-66.59

13C NMR

1H NMR
RMSR-202

$\stackrel{\text { N }}{\text { N }}$

13C NMR

1H NMR
RMSR 195

$\overbrace{0}^{\infty}$

 13C NMR
RMSM-192

RAJESH-M0034

1	1	1		1		1	1	1		1	1	1		1	1	1			
190	180	170	160	150	140	130	120	110	$\begin{aligned} & 100 \\ & \mathrm{f}_{1}(\mathrm{ppm}) \end{aligned}$	90	80	70	60	50	40	30	20	10	0

RAJESH-M0034

							,	1		1			1					
190	180	170	160	150	140	130	120	110	$\begin{aligned} & 100 \\ & \mathrm{f1}(\mathrm{ppm}) \end{aligned}$	90	80	70	60	50	40	30	20	10

NAGESH-M0034

1							1				1	1	1	,					
190	180	170	160	150	140	130	120	110	100		80	70	60	50	40	30	20	10	0

1	1	1	1	1	1	1	1	1	1 1	1	T	1	1	1	T	1	1	,	1
190	180	170	160	150	140	130	120	110	${ }_{\mathrm{f} 1}^{100}(\mathrm{ppm})$	90	80	70	60	50	40	30	20	10	0

RAJESH-M0034

V. X-ray crystallographic data.

Crystallographic data

Figure caption: ORTEP diagram of 3af compound with the atom-numbering. Displacement ellipsoids are drawn at the 35% probability level and H atoms are shown as small spheres of arbitrary radius. CCDC 1970227 contains the supplementary crystallographic data for this paper which can be obtained free of charge at https://www.ccdc.cam.ac.uk/structures/

Figure caption: ORTEP diagram of 3da compound (major component) with the atom-numbering. Displacement ellipsoids are drawn at the 35% probability level and H atoms are shown as small spheres of arbitrary radius. The asymmetric unit contains compound and DMSO solvent in 1:0.5 ratio. DMSO interacts with the molecule by N-H...O hydrogen bond, indicated by a dotted line. The symmetry related second half of DMSO is shown for clarity purpose. The $-\mathrm{CH}_{2}$ group at carbon C24 atom was found to be partially oxidized to - CHOH and found as a disordered site in the crystal lattice. The disorder model refinement suggested that the unoxidized product is the major component with site occupancy of $0.905(5)$ for $\mathrm{C} 24 / \mathrm{H} 24 \mathrm{~A} / \mathrm{H} 24 \mathrm{~B}$ atoms and the oxidized product is the minor component with site occupancy of $0.095(5)$ for C24D/H24D/O3D/H3D atoms. CCDC 1970228 contains the supplementary crystallographic data for this paper which can be obtained free of charge at https://www.ccdc.cam.ac.uk/structures/.

ORTEP diagram of 3da compound (minor component) with the atom-numbering.

ORTEP diagram of $\mathbf{8 c}$ compound with the atom-numbering. Displacement ellipsoids are drawn at the 35% probability level and H atoms are shown as small spheres of arbitrary radius. CCDC 1970229 contains the supplementary crystallographic data for this paper which can be obtained free of charge at https://www.ccdc.cam.ac.uk/structures/

ORTEP diagram of $\mathbf{4 b}$ compound with the atom-numbering. Displacement ellipsoids are drawn at the 35% probability level and H atoms are shown as small spheres of arbitrary radius. CCDC 1970230 contains the supplementary crystallographic data for this paper which can be obtained free of charge at https://www.ccdc.cam.ac.uk/structures/

Table S1. Crystal Data Collection and Refinement Parameters for 3af.

	3af
chemical formula	$\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}, \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$
$F \boldsymbol{w} ; \boldsymbol{F}(000)$	480.54; 4572
T (K)	293(2)
wavelength (${ }_{\text {® }}$)	0.71073
space group	R-3
\boldsymbol{a} (${ }_{\text {A }}$)	26.635(19)
\boldsymbol{b} (${ }_{\text {A }}$)	26.635
\boldsymbol{c} (A)	16.714(14)
α (deg)	90
β (deg)	90
γ (deg)	120
Z	18
$V\left({ }^{\text {a }}\right.$)	10269(17)
$\rho_{\text {calcd }}\left(\mathbf{g} \cdot \mathrm{cm}^{-3}\right)$	1.399
$\boldsymbol{\mu}\left(\mathbf{m m}^{-1}\right)$	0.093
θ range (deg); completeness	2.635-30.632; 0.998
collected reflections; $\mathbf{R}_{\boldsymbol{\sigma}}$	28339; 0.0433
unique reflections; Rint	28339; 0.0400
R1 ${ }^{\text {a }}$; wR2 ${ }^{\text {b }}$ [I ${ }^{\text {> 2б(I) }}$]	0.0561; 0.1542
R1; wR2 [all data]	0.1016; 0.1776
GOF	1.007
largest diff peak and hole	0.184 and -0.213
${ }^{\mathbf{b}} \mathbf{w R}_{2}=\left\{\Sigma\left[\mathbf{w}\left(\mathbf{F}_{0}{ }^{2}-\mathbf{F}^{2}\right)^{2}\right)^{2} / \Sigma\left[\mathrm{w}\left(\mathbf{F}_{0}{ }^{2}\right)^{2}\right]\right\}^{1 / 2}$	$\left.\left.w\left(\mathbf{F}_{0}{ }^{2}\right)^{2}\right]\right]^{1 / 2}$

Table S2. Crystal Data Collection and Refinement Parameters for 3da.

