Supporting Information for

Limitations of chloroaluminate ionic liquid anolytes for aluminum-graphite dual-ion batteries

Kostiantyn V. Kravchyk, ^{1,2*} Carlotta Seno, ^{1,2} and Maksym V. Kovalenko, ^{1,2*}

¹ Laboratory for Thin Films and Photovoltaics, Empa – Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland

² Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, CH-8093 Zürich, Switzerland

Corresponding Author

*E-mail: kravchyk@inorg.chem.ethz.ch and mvkovalenko@ethz.ch

Chemicals and Battery Components. 1-ethyl-3-methylimidazolium chloride (EMIMCl, 99%, IoLiTec), AlCl₃ (99%, granules, Acros), Al foil (MTI Corporation), pristine graphite flakes (99.9%, 10 mesh, Alfa Aesar), cellulose/polyester separator (30µm, FPC3018, Mitsubishi Paper Mills, Ltd) were used as received.

Chloroaluminate Ionic Liquid Preparation. The EMIMCI-based ionic liquids were prepared by slowly mixing the solid EMIMCI powder and AlCl₃ granules in an argon-filled glove box. During mixing, an isothermal reaction occurs to give a light-yellow liquid, which was subsequently treated with Al foil at 150 °C for 6 h until it was nearly colorless.

Assembly and Testing of the Al-Graphite Dual-Ion Batteries. Pristine graphite flakes were dried at 200 °C under vacuum overnight. No binders or solvents were used to prepare graphite electrodes. The graphitic material (*ca*. 5 mg over \approx 1 cm²) was homogeneously distributed and pressed on the surface of separator soaked with *ca*. 7 mg of AlCl₃:EMIMCl ionic liquid. Then, flakes were covered with a glassy carbon electrode. All electrochemical measurements were performed on a VMP3 multichannel workstation (BioLogic) in an argon-filled glovebox (<1 ppm O₂, <1 ppm H₂O) using the homemade cell as illustrated on Figure 2a.

Figure S1. Galvanostatic curves of chloroaluminate ionic liquid (r = 2) anolyte (E_{CE}), graphite (E_{WE}) and full cell (E_{Cell}) measured during charge versus AI foil reference electrode. Cells were charged at room temperature at different current densities of 5 A g⁻

¹ (a), 1 A g⁻¹ (b), 100 mA g⁻¹ (c), 60 mA g⁻¹ (d) and 20 mA g⁻¹ (e) with upper cell voltage limit of 2.5 V νs . Al³⁺/Al.

Figure S2. Galvanostatic curves of chloroaluminate ionic liquid (r = 1.8) anolyte (E_{CE}), graphite (E_{WE}) and full cell (E_{Cell}) measured during charge versus AI foil reference electrode. Cells were charged at room temperature at different current densities of 5 A g⁻¹ (a), 1 A g⁻¹ (b), 100 mA g⁻¹ (c), 60 mA g⁻¹ (d) and 20 mA g⁻¹ (e) with upper cell voltage limit of 2.5V *vs*. Al³⁺/Al.

Figure S3. Galvanostatic curves of chloroaluminate ionic liquid (r = 1.3) anolyte (E_{CE}), graphite (E_{WE}) and full cell (E_{Cell}) measured during charge versus AI foil reference electrode. Cells were charged at room temperature at different current densities of 1 A g⁻¹ (a), 100 mA g⁻¹ (b), 60 mA g⁻¹ (c) and 20 mA g⁻¹ (d) with upper cell voltage limit of 2.5V *vs*. Al³⁺/AI.