Supporting Information

Facile Synthesis of Isotactic Polyacrylonitrile via Template Polymerization in Interlayer Space for Dielectric Energy Storage

Yu Wang¹, Ryota Nakamura¹, Takeo Suga¹*, Shengtao Li², Yoshimichi Ohki³, Hiroyuki Nishide¹, Kenichi Oyaizu¹*

¹Department of Applied Chemistry and Research Institute for Science and Engineering,

Waseda University, Tokyo 169–8555, Japan

²State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, 710049, People's Republic of China

³Department of Electrical Engineering and Bioscience, Waseda University, Tokyo, 169-8555, Japan

*Email: oyaizu@waseda.jp, takeosuga@waseda.jp

Figure S1. The molecular size of Acrylonitrile

Figure S2. (a) Real (ε_r') and (b) imaginary (ε_r'') parts of relative permittivity as a function of frequency at different temperatures for *iso*-PAN (mm = 0.93)

Figure S3. (a) Real (ε_r') and (b) imaginary (ε_r'') parts relative permittivity of PAN measured at 25°C at different frequencies.

Figure S4. Simulated molecular geometry of syndiotactic polyacrylonitrile tetramer using DMol3 calculation.

Figure S5. The sample preparation of *iso*-PAN.

Polymer Crystallinity

Crystallinity of the polymer was estimated using XRD experiment with monochromated Xray from Cu anode. The crystallinity of *iso*-PAN (mm = 0.93) and *ata*-PAN (mm = 0.26) were 60 % and 55 %, respectively, which did not change dramatically with the stereoregularity.