Integrative x-ray structure and molecular modeling for the rationalization of procaspase-8 inhibitor potency and selectivity

Janice H. Xu^{1,2}, Jerome Eberhardt², Brianna Hill-Payne⁴, Gonzalo E. González-Páez^{1,2}, José Omar Castellón⁴, Benjamin F. Cravatt³, Stefano Forli^{2*}, Dennis W. Wolan^{1,2*}, Keriann M. Backus^{4*}

¹ Department of Molecular Medicine, ² Department of Structural and Computational Biology, ³ Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 ⁴ Departments of Biological Chemistry and Chemistry and Biochemistry, David Geffen School of Medicine, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095

*Corresponding Authors: forli@scripps.edu, wolan@scripps.edu, and kbackus@mednet.ucla.edu

Table of Contents

- **S2** Supporting Table S1. X-ray data collection and structure refinement statistics of procaspase-8 in complex with **63-***R*.
- **S3** Fig. S1. Overlay of pro- and active caspase-8 loops 1 and 2.
- S4 Fig. S2. Simulated-annealing omit map density for 63-R.
- **S5** Table S2. Modification of procaspase-8 crystals by **63-***R*.
- **S6** Fig. S3. Competitive ABPP gels of the W420A and H264A mutated forms of procaspase-8.
- **S7** Fig. S4. Circular dichroism and immunoblot data of procaspase-8 mutants.
- **S8** Fig. S5. Representative full-length gels for competitive labeling experiments.
- **S8** Fig. S6. Calculated apparent IC₅₀ for labeling of procaspase-8 mutations by **63-***R* and 7.
- **S10** Fig. S7. Representative full-length gels for IC_{50} competitive labeling experiments.
- **S11** Fig. S8. SDS-PAGE gel and substrate activity of caspase-8 with G418A, R260A, and C409W single-point mutations
- S12 Supporting Information References

Table S1. X-ray data collection and structure refinement statistics of procaspase-8 in complex with 63-R.

Structure	6PX9	
Space group	P 3 ₁	
Cell dimensions		
a, b, c; Å	101.3, 101.3, 175.5	
α, β, γ; °	90, 90, 120	
Data Processing		
Resolution, Å (outer shell)	50.0-2.88 (2.93-2.88)	
Completeness, %	99.5 (99.5)	
Unique reflections	45,476 (2,243)	
Redundancy	4.5 (4.4)	
R _{meas} (%) ^a	33.6 (150)	
R _{merge} (%) ^b	29.7 (132)	
R _{p.i.m.} (%) ^c	15.6 (70.5)	
Average I / Average σ (I)	8.1 (1.7)	
CC1/2	67.9 (17.4)	
Refinement		
Resolution, Å (outer shell)	50.0-2.88 (2.94-2.88)	
No. reflections (test set) ^d	45,343 (2,253)	
R _{cryst} (%) ^e	28.9 (44.2)	
R _{free} (%)	36.6 (49.4)	
Protein atoms / Waters	9,845 / 4 / 30	
CV coordinate error (Å) ^f	0.90	
RMSD bonds (Å) / angles °	0.003 / 0.677	
B-values protein/waters/ligands (Å ²)	44 / 39 / 43	
Ramachandran Statistics (%)		
Preferred	89.2	
Allowed	10.8	
Outliers	0	

 $\label{eq:Rmeas} {}^{a}R_{meas} = \{ \Sigma_{hkl} [N/(N-1)] 1/2\Sigma_{i} |I_{i(hkl)} - <I_{(hkl)}>|\} / \Sigma_{hkl} \Sigma_{i} \ I_{i(hkl)}, \ where \ I_{i(hkl)} \ are the observed intensities, \ <I_{(hkl)}> \ are the average intensities and N is the multiplicity of reflection hkl. {}^{b}R_{merge} = \Sigma_{hkl} \Sigma_{i} |I_{i(hkl)} - <I_{(hkl)}>|/ \Sigma_{hkl} \Sigma_{i} I_{i(hkl)} \ where \ I_{i(hkl)} \ is the i^{th} measurement of reflection h and < I_{(hkl)}> \ is the average measurement value. {}^{c}R_{p.i.m.} \ (precision-indicating R_{merge}) = \Sigma_{hkl} [1/(N_{hkl} - 1)]^{1/2} \Sigma_{i} |I_{i(hkl)} - <I_{(hkl)}>|/ \Sigma_{hkl} \Sigma_{i} I_{i(hkl)}. {}^{d}Reflections \ with \ I > 0 \ were used for refinement. {}^{1-3} \ eR_{cryst} = \Sigma_{h} ||F_{obs}| - |F_{calc}||/ \Sigma_{Fobs}|, \ where \ F_{obs} \ and \ F_{calc} \ are the calculated and observed structure factor amplitudes, respectively. R_{free} \ is \ R_{cryst} \ with \ 5.0\% \ test \ set \ structure \ factors. {}^{f}Cross-validated \ (CV) \ Luzzati \ coordinate \ errors.$

Fig. S1. Overlay of pro- and active caspase-8 loops 1 and 2. (A) Cartoon representation of the N-terminal end of loop 1 where the catalytic Cys360 of active caspase-8 repositions 60° from Cys360 in the procaspase-8 structure (carbons are magenta, grey, yellow, and green for procaspase-8, active caspase-8, **63**-*R*, and active caspase-8 peptide inhibitor respectively, with blue nitrogens, and red oxygens). (B) Active caspase residues 412-417 from loop 1 directly superimpose over the position of **63**-*R*. (C) Cartoon representation of loop 2 where procaspase-8 is cyan and active caspase-8 is grey. Met403 is shifted 78° in the activated caspase-8, changing the secondary structure of loop 2 from the β -sheet seen in procaspase-8 into a disordered loop.

