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Supporting Tables and Figures 

 

 

Figure S1. Model structures of graphitic materials with metal centers coordinated by 4 N atoms, 

which are designed by following previous reports by F. Calle-Vallejo et al.1,2 (a) Graphitic material 

type a and (b) Graphitic materials type b. Gray; transition metal atoms (M), black: C, blue: N and red: 

O. Red dotted lines represent the unit cell for each structure model. 
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Figure S2. Adsorption energies of ORR intermediates (Eads) to metal centers ((a) O, (b) OH and (c) 

OOH) using graphitic material models shown in Figure S1. Red symbols: graphitic materials type a, 

green symbols: graphitic materials type b. Blue symbols represent the replotted value of M−N4 in the 

main manuscript for the comparison. 
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Figure S3. Potential plots for the limiting steps of the ORR against the GO of metal-nitrogen doped 

graphitic materials shown in Figure S1. The y axis is calculated based on the equation in the 

Computational details section. Potentials for M−N4 in the main manuscript are re-plotted for the 

comparison. 

 

 

Table S1. ZPE, TS and Esolvation used in this study to calculate formation energy (G) of ORR 

intermediates. The value is taken from previous reports.3−6 

 

 

 

 

 

 

 

 

 

 

 

a: Ref. 3, b: Ref. 4, c: Ref. 5,6. 

Species (phase) ZPE TS Esolvation 

H2(g) 0.27a 0.404 a - a 

H2O(l) 0.574 a 0.583 a -0.087 a 

OH* 0.332 a - a -0.38c 

OOH* 0.428 a - a -0.47c 

O* 0.07b - b -0.70c 

O2 0.08c - -0.41c 
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Table S2. Stabilization energies (Estabilize) of metal ions for M−N2, M−N3, M−N4. Metal atoms on 

pristine graphene and bulk metals are calculated as references. Every value in this table is described 

in eV unit. 

 

 

 

 

 

 

 

 

 

 

n.c.a : not calculated 

 

Note: These values are similar with those in the previous reports about low-coordination metal sites 

(CN=2 or 3).7−9 As predicted, lower-coordination metals became more unstable. Some metal centers 

in M−COFs are less stable than those on bulk metals. This result means that single metal sites in 

M−COFs are metastable. However, metal atoms in COFs with low CN (CN=2, 3) are obviously more 

stable than metal atoms embedded on pristine graphene as references. Considering these Estabilize 

values, M−COF are stable enough to employ these single-atom-modified COFs as the model structure 

for the calculation. 

 

 

 

 

 

 

 

 

 

 

 

 M−N2 M−N3 M−N4 
M on pristine 

Graphene 
M on bulk metals 

Mn −1.81 −2.59 −8.72 −0.10 n.c.a 

Fe −2.03 −2.96 −9.20 −0.79 −4.88 

Co −2.72 −3.25 −9.29 −0.96 n.c.a 

Ni −2.69 −3.17 −8.86 −1.18 n.c.a 

Cu −1.84 −2.31 −7.05 −0.06 −4.58 
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Table S3. Effect of the addition of Hubbard correction (U) to the 3d electrons. EO values in the main 

manuscript are also shown as references.  

 

 

 

 

 

 

 

Note: GGA + U with a U value of 5 eV was applied to 3d electron of metal centers. 5 eV was chosen 

from previous study which reported GGA + U calculation results on SAC with Cu−N3 like local 

structure.10 The same tendency of EO, CN and d electron number dependence, was observed even in 

GGA + U method. However, the absolute values show certain difference from the results obtained in 

the method without + U for both M−COFs. This result indicates that further analysis by using various 

kind of base function and/or DFT method can be a future work of this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 EO by GGA + U method EO in the main manuscript 

 M−N2 M−N3 M−N4 M−N2 M−N3 M−N4 

Co 1.45 1.69 4.32 0.16 0.81 3.05 

Cu 1.93 2.54 4.51 1.36 1.90 4.33 
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Figure S4. Model structure employed in this study. (a) Bipyridine-type unit cells similar molecular 

structure to M–N2 in the main manuscript based on the reported COF by Banerjee et al.11 (named M–

N2–2) and (b) porphyrin-type unit cell similar molecular structure to M–N4 based on the reported 

COF by Yaghi et al.12 (named M–N4–2). Both images display the structures after structural 

optimization. Gray: transition metal atoms (M), black: C, white: H, blue: N, red: O. The red dotted 

lines represent the unit cell for each structural model. 