	3da
chemical formula	$2\left(\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{FN}_{2} \mathrm{O}_{1.10}\right), \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}$
$\boldsymbol{F w} \boldsymbol{;} \boldsymbol{F}(\mathbf{0 0 0})$	813.92; 1694
\boldsymbol{T} (K)	293(2)
wavelength (${ }_{\text {® }}$)	0.71073
space group	C2/c
\boldsymbol{a} (\AA)	22.70(2)
\boldsymbol{b} (®)	7.518(7)
\boldsymbol{c} (${ }_{\text {A }}$)	24.71(2)
α (deg)	90
β (deg)	109.661(16)
γ (deg)	90
Z	4
$V\left(\AA^{3}\right)$	3972(6)
$\rho_{\text {calcd }}\left(\mathbf{g} \cdot \mathbf{c m}^{-3}\right)$	1.361
$\mu\left(\mathbf{m m}^{-1}\right)$	0.142
θ range (deg); completeness	2.109-24.998; 0.999
collected reflections; $\mathbf{R}_{\boldsymbol{\sigma}}$	17034; 0.0535
unique reflections; $\mathbf{R i n t}^{\text {in }}$	17034; 0.0545
	0.0579; 0.1456
R1; wR2 [all data]	0.1079; 0.1723
GOF	1.051
largest diff peak and hole	0.212 and -0.267

${ }^{a} \mathbf{R}_{1}=\Sigma\left(| | \mathbf{F}_{0}\left|-\left|\mathbf{F}_{c}\right|\right) / \Sigma\left|\mathbf{F}_{0}\right|\right.$
${ }^{\mathbf{b}}{ }_{\mathbf{w}} \mathbf{R}_{2}=\left\{\boldsymbol{\Sigma}\left[\mathbf{w}\left(\mathbf{F}_{0}{ }^{2}-\mathbf{F}_{c^{2}}\right)^{2}\right] / \Sigma\left[\mathbf{w}\left(\mathbf{F}_{0}{ }^{2}\right)^{2}\right]\right\}^{1 / 2}$

Table S3. Crystal Data Collection and Refinement Parameters for 8c.

	8c
chemical formula	$\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O} 3$
$F w ; F(000)$	406.42; 424
\boldsymbol{T} (K)	293(2)
wavelength (${ }_{\text {(}}$)	0.71073
space group	P-1
\boldsymbol{a} (${ }_{\text {A }}$)	8.031(3)
\boldsymbol{b} (${ }_{\text {A }}$)	10.670(5)
\boldsymbol{c} (${ }_{\text {A }}$)	12.569(5)
α (deg)	93.207(12)
β (deg)	102.784(9)
γ (deg)	108.553(11)
Z	2
$V\left(\AA^{3}\right)$	986.4(7)
ρ calcd ($\mathbf{(} \cdot \mathrm{cm}^{-3}$)	1.368
$\boldsymbol{\mu}\left(\mathbf{m m}^{-1}\right)$	0.091
θ range (deg); completeness	2.452-30.555; 0.998
collected reflections; $\mathbf{R}_{\boldsymbol{\sigma}}$	25056; 0.0533
unique reflections; $\mathbf{R}_{\text {int }}$	25056; 0.0543
R1 ${ }^{\text {a }}$, wR2 ${ }^{\text {b }}$ [I $>\mathbf{2 \sigma}(\mathrm{I})$]	0.0540; 0.1576
R1; wR2 [all data]	0.0837; 0.1770
GOF	1.155
largest diff peak and hole	0.385 and -0.255

${ }^{a} \mathbf{R}_{1}=\Sigma\left(| | \mathbf{F}_{0}\left|-\left|\mathbf{F}_{c}\right|\right) / \Sigma\left|\mathbf{F}_{0}\right|\right.$
${ }^{\mathbf{b}} \mathbf{w R}_{2}=\left\{\Sigma\left[\mathbf{w}\left(\mathbf{F}_{0}{ }^{2}-\mathbf{F}_{\mathbf{c}}{ }^{2}\right)^{2}\right] / \Sigma\left[\mathbf{w}\left(\mathbf{F}_{0}{ }^{2}\right)^{2}\right]\right\}^{1 / 2}$

Table S4. Crystal Data Collection and Refinement Parameters for 4b.