Fig. S2. Simulated-annealing omit map density contoured at 1.0σ of catalytic Cys360 bound to inhibitor **63**-*R* in all 6 subunits. Atoms colored as Supplementary Fig. 1.

Table S2. Modification of procaspase-8 crystals by **63-***R***.** Crystals from procaspase-8 co-crystallized with **63-***R* were harvested, reduced, alkylated, subjected to trypsin digest and analyzed by LC-MS/MS. Underline marks the **63-***R*-modified cysteine.

Protein	Cysteine	Fragment #	Peptide	M+H calculated (m/z)	M+H observed (m/z)	Charge
CASP8	C360	63 <i>-</i> R	K.VFFIQA <u>C</u> QGDNYQK.G	1034.99	1034.99	+2

Fig. S3. Competitive ABPP gels of the W420A and H264A mutated forms of procaspase-8. (A) Recombinant procaspase-8 (D384A and D394A), and mutant procaspase-8 proteins (W420A) were added to HEK 293T soluble lysates to a final protein concentration of 500 nM. The protein-containing lysates were then treated with **7** or **63**-*R* at the indicated concentrations or vehicle (DMSO) for 1h, followed by labeling with **61** (10 μ M) for 1h, "click" conjugation to rhodamine-azide, and analysis by SDS-PAGE and in-gel fluorescence. (B) As in 'A' but with the H264A mutant of procaspase-8. Due to observed instability of the H264A protein upon multiple freeze thaw cycles, the protein was assayed in *E coli* lysates after overexpression without freezing and without further purification.

H 0 0 2

anti-6xHIS-tag

Recombinant Pro-caspase-8

Fig. S4. (A) Circular dichroism spectra and calculated secondary structures of caspase-8 mutant proteins. (B) Relative abundance of the indicated recombinant procaspase-8 constructs was visualized by Western blot with an anti-his antibody.

Fig. S5. Representative full-length gels for single dose competitive labeling experiments quantified in Fig. 5B-I. (A) Recombinant procaspase-8 (D384A and D394A), and mutant procaspase-8 proteins (C409W, G418A, N261A, or Q358A) were added to HEK 293T soluble lysates to a final protein concentration of 500 nM. The protein-containing lysates were then treated with **7**, **63**-*R*, **62** (all at 10 μ M), or vehicle (DMSO) for 1h, followed by labeling with **61** (10 μ M) for 1h, "click" conjugation to rhodamine-azide, and analysis by SDS-PAGE and ingel fluorescence. Note that the C360S-mutant of procaspase-8, which lacks the catalytic cysteine, did not label with **61**. (B) As in 'A' but with the R260A- and R258A-mutants of procaspase-8. Arrows indicate procaspase-8 band.

Fig. S6. Site-directed mutagenesis studies to identify residues that determine compound binding to
procaspase-8. (A and B) Apparent IC ₅₀ curves for blockade of 61 labeling of procaspase-8 (pro-C8) harboring
the indicated mutations by pre-treatment with 7 (A) or 63-R (B). (C) Calculated apparent IC ₅₀ values, including
95% confidence intervals derived from the three replicate experiments shown in A and B.

10.53-

63.83

1.55-

9.13

3.12– 14.70

5.15–

20.85

0.63-

24.98

3.37– 32.80

2.94-5.80

(µM)

0.62-0.94

Fig. S7. Representative full-length gels for IC₅₀ competitive labeling experiments quantified in Fig. 5J and Fig. 5 supplement 3. (A) Recombinant procaspase-8 (D384A and D394A), and C409W-mutant procaspase-8 were added to HEK 293T soluble lysates to a final protein concentration of 500 nM. The protein-containing lysates were then treated with **7**, **63**-*R*, **62** at the indicated concentrations, or vehicle (DMSO) for 1h, followed by labeling with **61** (10 μ M) for 1h, "click" conjugation to rhodamine-azide. (B) as in 'A', with Q358A-mutant pro-caspase-8. (C) as in 'A', with C409W-mutant procaspase-8.

Fig. S8. (A) SDS-PAGE reducing gel of purified caspase-8 single point mutants G418A, R260A, and C409W. The mutation of Q358 to alanine did not produce stable protein. (B) Activity assay of G418A, R260A, and C409W caspase-8 mutants using Ac-IETD-AMAC as a substrate. The assay was performed as previously described.⁴ Despite self-activation during overexpression in *E. coli*, C409W is inactive against the tetrapeptide substrate.

Supporting Information References

- 1. Weiss, M. S. (2001) Global indicators of X-ray data quality, J. Appl. Crystallogr. 34, 130-135.
- 2. Weiss, M. S., and Hilgenfeld, R. (1997) On the use of the merging R factor as a quality indicator for X-ray data, J. Appl. Crystallogr. 30, 203-205.
- 3. Karplus, P. A., and Diederichs, K. (2015) Assessing and maximizing data quality in macromolecular crystallography, *Curr. Opin. Struct. Biol.* 34, 60-68.
- 4. Solania, A., Gonzalez-Paez, G. E., and Wolan, D. W. (2019) Selective and rapid cell-permeable inhibitor of human caspase-3, ACS Chem. Biol. 14, 2463-2470.