 

 

 

 

Figure S5. Adsorption energies of O atom (Eads) to metal centers using previous reported COF 

structure shown in Figure S4. EO of M−COFs for (a) M−N2−2, and (b) M−N4−2. For both graphs, 

EO value of M−N2 or M−N4 in the main manuscript are also re-plotted for the comparison. 
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Figure S6. Representative PDOS of (a) Co−N4 and (b) Cu−N4. For both figures, upper parts 

(colored lines) represent the PDOS of M−N4 with O atoms (*O) and bottom parts (black lines) 

represent M−N4 without adsorbates. Blue lines and red lines represent the d orbitals of metal atoms 

in M−N4 and p orbitals of O atoms of O adsorbed M−N4, respectively.  
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Figure S7. Free energy diagram for each reaction coordinate for ORR. (a) M−N4, (b) M−N3 and (c) 

M−N2. Electrode potential = 0.8 V vs. CHE. 
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Figure S8. Free energy diagrams for each reaction coordinate for ORR including O2 molecule 

adsorption steps and H2O2 formation steps. (a) M−N2, (b) M−N3 and (c) M−N4. Electrode potential = 

0 V vs. CHE. 

 

Note: In these diagrams, the H2O2 formation energy is set to 1.36 eV (= 0.68×2). As shown in this 

figure, only Cu−N4 and Ni−N4 possibly catalyze H2O2 formation. Thus, the 4e− process, H2O 

formation is more favorable than 2e− process (H2O2 formation) for most of M−COFs.  

O2 adsorption step was calculated to check whether the O2 adsorption step affects a rate-

determining step for ORR or not. First, the adsorption of O2 molecule is exothermic for all M−COFs. 

In addition, for the M−COFs on the left-hand side of the volcano in Figure 6 (i.e. the H2O formation 

from OH* is the rate determining), the energy barrier of the formation of OOH* from adsorbed O2 

was equal to or smaller than that of the H2O formation from OH*. These results indicate that our 

conclusion about the rate-determining steps were not affected even when considering the O2 

adsorption. 
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Figure S9. Potential plots for limiting steps of ORR against GO. (a) Desorption step for H2O (open 

square) and OH* formation (closed square). (b) formation step of OOH* (closed circle) and O* 

formation (open circle). For both graphs, red: M−N2, blue: M−N3 and green: M−N4. 

 

Note: Basically, (a) OH* formation (closed square) is more positive than H2O formation (open square) 

more than 2.35 eV and (b) O* formation (open circle) is more positive than OOH* formation (closed 

circle) less than 2.35 eV. This means that either H2O formation or OOH* formation is limiting 

potential steps for ORR among M−COF catalysts as described in main manuscript. The limiting 

potential for OH* (U3) and O* (U4) is calculated as shown below. 

 

∆𝑈3 =  −(∆𝐺𝑂𝐻 − ∆𝐺𝑂) 

∆𝑈4 =  −(∆𝐺𝑂 − ∆𝐺𝑂𝑂𝐻) 
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Table S4 Eads of ORR intermediates calculated in this study. 

 

(M-N2) O OH OOH 

Mn -0.59 -1.70 1.57 

Fe -0.55 -1.51 1.49 

Co 0.16 -1.30 2.00 

Ni 0.92 -0.95 2.41 

Cu 1.36 -0.79 2.57 

 

(M-N3) O OH OOH 

Mn 0.14 -1.09 2.47 

Fe 0.25 -0.69 2.67 

Co 0.81 -0.54 2.83 

Ni 1.46 -0.39 2.78 

Cu 1.90 -0.44 3.25 

 

(M-N4) O OH OOH 

Mn 1.36 0.45 3.48 

Fe 1.59 0.61 3.56 

Co 3.05 0.96 3.91 

Ni 4.04 1.88 4.72 

Cu 4.33 1.85 4.54 
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Table S5 Collected data of solvation energies of ORR intermediates for molecular catalysts used in 

previous studies. 

 

 Value Material 

O* 
−0.7 

This study 

 0.23 BNa 

 
−0.15 

Fe−Pcb 

 
−0.76 

Cu/CTFc 

 
−0.53 

N−Cd 

 - M−Nxe 

OH* 
−0.38 

This study 

 
−0.62 

BNa 

 
−0.2 

Fe−Pcb 

 
−0.61 

Cu/CTFc 

 
−0.42 

N−Cd 

 
−0.3 

M−Nxe 

OOH* 
−0.47 

This study 

 
−1.18 

BNa 
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−0.17 

Fe−Pcb 

 
−0.38 

Cu/CTFc 

 
−0.49 

N−Cd 

 
−0.3 

M−Nxe 

 

a: Ref. 13, b: Ref. 14, c: Ref. 10, d: Ref. 15, e: Ref. 16 

 

 

 

 

 

 

 

 

 

Figure S10. Replotted potential plots for the limiting steps of the ORR against the Gads values with error 

bars for Cu−N3, Co−N4 and Fe−N4. Error bars represent the mean absolute errors of 5 or 6 values for 
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solvation energies of O*, OH* and OOH*. 
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