	4b
chemical formula	$\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$
$F w ; F(000)$	434.47; 456
\boldsymbol{T} (K)	293(2)
wavelength (${ }_{\text {(}}$)	0.71073
space group	P-1
\boldsymbol{a} (® $^{\text {) }}$	9.503(7)
\boldsymbol{b} (${ }_{\text {A }}$)	9.907(8)
\boldsymbol{c} (${ }_{\text {A }}$)	12.446(10)
α (deg)	96.68(2)
β (deg)	99.585(17)
γ (deg)	103.549(19)
Z	2
$V\left({ }^{\mathbf{3}}{ }^{3}\right.$	1108.4(15)
$\rho_{\text {calcd }}\left(\mathbf{g} \cdot \mathrm{cm}^{-3}\right)$	1.302
$\boldsymbol{\mu}\left(\mathbf{m m}^{-1}\right)$	0.085
θ range (deg); completeness	2.143-24.998; 0.999
collected reflections; $\mathbf{R}_{\boldsymbol{\sigma}}$	21141; 0.0925
unique reflections; $\mathbf{R}_{\text {int }}$	21141; 0.1256
	0.0635; 0.1489
R1; wR2 [all data]	0.1346; 0.1815
GOF	0.997
largest diff peak and hole	0.243 and -0.196

${ }^{\mathbf{a}} \mathbf{R}_{1}=\Sigma\left(| | \mathbf{F}_{0}\left|-\left|\mathbf{F}_{\mathrm{c}}\right|\right|\right) / \Sigma\left|\mathbf{F}_{0}\right|$
${ }^{\mathbf{b}} \mathbf{w} \mathbf{R}_{2}=\left\{\Sigma\left[\mathbf{w}\left(\mathbf{F}_{0}{ }^{2}-\mathbf{F}_{\mathbf{c}}{ }^{2}\right)^{2}\right] / \Sigma\left[\mathbf{w}\left(\mathbf{F}_{0}{ }^{2}\right)^{2}\right]\right\}^{1 / 2}$
$\underline{\text { Data collection and Structure solution details: Single crystal X-ray data for 3af, 3da, 8c, 4b }}$ compounds were collected at room temperature on a Bruker D8 QUEST equipped with a fourcircle kappa diffractometer and Photon 100 detector. An $\mathrm{I} \mu \mathrm{s}$ microfocus Mo source ($\square=0.71073 \AA$) supplied the multi-mirror monochromated incident beam. A combination of Phi and Omega scans were used to collect the necessary data and unit cell dimensions were determined using 9904 reflections for 3af, 5015 reflections for 3da, 9956 reflections for 8c and 3949 reflections for $\mathbf{4 b}$ data sets. Integration and scaling of intensity data were accomplished using SAINT program. ${ }^{1}$ The structures were solved by Direct Methods using SHELXS 97^{2} and refinement was carried out by full-matrix least-squares technique using SHELXL-2014/7. ${ }^{2-3}$ Anisotropic displacement parameters were included for all non-hydrogen atoms. All H atoms were positioned geometrically and treated as riding on their parent C atoms, with C-H distances of 0.93--0.97 \AA, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}) \quad$ or $1.5 U_{\text {eq }}$ for methyl atoms. The N bound H atoms were located from the difference Fourier map.

In KA422, the solvent of crystallization ethyl acetate was trapped inside the crystal lattice; however, the ethyl acetate solvent molecule showed extensive disorder and could not be resolved well. PLATON SQUEEZE module ${ }^{4}$ was employed to remove the solvent contribution from the overall scattering during the final cycle of refinement. In KA844 also, the solvent of crystallization DMSO was trapped inside the crystal lattice and was found to be disordered over a two fold axis with 50% site occupancy. The $-\mathrm{CH}_{2}$ group at carbon C 24 atom was found to be partially oxidized to -CHOH and found as a disordered site in the crystal lattice. The disorder model refinement suggested that the unoxidized product is the major component with site occupancy of $0.905(5)$ for $\mathrm{C} 24 / \mathrm{H} 24 \mathrm{~A} / \mathrm{H} 24 \mathrm{~B}$ atoms and the oxidized product is the minor component with site occupancy of $0.095(5)$ for $\mathrm{C} 24 \mathrm{D} / \mathrm{H} 24 \mathrm{D} / \mathrm{O} 3 \mathrm{D} / \mathrm{H} 3 \mathrm{D}$ atoms. The disorder model structural refinement was performed with DELU and SIMU instructions. Structures with CCDC Deposition Numbers 1970227-1970230 contain the supplementary crystallographic data for this paper which can be obtained free of charge at https://www.ccdc.cam.ac.uk/structures/

1. SMART \& SAINT. Software Reference manuals. Versions 6.28 a \& 5.625, Bruker Analytical X-ray Systems Inc., Madison, Wisconsin, U.S.A., 2001.
2. Sheldrick, G. M. SHELXS97 and SHELXL Version 2014/7, http://shelx.uniac.gwdg.de/SHELX/index.php
3. Muller, P, Herbst-Imer, R, Spek, A. L, Schneider, T. R, and Sawaya, M. R. Crystal Structure Refinement: A Crystallographer's Guide to SHELXL. Muller, P. Ed. 2006 Oxford University Press: Oxford, New York, pp. 57-91.
4. A. L. Spek, Acta Cryst. 2009, D65, 148-155.

[^0]:

