Supporting Information

Ag/Pd co-Catalyzed Direct Arylation of Fluoroarene Derivatives with Aryl Bromides

Adyasha Panigrahi, ${ }^{\ddagger}$ Daniel Whitaker, ${ }^{\ddagger}$ Inigo J. Vitorica-Yrezabal and Igor Larrosa* School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
Corresponding Author: igor.larrosa@manchester.ac.uk

Table of Contents

Page
I. Experimental: General Information S-4
II. Extended Optimization Tables S-5
III. Experimental Details, Spectroscopic and Analytical Data S-11
III-1. Experimental Details S-11
III-2. Spectroscopic and Analytical Data S-12
IV. Mechanistic Studies S-25
IV-1. H/D Scrambling Experiments S-25
IV-2. Preparation of $\left(\mathrm{PBuAd}_{2}\right) \mathrm{AgBr}$ S-26
IV-3. Preparation of $\left(\mathrm{PBuAd}_{2}\right) \mathrm{AgOC}\left(\mathrm{CF}_{3}\right)_{3}$ S-28
IV-4. Identification of active catalytic species through ${ }^{31} \mathrm{P}$ and ${ }^{19} \mathrm{~F}$ NMR monitoring S-31
IV-5. Kinetic Experiments S-33
IV-5.1. General procedure for kinetic experiments employing 2- S-33
fluorotoluene chromium complex 1b and 4-bromotoluene 2b
IV-5.1.1. Reproducibility of Kinetic Data S-33
IV-5.1.2. Same-Excess Experiment S-34
IV-5.1.3. Determination of the Order in Catalyst S-36
IV-5.1.4. Determination of the Orders of Reactants S-39
IV-6. COPASI Modelling S-42
V. Arene-Exchange S-45
V-1. Solvent Screening S-45
V-2. Polyarene Screening S-46
V-2. One pot Complexation-Arylation Reaction S-47
VI. References S-48
VII. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectra S-49
VIII. Crystallographic information S-96

I. Experimental

General Information

Reagents were purchased from commercial sources and used without further purification. The solvents were degassed through freeze-pump-thaw cycles before usage. All the reactions were set up inside the glovebox. Chromium-complexed arenes are photosensitive and were prepared, stored and reacted under exclusion of light. NMe ${ }_{4}$-salts were prepared from the reported procedure. ${ }^{2}$ Solid compounds were stored in an evacuated desiccator over solid desiccant under exclusion of light. Column chromatography was performed on silica gel (40$63 \mu \mathrm{~L}$). Analytical thin layer chromatography was performed on pre-coated aluminiumbacked silica gel F_{254} plates with visualization under UV light ($\lambda=254 \mathrm{~nm}$). GC-MS analysis was carried out using an AGILENT 7820A-GC and 5975-MS. Melting points were obtained using a SMP 11 Stuart Scientific apparatus. NMR spectra were recorded in CDCl_{3} on Bruker AV-400/AV-500 instrument at a constant temperature of 300 K . Chemical shifts (δ) are reported in parts per million (ppm) from low to high field and referenced to residual solvent ($\mathrm{CDCl}_{3}: \delta 7.26 / 77.16,{ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ NMR); ${ }^{19} \mathrm{~F}$ NMR are referred to $\mathrm{C}_{6} \mathrm{~F}_{6}(\delta-164.9$). Coupling constants (J) are reported in Hertz (Hz). Standard abbreviations indicating multiplicity were used as follows: $\mathrm{m}=$ multiplet, $\mathrm{t}=$ triplet, $\mathrm{d}=$ doublet, $\mathrm{s}=$ singlet. ATR-IR spectra were recorded using a Thermo-Scientific Nicolet iS5 machine and are quoted in cm^{-1}. High Resolution Mass Spectroscopy (HRMS) were recorded on ThermoFinnigan MAT95XP or Thermo Scientific ExactivePlus EMR. When a concentration is indicated in brackets, next to the solvent in a reaction scheme, this refers to the concentration of the limiting reagent in that solvent.

II. Extended Optimization Tables

General procedure for the optimization of the direct arylation of (arene) $\mathrm{Cr}(\mathrm{CO})_{3}$ complexes with bromoarenes:

Pd catalyst ($5 \mathrm{~mol} \%$), $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ (0.75 equiv), $\mathrm{AdCO}_{2} \mathrm{H}$ (0.5 equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2.0 equiv), the required (arene)(CrCO) $)_{3}$ complex (1.0 equiv, 0.1 mmol) and any solid additives were weighed into a 10 mL microwave vial. Bromobenzene (1.5 equiv) and 2,2,6,6tetramethylpiperidine (2.0 equiv) and $\mathrm{PhCH}_{3}(0.1 \mathrm{~mL}, 1.0 \mathrm{M})$ were added. The vial was sealed under N_{2} atmosphere and was stirred at $70{ }^{\circ} \mathrm{C}$ for 16 h , then cooled to r.t. The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ and passed through a short plug of silica $(2 \times 2 \mathrm{~cm})$, eluted with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$. The solution was concentrated under reduced pressure, then 1,3dinitrobenzene ($0.1 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in $\mathrm{CDCl}_{3}, 0.1 \mathrm{mmol}, 1.0$ equiv) was added. The solution was diluted with $\mathrm{CDCl}_{3}(0.8 \mathrm{~mL})$ and transferred to an NMR tube. Yields were determined by ${ }^{1} \mathrm{H}$ NMR by comparison with the 9.08 ppm peak of 1,3-dinitrobenzene. Deviations from these conditions are given in the optimisation tables.

Figure S1. Representative ${ }^{\mathbf{1}} \mathrm{H}$ NMR for the direct arylation between 1a and 2a (Table S3, entry 1).

Figure S2. Spectrum from Figure S1 between 6 and 4.5 ppm . Assignment of different (arene)Cr(CO) ${ }_{3}$ complexes.

The standard conditions for the direct arylation of fluoroarenes with iodoarenes ${ }^{1}$ were tested using bromobenzene 2a as the coupling partner (Scheme S1, Table S1).

Scheme S1. Direct arylation of 1 a with 2 a in presence of additives

Table S1. Effect of additives on the direct arylation of 3-fluorotoluene chromium tricarbonyl 1a with bromobenzene 2a. ${ }^{\text {a }}$

Entry	Additive	3aa (\%)
1.	None	0
2.	$\operatorname{PPh}_{3}(60 \mathrm{~mol} \%)$	0
3.	S-Phos $(0.1$ equiv $)$	1

[a] Reaction conditions: 1a (1.0 equiv, 0.1 mmol), 2a (1.5 equiv, 0.15 mmol), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%), \mathrm{Ag}_{2} \mathrm{CO}_{3}$ (0.75 equiv), $\mathrm{AdCO}_{2} \mathrm{H}$ (0.5 equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2.0 equiv), $\mathrm{PhCH}_{3}\left(100 \mu \mathrm{~L}, 0.1 \mathrm{M}\right.$). Yield were determined by ${ }^{1} \mathrm{H}$ NMR by comparison with 1,3-dinitrobenzene as internal standard.

It was thought that the oxidation of $\operatorname{Pd}(0)$ by the $\operatorname{Ag}(\mathrm{I})$ salt could be in competition with oxidative addition of the bromoarene. Therefore, lowering the amount of silver was tested to lower the rate of oxidation. Further, the inorganic salt AgBr was insoluble in PhCH_{3}. Therefore, 2,2,6,6-Tetramethylpiperidine (TMP), which had previously been used as an additive in a related transformation, ${ }^{1 \mathrm{~b}}$ was considered as ligand for silver salts which could improve the solubility of silver source. It was also thought that the use of an alternate halide abstractor could facilitate the use of a catalytic amount of silver under the standard conditions as it would help in regeneration of the active catalyst. $\mathrm{NMe}_{4} \mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}$ salt was considered as a halide abstractor for the arylation of 1a with 2a to lower the amount of silver catalyst (Scheme S2, Table S2). ${ }^{2}$

Scheme S2. Effect of $\mathrm{NMe}_{4} \mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}$ and lowering of silver salt on direct arylation of 1 a with $\mathbf{2 a}$
Table S2. Effect of $\mathrm{NMe}_{4} \mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}$ and lowering the amount of silver salts on the direct arylation of 1a with 2a. ${ }^{\text {a }}$

Entry	$\mathbf{A g}_{2} \mathbf{C O}_{3}(\mathbf{x}$ equiv)	S-Phos (z equiv)	3aa (\%)
1.	0.1	0.1	3
2.	0.1	0.2	12
3.	0.2	0.2	6
$4 .^{\mathrm{b}}$	0.1	0.2	12

 $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2.0 equiv), $\mathrm{PhCH}_{3}(100 \mu \mathrm{~L}, 0.1 \mathrm{M})$. Yield were determined by ${ }^{1} \mathrm{H}$ NMR by comparison with $1,3-$ dinitrobenzene as internal standard. [b] $\mathrm{K}_{2} \mathrm{CO}_{3}$ (3.0 equiv, 0.3 mmol) was used.

[Ag] (20 mol \%) Ligand ($20 \mathrm{~mol} \%$)
$\mathrm{AdCO}_{2} \mathrm{H}$ (0.5 equiv) $\mathrm{K}_{2} \mathrm{CO}_{3}$ (3.0 equiv)
$\mathrm{PhCH}_{3}(1.0 \mathrm{M}), 70^{\circ} \mathrm{C}, 17 \mathrm{~h}$
$\mathrm{Cr}(\mathrm{CO})_{3}$

L1

L6

L2

L7

L3

L8

L5

Scheme S3. Screening of different palladium precatalyst, silver salts and ligands on the direct arylation of $1 a$ with $2 a$

Table S3. Screening of different palladium precatalysts, silver salts and ligands on the direct arylation of 1 a with $\mathbf{2} \mathrm{a}^{\mathrm{a}}$

Entry	[Pd]	[Ag]	Ligand	3 aa (\%)
1.	Pd-G2	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	L1	51
2.	Pd-G2	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	L2	5
3.	Pd-G2	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	L3	28
4.	Pd-G2	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	L4	37
5.	Pd-G2	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	L5	16
6.	Pd-G2	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	L6	30
7.	Pd-G2	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	L7	23
8.	Pd-G2	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	L8	24
9.	Pd-G2	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	L9	28
10.	Pd-G2	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	L10	58
11.	Pd-G2	AgOCOAd	L10	61
12.	Pd-G4	AgOCOAd	L10	65
13. ${ }^{\text {b }}$	Pd-G4	AgOCOAd	L10	73
14. ${ }^{\text {b }}$	Pd-G4	AgBr	L10	90
$15 .{ }^{\text {c }}$	Pd-G4	AgBr	L10	95 (3ba)

[a] Reaction conditions: 1a (1.0 equiv, 0.1 mmol), 2a (1.5 equiv),[Pd] ($5 \mathrm{~mol} \%$), $[\mathrm{Ag}]$ ($20 \mathrm{~mol} \%$), Ligand (20 $\mathrm{mol} \%$), $\mathrm{AdCO}_{2} \mathrm{H}$ (0.5 equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (3.0 equiv), $\mathrm{NMe}_{4} \mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}$ (1.5 equiv), PhCH_{3} ($100 \mu \mathrm{~L}, 0.1 \mathrm{M}$). Yield were determined by ${ }^{1} \mathrm{H}$ NMR by comparison with 1,3-dinitrobenzene as internal standard. [b] $\mathrm{K}_{2} \mathrm{CO}_{3}$ (4.0 equiv) was used. [c] 2-Fluorotoluene chromium tricarbonyl $\mathbf{1 b}$ was used and reaction carried out at $75^{\circ} \mathrm{C}$.

Scheme S4. Effect of TMP

Table S4. Effect of TMP on the direct arylation of $\mathbf{1 b}$ with $\mathbf{2 a}{ }^{\text {a }}$

Entry	\mathbf{y}	3ba (\%)
1.	0	93
2.	0.5	95
3.	1	95
4.	2	95

[a] Reaction conditions: 1b (1.0 equiv, 0.1 mmol), 2a (1.5 equiv), $[\mathrm{Pd}](5 \mathrm{~mol} \%),[\mathrm{Ag}](20 \mathrm{~mol} \%), \mathrm{PBuAd}_{2}(20$ $\mathrm{mol} \%$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (4.0 equiv), $\mathrm{NMe}_{4} \mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}$ (1.5 equiv), $\mathrm{PhCH}_{3}(100 \mu \mathrm{~L}, 0.1 \mathrm{M})$. Yield were determined by ${ }^{1} \mathrm{H}$ NMR by comparison with 1,3-dinitrobenzene as internal standard.

Scheme S5. Temperature Screening
Table S5. Temperature screening of the direct arylation of 1 b with $\mathbf{2 a}^{\mathrm{a}}$

Entry	$\mathbf{T}\left({ }^{\circ} \mathbf{C}\right)$	3ba (\%)
1.	60	69
2.	70	95
3.	80	97
4.	90	74

[a] Reaction conditions: 1b (1.0 equiv, 0.1 mmol), 2a (1.5 equiv), $[\mathrm{Pd}](5 \mathrm{~mol} \%),[\mathrm{Ag}](20 \mathrm{~mol} \%), \mathrm{PBuAd}_{2}(20$ $\mathrm{mol} \%$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (4.0 equiv), $\mathrm{NMe}_{4} \mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}$ (1.5 equiv), $\mathrm{PhCH}_{3}\left(100 \mu \mathrm{~L}, 0.1 \mathrm{M}\right.$). Yield were determined by ${ }^{1} \mathrm{H}$ NMR by comparison with 1,3-dinitrobenzene as internal standard.

III. Experimental Details, Spectroscopic and Analytical Data

III-1. Experimental Details

General procedure A

Preparation of arene chromium tricarbonyl complexes:

A flame-dried round-bottom flask equipped with a reflux condenser was charged with $\mathrm{Cr}(\mathrm{CO})_{6}(1.98 \mathrm{~g}, 1.0$ equiv, 9.0 mmol$)$, evacuated and backfilled with nitrogen. The required arene (3-4 equiv) was added to the flask, followed by the addition of anhydrous $n-\mathrm{Bu}_{2} \mathrm{O}$ and THF ($9: 1 \mathrm{v} / \mathrm{v}, 0.15 \mathrm{M}$). The resulting suspension was subjected to freeze-pump-thaw cycles $(3 \times 30 \mathrm{~min})$ and then refluxed at $150^{\circ} \mathrm{C}$ for 48 h . The reaction set-up was covered with aluminium foil to avoid decomposition of product. The solution was then cooled to room temperature and filtered through a short pad of silica. The silica pad was washed with PhCH_{3} $(3 \times 30 \mathrm{~mL})$ and the organic layer was then concentrated in vacuo. Purification was carried out either via recrystallization from hexane or column chromatography to afford the arene chromium tricarbonyl complex.

General procedure B

Procedure for biaryl synthesis via Pd/Ag co-catalytic system:
A mixture of Pd-G4 ($18.6 \mathrm{mg}, 0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%$), $\mathrm{AgBr}(18.8 \mathrm{mg}, 0.1 \mathrm{mmol}, 20 \mathrm{~mol} \%$), $\mathrm{PBuAd}_{2}(37.7 \mathrm{mg}, 0.1 \mathrm{mmol}, 20 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}(276.4 \mathrm{mg}, 4.0$ equiv, 2.0 mmol), $\mathrm{NMe}_{4} \mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}(232.6 \mathrm{mg}, 1.5$ equiv, 0.75 mmol), fluoroarene chromium tricarbonyl $1(1.0$ equiv, 0.5 mmol) and bromoarene 2 (1.5 equiv, 0.75 mmol) in $\mathrm{PhCH}_{3}(0.5 \mathrm{~mL}, 1.0 \mathrm{M})$ was set up in flame-dried reaction vial inside the glove box and was stirred at $75^{\circ} \mathrm{C}$ for 17 h . The reaction set-up was covered with aluminium foil to avoid decomposition of starting material and product. After this time, the reaction was cooled down to room temperature, MnO_{2} (130.4 $\mathrm{mg}, 1.5 \mathrm{mmol}, 3$ equiv) in $\mathrm{AcOH}(3.0 \mathrm{~mL})$ was added to the reaction mixture and it was stirred for further 30 min . The resulting mixture was filtered through celite, concentrated under reduced pressure and purified by column chromatography to afford the desired coupling products 4 .

III-2. Spectroscopic and Analytical Data

Characterization of (fluoroarene)chromium tricarbonyl complexes:

 1a

1b

1d

1e

1h

Scheme S6. Previously reported chromium complexes ${ }^{1,3}$

2-fluoro-3-methyl-1,1'-biphenyl (4ba)

The product 4ba was obtained via the general procedure B using arene chromium tricarbonyl $\mathbf{1 b}(123.1 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv) and bromobenzene $2 \mathbf{a}(80 \mu \mathrm{~L}, 0.75 \mathrm{mmol}, 1.5$ equiv) and isolated by column chromatography (hexane) as a colorless oil in 94% yield ($87.5 \mathrm{mg}, 0.47 \mathrm{mmol}$).

The same reaction on a 2 mmol scale afforded 87% yield of product $\mathbf{4 b a}(324.6 \mathrm{mg}, 1.7$ mmol).
$\left.{ }^{1} \mathbf{H ~ N M R ~ (4 0 0 ~ M H z , ~} \mathrm{CDCl}_{3}\right) \delta 7.57-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 1 \mathrm{H})$, $7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.18$ (app. td, $J=7.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.10$ (app. t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.35 (d, $J=2.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.3(\mathrm{~d}, J=246.6 \mathrm{~Hz}), 136.3,130.6(\mathrm{~d}, J=$ $5.3 \mathrm{~Hz}), 129.2(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 128.9(\mathrm{~d}, J=14.4 \mathrm{~Hz}), 128.5,128.4(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 127.6$, $125.6(\mathrm{~d}, J=18.5 \mathrm{~Hz}), 123.9(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 15.0(\mathrm{~d}, J=4.9 \mathrm{~Hz}) ;{ }^{\mathbf{1 9}} \mathbf{F}$ NMR $(376 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta-122.42--122.46(\mathrm{~m}) ;$ Data is in accordance with the literature. ${ }^{4}$

2-fluoro-3,4'-dimethyl-1,1'-biphenyl (4bb)

The product $\mathbf{4 b b}$ was obtained via the general procedure B using arene chromium tricarbonyl $\mathbf{1 b}$ ($123.1 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv) and 4 bromotoluene $\mathbf{2 b}$ ($94 \mu \mathrm{~L}, 0.75 \mathrm{mmol}, 1.5$ equiv) and isolated by column chromatography (hexane) as a colorless oil in 90% yield ($90.0 \mathrm{mg}, 0.45 \mathrm{mmol}$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45(\mathrm{dd}, J=7.9,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.14$ (m, 1H), 7.09 (app. t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $2.41(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.4(\mathrm{~d}, J=246.4 \mathrm{~Hz}), 137.4,133.4,130.4(\mathrm{~d}, J=5.0 \mathrm{~Hz}), 129.2$, $129.1(\mathrm{~d}, J$ $=2.9 \mathrm{~Hz}), 128.9(\mathrm{~d}, J=14.2 \mathrm{~Hz}), 128.3(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 125.6(\mathrm{~d}, J=18.2 \mathrm{~Hz}), 123.8(\mathrm{~d}, J=$
4.4 Hz), 21.4, $15.0(\mathrm{~d}, J=4.9 \mathrm{~Hz}) ;{ }^{19} \mathbf{F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-122.41--122.45(\mathrm{~m})$; Data is in accordance with the literature. ${ }^{1 \mathrm{a}}$

2-fluoro-4'-methoxy-3-methyl-1,1'-biphenyl (4bc)

The product 4 be was obtained via the general procedure B using arene chromium tricarbonyl $\mathbf{1 b}(123.1 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv) and 4-bromoanisole 2c ($95 \mu \mathrm{~L}, 0.75 \mathrm{mmol}, 1.5$ equiv) and isolated by column chromatography (hexane) as a colorless oil in 78% yield ($84.3 \mathrm{mg}, 0.39 \mathrm{mmol}$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{td}, J=7.5,1.9$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.08 (app. t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.00-6.97$ (m, 2H), $3.86(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~d}, J=2.3 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.3,158.3(\mathrm{~d}, J=246.1 \mathrm{~Hz}$), $130.3(\mathrm{~d}, J=3.1 \mathrm{~Hz}$), $130.1(\mathrm{~d}, J=5.0 \mathrm{~Hz}), 128.7,128.5(\mathrm{~d}, J=14.2 \mathrm{~Hz}), 128.2(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 125.6(\mathrm{~d}, J=18.5$ $\mathrm{Hz}), 123.9(\mathrm{~d}, J=4.5 \mathrm{~Hz}), 114.0,55.5,15.0(\mathrm{~d}, J=5.0 \mathrm{~Hz}) ;{ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ -$122.60-122.64(\mathrm{~m})$; Data is in accordance with the literature. ${ }^{\text {1a }}$

(2'-fluoro-3'-methyl-[1,1'-biphenyl]-4-yl)(methyl)sulfane (4bd)

The product $\mathbf{4 b d}$ was obtained via the general procedure B using arene chromium tricarbonyl $\mathbf{1 b}$ ($123.1 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv) and 4-bromothioanisole $2 \mathbf{2 d}$ ($157.0 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5$ equiv) and isolated by column chromatography (hexane) as a white solid in $>99 \%$ yield ($116.0 \mathrm{mg}, 0.50 \mathrm{mmol}$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{td}, J=7.5,2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.09($ app. $\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.3(\mathrm{~d}, J=246.5 \mathrm{~Hz}$), 138.0, 133.0, $130.6(\mathrm{~d}, J=5.0$ $\mathrm{Hz}), 129.6(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 128.3(\mathrm{~d}, J=14.2 \mathrm{~Hz}), 128.1(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 126.5,125.7(\mathrm{~d}, J=$ $18.2 \mathrm{~Hz}), 124.0(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 15.9,15.0(\mathrm{~d}, J=4.9 \mathrm{~Hz}) ;{ }^{19} \mathbf{F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-$ $122.32--122.36(\mathrm{~m})$; Data is in accordance with the literature. ${ }^{1 \mathrm{a}}$

4'-chloro-2-fluoro-3-methyl-1,1'-biphenyl (4be)

The product 4be was obtained via the general procedure B using arene chromium tricarbonyl $\mathbf{1 b}(123.1 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv) and $1-$ bromo-4-chlorobenzene 2 e ($143.6 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5$ equiv) and isolated by column chromatography (hexane) as a colourless oil in 97% yield ($107.5 \mathrm{mg}, 0.49 \mathrm{mmol}$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 2 \mathrm{H})$, 7.10 (app. t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), $2.34(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.2$ (d, $J=246.9 \mathrm{~Hz}), 134.7,133.7,131.0(\mathrm{~d}, J=5.2 \mathrm{~Hz}), 130.5(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 128.7,128.2(\mathrm{~d}, J$ $=3.2 \mathrm{~Hz}), 127.7(\mathrm{~d}, J=14.2 \mathrm{~Hz}), 125.8(\mathrm{~d}, J=18.1 \mathrm{~Hz}), 124.0(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 14.9(\mathrm{~d}, J=$ $4.9 \mathrm{~Hz}) ;{ }^{19} \mathbf{F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-122.29--122.33(\mathrm{~m})$; Data is in accordance with the literature. ${ }^{1 \mathrm{a}}$

2,4'-difluoro-3-methyl-1,1'-biphenyl (4bf)

The product $\mathbf{4 b f}$ was obtained via the general procedure B using arene chromium tricarbonyl $\mathbf{1 b}$ ($123.1 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv) and $1-$ bromo-4-fluorobenzene $2 \mathbf{f}$ ($83 \mu \mathrm{~L}, 0.75 \mathrm{mmol}, 1.5$ equiv) and isolated by column chromatography (hexane) as a colourless oil in $>99 \%$ yield ($101.6 \mathrm{mg}, 0.50 \mathrm{mmol}$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51(\mathrm{ddt}, J=7.0,5.4,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.13$ (app. t, $J=8.72 \mathrm{~Hz}, 2 \mathrm{H}$), 7.09 (app. t, $J=7.62 \mathrm{~Hz}, 1 \mathrm{H}$), $2.35(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.5(\mathrm{~d}, J=246.9 \mathrm{~Hz}), 158.2(\mathrm{~d}, J=246.4 \mathrm{~Hz}), 132.3(\mathrm{~d}, J=3.4 \mathrm{~Hz})$, 130.9-130.7 (m, 2C), 128.3 (d, $J=3.2 \mathrm{~Hz}$), 127.9 (d, $J=14.3 \mathrm{~Hz}$), 125.7 (d, $J=18.2 \mathrm{~Hz}$), $124.0(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 115.4(\mathrm{~d}, J=21.5 \mathrm{~Hz}), 15.0(\mathrm{~d}, J=4.9 \mathrm{~Hz})$.; ${ }^{19}$ F NMR (376 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-114.92--114.97(\mathrm{~m}),-122.55--122.58(\mathrm{~m})$; IR: $v=2925,2359,1598,1513$, 1466, 1232, 1160, 837, 777; HRMS: calcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~F}_{2}, 204.0750\left(\mathrm{M}^{+}\right)$; found, 204.0744.

2-fluoro-3-methyl-4'-(trifluoromethyl)-1,1'-biphenyl (4bg)

The product $\mathbf{4 b g}$ was obtained via the general procedure B using arene chromium tricarbonyl $\mathbf{1 b}$ ($123.1 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv) and 4 bromobenzotrifluoride 2 g ($106 \mu \mathrm{~L}, 0.75 \mathrm{mmol}, 1.5$ equiv) and isolated by column chromatography (hexane) as a white solid in 82% yield ($104.7 \mathrm{mg}, 0.41 \mathrm{mmol}$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.21$ (m, 2H), 7.13 (app. t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 158.3(\mathrm{~d}, J=247.3 \mathrm{~Hz}), 139.9,131.6(\mathrm{~d}, J=5.3 \mathrm{~Hz}), 129.7(\mathrm{q}, J=32.6 \mathrm{~Hz}), 129.5(\mathrm{~d}, J=$ $3.0 \mathrm{~Hz}), 128.3(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 127.6(\mathrm{~d}, J=14.4 \mathrm{~Hz}), 125.9(\mathrm{~d}, J=18.0 \mathrm{~Hz}), 125.4(\mathrm{q}, J=$ $3.8 \mathrm{~Hz}), 124.4(\mathrm{q}, J=272.0 \mathrm{~Hz}), 124.2(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 14.9(\mathrm{~d}, J=4.9 \mathrm{~Hz}) ;{ }^{19}$ F NMR (471 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-62.53,-122.22--122.25(\mathrm{~m})$; Data is in accordance with the literature. ${ }^{\text {1a }}$

2-(2'-fluoro-3'-methyl-[1,1'-biphenyl]-4-yl)-1,3-dioxolane (4bj)
The product $\mathbf{4 b j}$ was obtained via the general procedure B using arene chromium tricarbonyl $\mathbf{1 b}(123.1 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv) and 2-(4-bromophenyl)-1,3-dioxolane $2 \mathbf{j}$ ($171.8 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5$ equiv) and isolated by column chromatography ($5 \% \mathrm{Et}_{2} \mathrm{O}$ / hexane) as a colourless oil in 71% yield ($91.2 \mathrm{mg}, 0.36$ mmol).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58-7.54(\mathrm{~m}, 4 \mathrm{H}), 7.24$ (app. td, $J=7.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.19 7.15 (m, 1H), 7.09 (app. t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.88 (s, 1H), 4.20-4.12 (m, 2H), 4.11-4.03 (m, $2 \mathrm{H}), 2.34(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.3$ ($\mathrm{d}, J=247.0 \mathrm{~Hz}$), 137.3, $137.2,130.8(\mathrm{~d}, J=5.0 \mathrm{~Hz}), 129.3(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 128.5(\mathrm{~d}, J=14.3 \mathrm{~Hz}), 128.4(\mathrm{~d}, J=3.2$ $\mathrm{Hz}), 126.6,125.7(\mathrm{~d}, J=18.4 \mathrm{~Hz}), 123.9(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 103.7,65.5,15.0(\mathrm{~d}, J=4.9 \mathrm{~Hz})$; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-122.21--122.25(\mathrm{~m})$; IR: $v=2882,2359,1698,1605$, 1465, 1202, 1079, 833, 777; HRMS: calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{FO}_{2}, 259.1134\left(\mathrm{M}+\mathrm{H}^{+}\right)$; found, 259.1126.

(2'-fluoro-3'-methyl-[1,1'-biphenyl]-4-yl)(phenyl)methanone (4bk)

The product 4bk was obtained via the general procedure B using arene chromium tricarbonyl $\mathbf{1 b}(123.1 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv) and 4-bromobenzophenone $\mathbf{2 k}$ ($195.8 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5$ equiv) and isolated by column chromatography ($10 \% \mathrm{Et}_{2} \mathrm{O} /$ hexane) as a white solid in $>99 \%$ yield ($144.8 \mathrm{mg}, 0.50 \mathrm{mmol}$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.87-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.65(\mathrm{~m}, 2 \mathrm{H})$, 7.63-7.59 (m, 1H), 7.53-7.49 (m, 2H), 7.30 (td, $J=7.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 1 \mathrm{H})$, 7.14 (app. t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.5$, 158.3 (d, $J=247.6 \mathrm{~Hz}$), 140.5, 137.8, 136.6, 132.5, 131.5 (d, $J=5.1 \mathrm{~Hz}$), 130.3, 130.2, 129.1 (d, $J=3.1 \mathrm{~Hz}$), 128.5, 128.3 (d, $J=3.2 \mathrm{~Hz}$), 127.9 (d, $J=14.1 \mathrm{~Hz}), 125.9$ (d, $J=18.3 \mathrm{~Hz}$), $124.1(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 14.9(\mathrm{~d}, J=4.9 \mathrm{~Hz}) . ;{ }^{19} \mathbf{F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-121.88$; IR: $v=$ 2252, 1657, 1604, 1465, 1447, 1399, 1315, 1278, 904, 700; MP: $59-61^{\circ} \mathrm{C}$; HRMS: calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{FO}$, $291.1185\left(\mathrm{M}+\mathrm{H}^{+}\right)$; found, 291.1176.

2-fluoro-3-methyl-4'-nitro-1,1'-biphenyl (4bm)

The product $\mathbf{4 b m}$ was obtained via the general procedure B using arene chromium tricarbonyl $\mathbf{1 b}$ ($123.1 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv) and

1-bromo-4-nitrobenzene $\mathbf{2 m}$ ($151.5 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5$ equiv) and isolated by column chromatography ($2 \% \mathrm{Et}_{2} \mathrm{O} /$ hexane) as a white solid in 65% yield ($75.2 \mathrm{mg}, 0.33 \mathrm{mmol}$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.31-8.28(\mathrm{~m}, 2 \mathrm{H}), 7.73-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.15(\mathrm{app} . \mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $158.2(\mathrm{~d}, J=248.4 \mathrm{~Hz}), 147.3,143.0,132.3(\mathrm{~d}, J=5.4 \mathrm{~Hz}), 130.0(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 128.2(\mathrm{~d}, J$ $=2.8 \mathrm{~Hz}), 126.7(\mathrm{~d}, J=13.8 \mathrm{~Hz}), 126.2(\mathrm{~d}, J=18.1 \mathrm{~Hz}), 124.3(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 123.8,14.9$ (d, $J=4.9 \mathrm{~Hz}$); ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-121.64$; Data is in accordance with the literature. ${ }^{1 a}$

methyl 2'-fluoro-3'-methyl-[1,1'-biphenyl]-4-carboxylate (4bn)
The product 4bn was obtained via the general procedure B using arene chromium tricarbonyl $\mathbf{1 b}(123.1 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv) and methyl 4-bromobenzoate $\mathbf{2 n}(163.0 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5$ equiv) and isolated by column chromatography ($5 \% \mathrm{Et}_{2} \mathrm{O} /$ hexane) as a white solid in $>99 \%$ yield ($121.6 \mathrm{mg}, 0.50 \mathrm{mmol}$). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12-8.09(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 1 \mathrm{H})$, $7.23-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.12$ (app. t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.1,158.3(\mathrm{~d}, J=247.6 \mathrm{~Hz}), 141.0,131.5(\mathrm{~d}, J=5.1 \mathrm{~Hz})$, 129.7, 129.2, 129.2, $128.3(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 127.9(\mathrm{~d}, J=14.1 \mathrm{~Hz}), 125.9(\mathrm{~d}, J=18.1 \mathrm{~Hz})$, $124.1(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 52.3,14.9(\mathrm{~d}, J=4.9 \mathrm{~Hz}) ;{ }^{19} \mathbf{F} \mathbf{N M R}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-121.88$; Data is in accordance with the literature. ${ }^{1 \mathrm{a}}$

2-fluoro-3-methyl-4'-styryl-1,1'-biphenyl (4bo)

The product 4bo was obtained via the general procedure B using arene chromium tricarbonyl $\mathbf{1 b}(123.1 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv) and 4-bromostilbene 20 ($204.5 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5$ equiv) and isolated by column chromatography ($20 \% \mathrm{Et}_{2} \mathrm{O} /$ hexane) as a white solid in 96% yield ($138.4 \mathrm{mg}, 0.48 \mathrm{mmol}$). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61-7.53(\mathrm{~m}, 6 \mathrm{H}), 7.38$ (app. t, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), $7.30-7.26$ (m, 2H), 7.20-7.15 (m, 3H), 7.10 (app. t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $2.35(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 158.4(\mathrm{~d}, ~ J=246.9 \mathrm{~Hz}), 137.4,136.7,135.5,130.7(\mathrm{~d}, J=5.1 \mathrm{~Hz})$, $129.5(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 129.1,128.8,128.5(\mathrm{~d}, J=14.2 \mathrm{~Hz}), 128.4,128.2(\mathrm{~d}, J=3.5 \mathrm{~Hz})$, 127.8, 126.7, 126.6, $125.7(\mathrm{~d}, J=18.2 \mathrm{~Hz}), 124.0(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 15.0(\mathrm{~d}, J=4.9 \mathrm{~Hz}) ;{ }^{19}$ F NMR (376 MHz, CDCl_{3}) $\delta-122.09$; IR: $v=3057,3024,2358,1513,1462,1448,1401$,

1256, 1201, 1068, 968, 866, 825, 809, 725; MP: $88-90{ }^{\circ} \mathrm{C}$, HRMS: calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~F}$, $289.1392\left(\mathrm{M}+\mathrm{H}^{+}\right)$; found, 289.1386.

2-fluoro-3-methyl-1,1':4',1'-terphenyl (4bp)

The product 4bp was obtained via the general procedure B using arene chromium tricarbonyl $\mathbf{1 b}$ ($123.1 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv) and 4bromobiphenyl $\mathbf{2 p}$ ($178.4 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5$ equiv) and isolated by column chromatography ($3 \% \mathrm{Et}_{2} \mathrm{O} /$ hexane) as a white solid in 87% yield ($114.4 \mathrm{mg}, 0.44 \mathrm{mmol}$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69-7.62(\mathrm{~m}, 6 \mathrm{H}), 7.49-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 1 \mathrm{H})$, 7.31 (td, $J=7.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.19 (app. td, $J=7.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.12 (app. t, $J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.37(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.4(\mathrm{~d}, J=246.7 \mathrm{~Hz}), 140.9$, $140.5,135.3,130.7(\mathrm{~d}, J=5.3 \mathrm{~Hz}), 129.6(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 128.9,128.5(\mathrm{~d}, J=14.2 \mathrm{~Hz}), 128.3$ (d, $J=3.3 \mathrm{~Hz}$), 127.5, 127.3, 127.2, $125.7(\mathrm{~d}, J=18.5 \mathrm{~Hz}), 124.0(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 15.0(\mathrm{~d}, J=$ $5.0 \mathrm{~Hz}) ;{ }^{19} \mathbf{F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-122.21$; Data is in accordance with the literature. ${ }^{1 \mathrm{a}}$

2-fluoro-3'-methoxy-3-methyl-1,1'-biphenyl (4bq)

The product $\mathbf{4 b q}$ was obtained via the general procedure B using arene chromium tricarbonyl $\mathbf{1 b}$ ($123.1 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv) and 3bromoanisole $2 \mathbf{q}(97.0 \mu \mathrm{~L}, 0.75 \mathrm{mmol}, 1.5$ equiv) and isolated by column chromatography (hexane) as a colorless oil in 94% yield ($101.7 \mathrm{mg}, 0.47 \mathrm{mmol}$).
${ }^{1} H$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{app} . \mathrm{td}, J=7.4,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.19-7.16$ (m, 1H), 7.13 (dq, $J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.08$ (m, 2H), 6.92 (ddd, $J=8.2$, $2.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $159.6,158.3(\mathrm{~d}, J=246.9 \mathrm{~Hz}), 137.7,130.7(\mathrm{~d}, J=5.2 \mathrm{~Hz}), 129.4,128.8(\mathrm{~d}, J=14.2 \mathrm{~Hz})$, $128.4(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 125.7(\mathrm{~d}, J=18.5 \mathrm{~Hz}), 123.9(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 121.7(\mathrm{~d}, J=2.9 \mathrm{~Hz})$, $114.8(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 113.3,55.4,15.0(\mathrm{~d}, J=4.9 \mathrm{~Hz}) ;{ }^{19} \mathbf{F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-$ $121.97-122.00(\mathrm{~m})$; Data is in accordance with the literature. ${ }^{1 \mathrm{a}}$

2-fluoro-3,3'-dimethyl-1,1'-biphenyl (4ar)

The product $\mathbf{4 b r}$ was obtained via the general procedure B using arene chromium tricarbonyl $\mathbf{1 b}$ ($123.1 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv) and 3bromotoluene $2 \mathrm{r}(93.0 \mu \mathrm{~L}, 0.75 \mathrm{mmol}, 1.5$ equiv) and isolated by column chromatography (hexane) as a colorless oil in $>99 \%$ yield ($100.0 \mathrm{mg}, 0.5 \mathrm{mmol}$).
${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz} \mathrm{CDCl} 3) ~ \delta 7.37-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.25(\mathrm{td}, J=7.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.15$ (m, 2H), 7.09 (app. t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.3(\mathrm{~d}, J=246.5 \mathrm{~Hz}), 138.0,136.3,130.5(\mathrm{~d}, J=5.1 \mathrm{~Hz}), 130.0(\mathrm{~d}, J=2.9$ $\mathrm{Hz}), 129.1(\mathrm{~d}, ~ J=14.3 \mathrm{~Hz}), 128.5(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 128.4,128.4,126.3(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 125.6$ (d, $J=18.2 \mathrm{~Hz}), 123.8(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 21.6,15.0(\mathrm{~d}, J=4.9 \mathrm{~Hz}) ;{ }^{19}$ F NMR (376 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-122.25--122.29(\mathrm{~m}) ; \mathbf{I R}: v=3031,2359,1606,1463,1256,1211,1191,1106$, 1069, 831, 734; HRMS: calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~F}, 200.1001\left(\mathrm{M}^{+}\right)$; found, 200.0997.

2-fluoro-3-methyl-3'-(trifluoromethyl)-1,1'-biphenyl (4bs)

The product 4bs was obtained via the general procedure B using arene chromium tricarbonyl $\mathbf{1 b}$ ($123.1 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv) and 3bromobenzotrifluoride $2 \mathrm{~s}(106.0 \mu \mathrm{~L}, 0.75 \mathrm{mmol}, 1.5$ equiv) and isolated by column chromatography (hexane) as a colorless oil in 55% yield ($70.0 \mathrm{mg}, 0.28 \mathrm{mmol}$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.56(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~d}, J=2.3 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.3(\mathrm{~d}, J=247.1 \mathrm{~Hz}$), $137.1,132.5(\mathrm{q}, J=1.6 \mathrm{~Hz})$, $131.5(\mathrm{~d}, J=5.1 \mathrm{~Hz}), 130.9(\mathrm{q}, J=32.0 \mathrm{~Hz}), 128.9,128.2(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 127.5(\mathrm{~d}, J=14.2$ Hz), 126.0 (app. quintuplet, $J=3.6 \mathrm{~Hz}$), 125.9 (app. d, $J=18.0 \mathrm{~Hz}$), 124.4 (q, $J=3.8 \mathrm{~Hz}$), 124.3 (q, $J=272.5 \mathrm{~Hz}$), $124.2(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 14.9(\mathrm{~d}, J=4.8 \mathrm{~Hz}) ;{ }^{19}$ F NMR (376 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-62.61,-122.41--122.46(\mathrm{~m})$; Data is in accordance with the literature. ${ }^{\text {a }}$

2,3',5'-trifluoro-3-methyl-1,1'-biphenyl (4bt)

The product 4bt was obtained via the general procedure B using arene chromium tricarbonyl $\mathbf{1 b}$ ($123.1 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv) and 1 -bromo-3,5-difluorobenzene $2 \mathrm{t}(88.0 \mu \mathrm{~L}, 0.75 \mathrm{mmol}, 1.5$ equiv) and isolated by column chromatography (hexane) as a colorless oil in 77% yield ($85.6 \mathrm{mg}, 0.39 \mathrm{mmol}$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.22$ (app. t, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.13-7.06(\mathrm{~m}, 3 \mathrm{H}), 6.81(\mathrm{tt}, J=$ $8.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.0(\mathrm{dd}, J=$ $247.4,12.9 \mathrm{~Hz}), 158.1(\mathrm{~d}, J=247.9 \mathrm{~Hz}), 139.4(\mathrm{t}, J=10.0 \mathrm{~Hz}), 131.7(\mathrm{~d}, J=5.2 \mathrm{~Hz}), 128.0$ (d, $J=2.9 \mathrm{~Hz}$), $126.7(\mathrm{dt}, J=13.8,2.5 \mathrm{~Hz}), 126.0(\mathrm{~d}, J=18.2 \mathrm{~Hz}), 124.2(\mathrm{~d}, J=4.7 \mathrm{~Hz})$, 112.3-112.0 (m), $103.0(\mathrm{t}, J=25.3 \mathrm{~Hz}), 14.9(\mathrm{~d}, J=4.9 \mathrm{~Hz}) ;{ }^{19} \mathbf{F} \mathbf{N M R}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $-110.22--110.30(\mathrm{~m}),-121.80-121.84(\mathrm{~m}) ;$ IR: $v=2359,1627,1597,1456,1417,1344$,

1262, 1236, 1198, 1118, 944, 831, 779, 732; HRMS: calcd for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~F}_{3}, 222.0656\left(\mathrm{M}+\mathrm{H}^{+}\right)$; found, 222.0651.

2-(2-fluoro-3-methylphenyl)naphthalene (4bu)

The product 4bu was obtained via the general procedure B using arene chromium tricarbonyl 1b ($123.1 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv) and 2bromonaphthalene $\mathbf{2 u}(160.1 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5$ equiv) and isolated by column chromatography ($10 \% \mathrm{Et}_{2} \mathrm{O} /$ hexane) as a colorless oil in 99% yield ($116.4 \mathrm{mg}, 0.49 \mathrm{mmol}$). ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.93-7.88(\mathrm{~m}, 3 \mathrm{H}), 7.70(\mathrm{dq}, J=8.5,2.0 \mathrm{~Hz}$, 1H), $7.54-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.36$ (m, 1H), 7.22 (app. t, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.15 (app. t, $J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $2.39(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.5(\mathrm{~d}, J=246.7 \mathrm{~Hz}), 133.8$, $133.5,132.8,130.8(\mathrm{~d}, J=5.0 \mathrm{~Hz}), 128.9(\mathrm{~d}, J=14.3 \mathrm{~Hz}), 128.7(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 128.3,128.2$ (d, $J=2.9 \mathrm{~Hz}$), 128.0, 127.8, 127.3 (d, $J=3.0 \mathrm{~Hz}$), 126.3 (d, $J=6.6 \mathrm{~Hz}$), 125.8, 125.6, 124.0 $(\mathrm{d}, J=4.4 \mathrm{~Hz}), 15.0(\mathrm{~d}, J=4.9 \mathrm{~Hz}) ;{ }^{19} \mathbf{F} \mathbf{N M R}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-122.10$; IR: $v=3053$, 1599, 1505, 1482, 1464, 1424, 1344, 1258, 1194, 1168, 1131, 1094, 857, 818, 731; HRMS: calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~F}, 236.1001\left(\mathrm{M}+\mathrm{H}^{+}\right)$; found, 236.0996.

2,2'-difluoro-3-methyl-1,1'-biphenyl (4bv)

The product $\mathbf{4 b v}$ was obtained via the general procedure B using arene chromium tricarbonyl $\mathbf{1 b}$ ($123.1 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv) and 1-bromo-2fluorobenzene $2 \mathbf{v}(83.0 \mu \mathrm{~L}, 0.75 \mathrm{mmol}, 1.5$ equiv) and isolated by column chromatography (hexane) as a white solid in 64% yield ($65.3 \mathrm{mg}, 0.32 \mathrm{mmol}$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.34$ (m, 2H), 7.25-7.14 (m, 4H), 7.11 (app. t, $J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.35(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.0(\mathrm{~d}, J=248.2 \mathrm{~Hz})$, 158.4 (d, $J=247.4 \mathrm{~Hz}$), $131.8-131.7$ (m), 131.4 (d, $J=5.3 \mathrm{~Hz}$), 129.7 (d, $J=8.2 \mathrm{~Hz}$), 129.1 - 129.1 (m), 125.3 (d, $J=18.0 \mathrm{~Hz}), 124.1(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 124.0(\mathrm{~d}, J=17.1 \mathrm{~Hz}), 123.7(\mathrm{~d}, J$ $=4.4 \mathrm{~Hz}), 123.3(\mathrm{~d}, J=16.6 \mathrm{~Hz}), 115.9(\mathrm{~d}, J=22.2 \mathrm{~Hz}), 14.9(\mathrm{~d}, J=4.5 \mathrm{~Hz}) ;{ }^{19}$ F NMR (376 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-114.70(\mathrm{~d}, J=17.0 \mathrm{~Hz}),-119.21(\mathrm{~d}, J=17.0 \mathrm{~Hz}) ;$ IR: $v=1588,1499$, 1463, 1443, 1259, 1204, 1117, 1092, 1066, 876, 827, 741; MP: $42-44{ }^{\circ} \mathrm{C}$; HRMS: calcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~F}_{2}, 204.0750\left(\mathrm{M}^{+}\right)$; found, 204.0745.

2-fluoro-2'-methoxy-3-methyl-1,1'-biphenyl (4bw)

The product 4bw was obtained via the general procedure B using arene chromium tricarbonyl $\mathbf{1 b}$ ($123.1 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv) and 2bromoanisole $2 \mathbf{w}(96.0 \mu \mathrm{~L}, 0.75 \mathrm{mmol}, 1.5$ equiv) and isolated by column chromatography (hexane) as a white solid in 80% yield ($86.5 \mathrm{mg}, 0.40 \mathrm{mmol}$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{ddd}, J=8.2,7.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.19$ - 7.15 (m, 2H), 7.07 (app. t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.04-6.98$ (m, 2H), 3.81 (s, 3H), 2.33 (d, $J=$ $2.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.6(\mathrm{~d}, J=246.2 \mathrm{~Hz}$), 157.1, 131.5, 130.7 (d, $J=5.4 \mathrm{~Hz}), 129.4(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 129.3,126.0(\mathrm{~d}, J=16.8 \mathrm{~Hz}), 125.5,125.0(\mathrm{~d}, J=18.2$ $\mathrm{Hz}), 123.4(\mathrm{~d}, J=4.3 \mathrm{~Hz}), 120.6,111.2,55.9,15.0(\mathrm{~d}, J=4.4 \mathrm{~Hz}) ;{ }^{19} \mathbf{F}$ NMR (376 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-118.71$; Data is in accordance with the literature. ${ }^{\text {1a }}$

2'-chloro-2-fluoro-5'-methoxy-3-methyl-1,1'-biphenyl (4bx)
The product $\mathbf{4 b x}$ was obtained via the general procedure B using arene chromium tricarbonyl $\mathbf{1 b}$ ($123.1 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv) and 3-bromo-4-chloroanisole 2 x ($166.1 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5$ equiv) and isolated by column chromatography (hexane) as a colorless oil in 87% yield ($108.5 \mathrm{mg}, 0.44 \mathrm{mmol}$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.24(\mathrm{app} . \operatorname{td}, J=7.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-$ $7.08(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.86(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.1,158.1(\mathrm{~d}, J=246.5 \mathrm{~Hz}), 136.2,131.5(\mathrm{~d}, J=5.0 \mathrm{~Hz}), 130.3,129.0(\mathrm{~d}$, $J=3.2 \mathrm{~Hz}), 126.9(\mathrm{~d}, J=16.9 \mathrm{~Hz}), 125.3(\mathrm{~d}, J=18.2 \mathrm{~Hz}), 125.2,123.5(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 116.9$ (d, $J=1.1 \mathrm{~Hz}$), 115.1, 55.7, $14.9(\mathrm{~d}, J=4.3 \mathrm{~Hz}) ;{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-118.71$ - 118.75 (m); IR: $v=1597,1570,1461,1398,1326,1307,1286,1260,1230,1202,1180$, 1113, 1055, 1026, 905, 806, 780; HRMS: calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{FClO}, 250.0560\left(\mathrm{M}^{+}\right)$; found, 250.0557.

5-(2-fluoro-3-methylphenyl)benzofuran (4by)

The product 4by was obtained via the general procedure B using arene chromium tricarbonyl $\mathbf{1 b}$ ($123.1 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv) and 5bromobenzofuran $2 \mathbf{y}(97.0 \mu \mathrm{~L}, 0.75 \mathrm{mmol}, 1.5$ equiv) and isolated by column chromatography (hexane) as a colorless oil in 99% yield ($111.8 \mathrm{mg}, 0.49 \mathrm{mmol}$).
${ }^{1} H$ NMR $(400 \mathrm{MHz} \mathrm{CDCl} 3) ~ \delta 7.77-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{app} . \mathrm{dt}, J=$ $8.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.47$ (app. dt, $J=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{td}, J=7.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.15$
(m, 1H), 7.10 (app. t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $6.82(\mathrm{dd}, J=2.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.4(\mathrm{~d}, J=246.0 \mathrm{~Hz}$), 154.6, 145.6, 131.1, 130.4 (d, $J=5.0$ $\mathrm{Hz}), 129.3(\mathrm{~d}, J=14.7 \mathrm{~Hz}), 128.8(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 127.7,125.8(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 125.6(\mathrm{~d}, J=$ $18.3 \mathrm{~Hz}), 123.9(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 121.9(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 111.3,106.9,15.0(\mathrm{~d}, J=4.9 \mathrm{~Hz}),{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-122.53-122.57(\mathrm{~m})$; IR: $v=1485,1458,1426,1331,1257$, 1238, 1201, 1172, 1132, 1111, 1030, 885, 732; HRMS: calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{FO}, 226.0793\left(\mathrm{M}^{+}\right)$; found, 226.0789.

5-(2-fluoro-3-methylphenyl)-1-methyl-1H-indole (4bz)

The product $\mathbf{4 b z}$ was obtained via the general procedure B using arene chromium tricarbonyl $\mathbf{1 b}$ ($123.1 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv) and 5-bromo-1-methylindole $2 \mathrm{z}(157.5 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5$ equiv) and isolated by column chromatography ($10 \% \mathrm{EtOAc} / \mathrm{hexane}$) as a white solid in 38% yield ($20.0 \mathrm{mg}, 0.19 \mathrm{mmol}$). ${ }^{1} H$ NMR ($400 \mathrm{MHz} \mathrm{CDCl}{ }_{3}$) $\delta 7.80(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{td}, J=7.4,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.17-7.08(\mathrm{~m}, 3 \mathrm{H}), 6.54(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.5(\mathrm{~d}, J=245.6 \mathrm{~Hz}), 136.3,130.2(\mathrm{~d}, J=14.7 \mathrm{~Hz}), 129.7(\mathrm{~d}, J$ $=4.9 \mathrm{~Hz}), 129.5,128.9(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 128.7,127.5,125.4(\mathrm{~d}, J=18.4 \mathrm{~Hz}), 123.7(\mathrm{~d}, J=4.4$ $\mathrm{Hz}), 123.2(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 121.6(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 109.1,101.4,33.1,15.1(\mathrm{~d}, J=4.9 \mathrm{~Hz}) ;{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-122.51$; IR: $v=2252,1710,1514,1469,1422,1362,1337$, 1246, 1223, 1206, 1184, 1092, 903, 730; MP: $54-55^{\circ} \mathrm{C}$; HRMS: calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{FN}$, $239.1110\left(\mathrm{M}^{+}\right)$; found, 239.1104.

2-fluoro-3-methoxy-1,1'-biphenyl (4ca)

The product 4ca was obtained via the general procedure B using arene chromium tricarbonyl $\mathbf{1 c}(131.1 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv) and bromobenzene 2a ($80 \mu \mathrm{~L}, 0.75 \mathrm{mmol}, 1.5$ equiv) and isolated by column chromatography ($2 \% \mathrm{Et}_{2} \mathrm{O}$ / hexane; using silver-doped silica) as a white solid in 75% yield ($75.8 \mathrm{mg}, 0.38$ mmol).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 1 \mathrm{H})$, 7.13 (td, $J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.01$ (ddd, $J=8.0,6.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{td}, J=8.0,1.7 \mathrm{~Hz}$, 1H), 3.94 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.8(\mathrm{~d}, J=247.5 \mathrm{~Hz}$), 148.4 (d, $J=11.5$ $\mathrm{Hz}), 135.8,130.1(\mathrm{~d}, J=11.2 \mathrm{~Hz}), 129.2(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 128.5,127.9,124.0(\mathrm{~d}, J=4.9 \mathrm{~Hz})$, $122.2(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 112.4(\mathrm{~d}, J=2.2 \mathrm{~Hz}), 56.5 ;{ }^{19} \mathbf{F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-141.19$;

IR: $v=1573,1503,1481,1434,1319,1267,1214,1174,1121,1071,1039,1020,905,858$, 732; MP: $55^{\circ} \mathrm{C}$; HRMS: calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{FO}, 202.0793\left(\mathrm{M}^{+}\right)$; found, 202.0788.

2-fluoro-3-methoxy-1,1'-biphenyl (4da)
The product 4da was obtained via the general procedure B using arene chromium tricarbonyl $\mathbf{1 d}(209.3 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv) and bromobenzene 2a ($80 \mu \mathrm{~L}, 0.75 \mathrm{mmol}, 1.5$ equiv) and isolated by column chromatography (hexane) as a colourless oil in 97% yield ($181.6 \mathrm{mg}, 0.49 \mathrm{mmol}$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.45(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.32(\mathrm{~m}$, $2 \mathrm{H}), 7.23(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 2 \mathrm{H}), 1.27-1.19(\mathrm{~m}, 3 \mathrm{H}), 1.13(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.5(\mathrm{~d}, J=247.0 \mathrm{~Hz}), 136.1,129.6(\mathrm{~d}, J=15.2 \mathrm{~Hz}), 129.3(\mathrm{~d}, J$ $=2.8 \mathrm{~Hz}), 129.2(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 128.5,128.5(\mathrm{~d}, J=13.4 \mathrm{~Hz}), 127.7,127.1(\mathrm{~d}, J=4.9 \mathrm{~Hz})$, $124.2(\mathrm{~d}, J=4.2 \mathrm{~Hz}), 59.4-59.3(\mathrm{~m}), 18.2,12.2 ;{ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-125.73(\mathrm{t}$, $J=7.3 \mathrm{~Hz})$; IR: $v=2943,2866,1461,1432,1377,1202,1124,1067,904,731$; HRMS: calcd for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{FO}_{2} \mathrm{Si}$, $359.2206\left(\mathrm{M}+\mathrm{H}^{+}\right)$; found, 359.2197.

2-fluoro-3,4-dimethyl-1,1'-biphenyl (4ea)

The product 4ea was obtained via the general procedure B using arene chromium tricarbonyl $\mathbf{1 e}(130.1 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv) and bromobenzene 2a ($80 \mu \mathrm{~L}, 0.75 \mathrm{mmol}$, 1.5 equiv) and isolated by column chromatography (hexane) as a white solid in 79% yield ($79.2 \mathrm{mg}, 0.40 \mathrm{mmol}$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.35$ (app. $\mathrm{tt}, J=7.4$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~d}, J=2.3$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 158.1(\mathrm{~d}, J=245.4 \mathrm{~Hz}), 138.4(\mathrm{~d}, J=4.4 \mathrm{~Hz})$, $136.6,129.2(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 128.4,127.4,127.3(\mathrm{~d}, J=4.5 \mathrm{~Hz}), 126.4(\mathrm{~d}, J=15.5 \mathrm{~Hz}), 125.2$ $(\mathrm{d}, J=3.5 \mathrm{~Hz}), 124.1(\mathrm{~d}, J=17.2 \mathrm{~Hz}), 19.8(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 11.2(\mathrm{~d}, J=6.8 \mathrm{~Hz}) ;{ }^{19} \mathbf{F}$ NMR (376 MHz, CDCl_{3}) $\delta-122.22$; IR: $v=1480,1458,1413,1269,1211,1075,904,817,732$; MP:37-38 ${ }^{\circ} \mathrm{C}$; HRMS: calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~F}, 200.1001\left(\mathrm{M}^{+}\right)$; found, 200.0996.

2-fluoro-4-methyl-1,1'-biphenyl (4aa)

The product 4aa was obtained via the general procedure B using arene
chromium tricarbonyl $\mathbf{1 a}(123.1 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv) and bromobenzene $\mathbf{2 a}(80 \mu \mathrm{~L}$, $0.75 \mathrm{mmol}, 1.5$ equiv) and isolated by column chromatography (hexane; using silver-doped silica) as a colourless oil in 76% yield ($70.5 \mathrm{mg}, 0.38 \mathrm{mmol}$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 2 \mathrm{H})$, $7.02(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 159.7(\mathrm{~d}, J=247.4 \mathrm{~Hz}), 139.6(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 136.0,130.5(\mathrm{~d}, J=4.1 \mathrm{~Hz}), 129.1$ (d, $J=2.9 \mathrm{~Hz}), 128.5,127.5,126.1(\mathrm{~d}, J=13.6 \mathrm{~Hz}), 125.2(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 116.8(\mathrm{~d}, J=22.4$ $\mathrm{Hz}), 21.2(\mathrm{~d}, J=4.6 \mathrm{~Hz}) ;{ }^{19} \mathbf{F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-119.09$; IR: $v=1626,1484,1270$, 1127, 904, 819, 732; HRMS: calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~F}, 186.0844\left(\mathrm{M}^{+}\right)$; found, 186.0835.

3',4'-dichloro-2-fluoro-4-methyl-1,1'-biphenyl (4aa')

The product 4aa' was obtained via the general procedure B using arene chromium tricarbonyl $1 \mathbf{1 a}(123.1 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv) and 1-bromo-3,4-dichlorobenzene $\mathbf{2 a}{ }^{\prime}$ ($96 \mu \mathrm{~L}, 0.75 \mathrm{mmol}, 1.5$ equiv) and isolated by column chromatography ($5 \% \mathrm{Et}_{2} \mathrm{O} /$ hexane;using silver-doped silica) as a white solid in 88% yield ($112.0 \mathrm{mg}, 0.44 \mathrm{mmol}$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.28(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.5(\mathrm{~d}, J=248.4 \mathrm{~Hz}), 140.8(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 136.0,132.6$, $131.7,130.8(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 130.5,130.1(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 128.3(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 125.5(\mathrm{~d}, J=$ $3.3 \mathrm{~Hz}), 123.8(\mathrm{~d}, J=13.2 \mathrm{~Hz}), 117.0(\mathrm{~d}, J=22.5 \mathrm{~Hz}), 21.3 ;{ }^{19} \mathbf{F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $-118.59-118.63(m) ;$ IR: $v=1626,1574,1511,1466,1374,1264,1135,1030,904,807$, 734; MP: $44-45^{\circ} \mathrm{C}$; HRMS: calcd for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{FCl}_{2}, 254.0065\left(\mathrm{M}^{+}\right)$; found, 254.0059.

2'-fluoro-1,1':3',1''-terphenyl (4fa)

The product 4fa was obtained via the general procedure B using arene chromium tricarbonyl $\mathbf{1 f}(116.1 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv) and bromobenzene 2 a ($160 \mu \mathrm{~L}, 1.5 \mathrm{mmol}, 3.0$ equiv) and isolated by column chromatography (hexane) as a white solid in 97% yield ($120.4 \mathrm{mg}, 0.49 \mathrm{mmol}$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61-7.58(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.37$ (m, 8H), 7.28 (app. t, $J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.7(\mathrm{~d}, J=249.8 \mathrm{~Hz}$), 136.1, $130.2(\mathrm{~d}, J=3.8$ $\mathrm{Hz}), 129.9(\mathrm{~d}, J=15.0 \mathrm{~Hz}), 129.4(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 128.5,127.8,124.5(\mathrm{~d}, J=4.5 \mathrm{~Hz}) ;{ }^{19}$ F NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-123.26$; Data is in accordance with the literature. ${ }^{4}$

methyl 2'-fluoro-[1,1':3',1''-terphenyl]-5'-carboxylate (4ga)
The product 4ga was obtained via the general procedure B using arene chromium tricarbonyl $\mathbf{1 g}(145.1 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv) and bromobenzene 2a ($160 \mu \mathrm{~L}, 1.5 \mathrm{mmol}, 3.0$ equiv) and isolated by column chromatography ($5 \% \mathrm{Et}_{2} \mathrm{O} /$ hexane) as a white solid in 79% yield ($121.0 \mathrm{mg}, 0.40 \mathrm{mmol}$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.13(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.62-7.59(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.46(\mathrm{~m}$, 4H), $7.44-7.39$ (m, 2H), 3.95 (s, 3H); ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.3,159.6(\mathrm{~d}, J=$ $257.1 \mathrm{~Hz}), 135.1,131.7(\mathrm{~d}, J=4.9 \mathrm{~Hz}), 130.2(\mathrm{~d}, J=16.1 \mathrm{~Hz}), 129.3(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 128.7$, 128.3, $126.6(\mathrm{~d}, ~ J=4.1 \mathrm{~Hz}), 52.5 ;{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-115.80$; IR: $v=1719$, 1599, 1423, 1347, 1246, 1217, 1111, 1054, 904, 732; MP: $90-93^{\circ} \mathrm{C}$; HRMS: calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{FO}_{2}, 307.1134\left(\mathrm{M}+\mathrm{H}^{+}\right)$; found, 307.1129.

2'-fluoro-5'-methoxy-1,1':3',1'-terphenyl (4ha)

The product 4ha was obtained via the general procedure B using arene chromium tricarbonyl $\mathbf{1 h}(131.1 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv) and bromobenzene 2a ($160 \mu \mathrm{~L}, 1.5 \mathrm{mmol}, 3.0$ equiv) and isolated by column chromatography ($5 \% \mathrm{Et}_{2} \mathrm{O} /$ hexane; using silver-doped silica) as a white solid in 74% yield ($103.1 \mathrm{mg}, 0.37$ mmol).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62-7.58(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 2 \mathrm{H})$, 6.97-6.93 (m, 2H), $3.88(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.6,151.2(\mathrm{~d}, J=242.9$ $\mathrm{Hz}), 136.3,130.6(\mathrm{~d}, J=16.9 \mathrm{~Hz}), 129.3,128.6,128.0,115.0,56.0 ;{ }^{19}$ F NMR (471 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-133.54$; IR: $v=1595,1577,1498,1466,1425,1349,1204,1178,1053,1020$, 904, 732; MP: $60-62{ }^{\circ} \mathrm{C}$; HRMS: calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{FO}, 279.1185\left(\mathrm{M}+\mathrm{H}^{+}\right)$; found, 279.1183.

IV. Mechanistic Studies

IV-1.H/D Scrambling Experiments

General procedure for H/D Scrambling Experiments

A flame-dried 10 mL microwave vial was charged with $\mathbf{1 b}$ ($25 \mathrm{mg}, 0.1 \mathrm{mmol}$) and other solid reagents (see table S 6). Dry $\mathrm{PhCH}_{3}(100 \mu \mathrm{~L})$ was added and vial was sealed and transferred from the glovebox. $\mathrm{D}_{2} \mathrm{O}(18 \mu \mathrm{~L}, 1.0 \mathrm{mmol})$ was added to it. The vial was heated to $75^{\circ} \mathrm{C}$ in a oil bath and stirred at 250 rpm for 2 h . 4-Nitrotoluene (0.1 mmol) was added as a solution in CDCl_{3} and aliquot of approximately $50 \mu \mathrm{~L}$ were taken by syringe, filtered through cotton into an NMR tube and made up to $\sim 800 \mu \mathrm{~L}$ with CDCl_{3}. The extent of deuteration was measured by quantitative ${ }^{1} \mathrm{H}$ NMR.

Scheme S7. D/H Scramling of 1a
Table S6. D/H scrambling of $\mathbf{1 a}^{\mathbf{a}}$

Entry	Conditions	1a:1a-d
1.	$\mathrm{AgBr}(20 \mathrm{~mol} \%)$	100:0
2.	$\mathrm{PBuAd}_{2}(20 \mathrm{~mol} \%)+\mathrm{AgBr}(20 \mathrm{~mol} \%)$	100:0
3.	$\mathrm{AgBr}(20 \mathrm{~mol} \%)+\mathrm{NMe}_{4} \mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}(1.5$ equiv $)$	100:0
4.	$\begin{aligned} & \mathrm{PBuAd}_{2}(20 \mathrm{~mol} \%)+\mathrm{AgBr}(20 \mathrm{~mol} \%)+\mathrm{NMe}_{4} \mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}(1.5 \\ & \text { equiv) } \end{aligned}$	50:50
5.	$\begin{aligned} & \mathrm{PBuAd}_{2}(20 \mathrm{~mol} \%)+\mathrm{AgBr}(20 \mathrm{~mol} \%)+\mathrm{NMe}_{4} \mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}(1.5 \\ & \text { equiv) }+\mathrm{K}_{2} \mathrm{CO}_{3}(4.0 \text { equiv }) \end{aligned}$	17:83
6.	Pd-G4 $(5 \mathrm{~mol} \%)+\mathrm{PhBr}\left(1.5\right.$ equiv) $+\mathrm{K}_{2} \mathrm{CO}_{3}$ (4.0 equiv) + $\mathrm{NMe}_{4} \mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}$ (1.5 equiv)	100:0
7.	$\operatorname{PBuAd}_{2}(20 \mathrm{~mol} \%)+\operatorname{AgBr}(20 \mathrm{~mol} \%)+\mathrm{KOC}\left(\mathrm{CF}_{3}\right)_{3}(1.5$ equiv)	63:37

[^0]
IV-2. Preparation of $\left(\mathbf{P B u A d}_{2}\right) \mathbf{A g B r}$

Silver bromide ligated by cataCXium ${ }^{\circledR}$ A. AgBr ($37.6 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv) and cataCXium ${ }^{\circledR}$ A ($71.7 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv) were weighed in a 10 mL reaction vial inside a glovebox. Dry acetonitrile (1.0 mL) was added and the resulting mixture was heated under reflux for 16 h in darkness resulting in the formation of a white precipitate. CHCl_{3} was added to crude mixture and filtered. The filtrate was concentrated under reduced pressure to afford the desired complex as white solid $(96 \%, 104.3 \mathrm{mg})$. Crystals suitable for X-ray diffraction were grown from $\mathrm{CHCl}_{3} /$ pentane at $25^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.02-1.91(\mathrm{~m}, 18 \mathrm{H}), 1.73(\mathrm{~s}, 12 \mathrm{H}), 1.59-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.49$ - $1.40(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 41.0(\mathrm{dd}, J=4.3,1.8$ $\mathrm{Hz}), 38.3$ (dd, $J=11.0,4.3 \mathrm{~Hz}$), 36.5, 34.3 (dd, $J=10.7,3.2 \mathrm{~Hz}$), 28.4 (d, $J=9.0 \mathrm{~Hz}$), 24.8 (d, $J=15.3 \mathrm{~Hz}$), 15.9 (dd, $J=14.6,3.2 \mathrm{~Hz}$), 13.9; ${ }^{31} \mathbf{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 57.75$ (dd, $\left.{ }^{1} J\left({ }^{107} \mathrm{Ag}-\mathrm{P}\right)=582.2 \mathrm{~Hz},{ }^{1} J\left({ }^{109} \mathrm{Ag}-\mathrm{P}\right)=673.6 \mathrm{~Hz}\right)$. IR: $v=2899,2847,1447,1342,1301$, 1103, $972,907,732,723 ;$ MP: $>250^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{\mathbf{1 3}} \mathbf{C}$ NMR (101 MHz, CDCl_{3})

${ }^{31} \mathbf{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

IV-3. Preparation of $\left(\mathbf{P B u A d}_{2}\right) \mathrm{Ag} \operatorname{OC}\left(\mathrm{CF}_{3}\right)_{3}$

Silver oxide ($23.1 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv), cataCXium ${ }^{\circledR}$ A ($71.7 \mathrm{mg}, 0.2 \mathrm{mmol}, 2.0$ equiv), nonafluoro-tert-butanol ($28 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{PhCH}_{3}(0.5 \mathrm{~mL})$ were taken in a 10 mL reaction vial inside a glovebox and stirred at room temperature overnight in darkness. The reaction crude was diluted with CHCl_{3} and filtered through a small cotton plug. The filtrate was concentrated under reduced pressure to afford the product as a light brown solid $(99 \%, 139.3 \mathrm{mg})$. Crystals suitable for X-ray diffraction were grown from $\mathrm{CHCl}_{3} /$ pentane at $25^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.02(\mathrm{~s}, 6 \mathrm{H}), 1.94-1.86(\mathrm{~m}, 12 \mathrm{H}), 1.76-1.68(\mathrm{~m}, 12 \mathrm{H}), 1.54$ - $1.41(\mathrm{~m}, 6 \mathrm{H}), 0.93(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 123(\mathrm{qm}, J=294.5$ $\mathrm{Hz}), 83.3$ ($\mathrm{sx}, J=27.7 \mathrm{~Hz}$), $41.01(\mathrm{t}, J=3.2 \mathrm{~Hz}), 38.2(\mathrm{dd}, J=14.3,5.2 \mathrm{~Hz}), 36.4,34.9(\mathrm{dd}, J$ $=9.8,3.6 \mathrm{~Hz}), 28.4(\mathrm{~d}, J=9.1 \mathrm{~Hz}), 24.7(\mathrm{~d}, J=15.7 \mathrm{~Hz}), 15.7(\mathrm{dd}, J=18.1,3.3 \mathrm{~Hz}), 13.8$; ${ }^{31} \mathbf{P}$ NMR ($\left.202 \mathrm{MHz}, \mathrm{PhCH}_{3}-d_{8}\right) \delta 61.00\left(\mathrm{dd},{ }^{1} J\left({ }^{107} \mathrm{Ag}-\mathrm{P}\right)=693.9 \mathrm{~Hz},{ }^{1} J\left({ }^{109} \mathrm{Ag}-\mathrm{P}\right)=743\right.$ $\mathrm{Hz}) ;{ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{PhCH}_{3}-d_{8}$) $\delta-75.48$; IR: $v=2900,2848,1448,1301,1254,1223$, $1195,1142,956,832,722$; MP: $230^{\circ} \mathrm{C}$; Analysis calcd for $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{AgF}_{9} \mathrm{OP}: \mathrm{C} 47.94$, H 5.60, P 4.42, Ag 15.38; found C 48.01, H 5.58, P 4.21, Ag 15.03.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
(1)
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{31} \mathbf{P}$ NMR ($202 \mathrm{MHz}, \mathrm{PhCH}_{3}-d_{8}$)

${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{PhCH}_{3}-d_{8}$)

IV-4. Identification of active catalyst for the arylation reaction by monitoring through ${ }^{31} \mathrm{P}$ and ${ }^{19} \mathrm{~F}$ NMR

CataCXium ${ }^{\circledR}$ A ($7.2 \mathrm{mg}, 0.02 \mathrm{mmol}$), $\mathrm{AgBr}(4 \mathrm{mg}, 0.02 \mathrm{mmol})$ and $\mathrm{NMe}_{4} \mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}(46.3$ $\mathrm{mg}, 0.015 \mathrm{mmol})$ in $\mathrm{PhCH}_{3}-d_{8}(1.0 \mathrm{~mL})$ were taken in the reaction vial and heated to $75{ }^{\circ} \mathrm{C}$ for 16 h . The reaction mixture was cooled and analysed by ${ }^{31} \mathrm{P}$ NMR at $-30{ }^{\circ} \mathrm{C}$. Figure S3 compares this NMR with that of reference compounds recorded in $\mathrm{PhCH}_{3}-d_{8}$ taken at room temperature (Note: The broad doublet for $\mathrm{PBuAd}_{2} \mathrm{AgBr}$ is a result of its low solubility in $\left.\mathrm{PhCH}_{3}-d_{8}\right)$.

Scheme S8: Formation of CataCXium-ligated silver complexes in PhCH_{3}

Figure S3. ${ }^{31}$ P NMR spectrum showing the formation of silver intermediates in the crude reaction

Figure S4. ${ }^{19} \mathbf{F}$ NMR spectrum showing the formation of silver intermediates \mathbf{n} the crude reaction

IV-5. Kinetic Experiments ${ }^{5,6}$

IV-5.1. General procedure for kinetic experiments employing 2-fluorotoluene chromium complex 1a and 4-bromotoluene 2b

Pd-G4 ($14.8 \mathrm{mg}, 0.02 \mathrm{mmol}$), $\mathrm{PBuAd}_{2}(30 \mathrm{mg}, 0.08 \mathrm{mmol}), \mathrm{AgBr}(15 \mathrm{mg}, 0.08 \mathrm{mmol})$, $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($221.1 \mathrm{mg}, 1.6 \mathrm{mmol}$), $\mathrm{NMe}_{4} \mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}(185.5 \mathrm{mg}, 0.6 \mathrm{mmol}), \mathbf{1 b}(99 \mathrm{mg}, 0.4 \mathrm{mmol})$, $\mathbf{2 b}(75 \mu \mathrm{~L}, 0.6 \mathrm{mmol})$ and 4-nitrotoluene ($55.4 \mathrm{mg}, 0.4 \mathrm{mmol}$) were weighed in the glovebox into a 10 mL microwave vial. $\mathrm{PhCH}_{3}-d_{8}(4 \mathrm{~mL})$ was added to the vial. The vial was sealed, transferred out of the glovebox and placed in an oil bath at $75^{\circ} \mathrm{C}$. A stirring rate of 1250 rpm was maintained. Aliquots of approximately $50 \mu \mathrm{~L}$ were taken by syringe each hour. Each aliquot was diluted with dry, base-treated $\mathrm{CDCl}_{3}(400 \mu \mathrm{~L})$ and passed through a plug of cotton into an NMR tube. The plug was washed with additional $\mathrm{CDCl}_{3}(400 \mu \mathrm{~L})$. The progress of the reaction was monitored by quantitative ${ }^{1} \mathrm{H}$ NMR, using 4-nitrotoluene as internal standard (8.0 ppm was the signature signal).

IV-5.1.1. Reproducibility of Kinetic Data

The reproducibility of the concentration-time profiles of the following reaction was demonstrated by running the reaction in duplicate. In both the cases the overlay between the kinetic profiles is good, indicating that the data are highly reproducible.

Figure S5. Reproducibility of temporal concentration profiles monitored by quantitative ${ }^{1} \mathbf{H}$ NMR spectroscopy for reactions carried out under the standard conditions

IV-5.1.2. Same-Excess Experiment

Figure S6. Temporal concentration profiles monitored by quantitative ${ }^{1} \mathrm{H}$ NMR spectroscopy for reactions carried out under "same excess" conditions.

The non-overlap between the temporal concentration profiles of the "time-adjusted standard conditions" and the same ["excess"] experiments indicated that there is either catalyst decomposition or product inhibition occurring in the reaction. We hypothesized that perfluoro-tert-butanol, formed in the reaction, could be responsible for the observed differences. To test this, we repeated the same excess experiment with the addition of 0.05 M to the run with $[\mathbf{1 b}]=0.1 \mathrm{M}$ and $[\mathbf{2 b}]=0.15 \mathrm{M}$. The curves overlapped in this case, after adjusting the time, indicating that the small deviation observed in Fig S6 is likely due to inhibition by perfluoro-tert-butanol.

Standard conditions with added perfluorobutanol

Figure S7. Temporal concentration profiles monitored by quantitative ${ }^{1} \mathrm{H}$ NMR spectroscopy for reactions carried out under "same excess" conditions with added side-product (perfluorobutanol) to check product inhibition.

IV-5.1.3. Determination of the Orders in Catalysts

General consideration

The order in catalyst has been determined using normalized time scale analysis. Reactions were carried out with different concentrations of catalyst and their temporal profiles were normalized according to the catalyst loading raised to the power of the order in the catalyst. All the resulting curves were plotted together and the correct order in catalyst is the one that causes the curves to overlay.

Determination of order in Pd catalyst

Figure S8: (a)Temporal reaction profiles of reactions carried out with 5-10 mol \% of [Pd-G4]; (b) Normalized time scale profiles for order 0.3 in [Pd-G4]; (c) Normalized time scale profiles for order 0.5 in [Pd-G4]; (d) Normalized time scale profiles for order 1.0 in [Pd-G4].

The overlap between the temporal reaction profiles with catalyst loadings of 5 and $10 \mathrm{~mol} \%$ suggests that the order in $[\mathrm{Pd}]$ is 0.3 at these concentrations.

Determination of order in phosphine-ligated Ag catalyst
[Pd-G4] (5 mol \%)
$\mathrm{PBuAd}_{2}(20-30 \mathrm{~mol} \%) / \mathrm{AgBr}(20-30 \mathrm{~mol} \%)$

3bb
[Pd-G4]

Figure S9: (a) Temporal reaction profiles of reactions carried out with 20-30 mol \% of [Ag]; (b) Normalized time scale profiles for order 0.3 in [Ag]; (c) Normalized time scale profiles for order 0.5 in [Ag]; (d) Normalized time scale profiles for order 1.0 in [Ag].

Applying VTNA, the curves overlapped for an order equal to 0.5 , which is consistent with this reagent being present as an inactive dimeric resting state of the type $\left[\left(\mathrm{PBuAd}_{2}\right)_{2} \mathrm{Ag}_{2} \mathrm{X}_{\mathrm{n}}\right]$ in equilibrium with the active monomeric species $\left[\left(\mathrm{PBuAd}_{2}\right) \mathrm{AgX}\right]$. Moreover, based on our
H / D exchange experiment, we speculate that a plausible monomeric $\left(\mathrm{PBuAd}_{2}\right) \mathrm{AgOC}\left(\mathrm{CF}_{3}\right)_{3}$ species, formed in situ by anion exchange with $\mathrm{NMe}_{4} \mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}$ could be responsible for the observed reactivity.

IV-5.1.4. Determination of the Orders of Reactants

Determination of order in 1b

[Pd-G4] (5 mol \%)
$\mathrm{PBuAd}_{2}(20 \mathrm{~mol} \%) / \mathrm{AgBr}(20 \mathrm{~mol} \%)$

Figure S10: (a) Temporal reaction profiles of reactions carried out with 0.4-0.6 mmol of $\mathbf{1 b}$; (b) Normalized time scale profiles for order $0.5 \mathrm{in} \mathrm{1b}$; (c) Normalized time scale profiles for order 0.7 in 1b; (d) Normalized time scale profiles for order 1.0 in 1b.

The overlap between the normalized time scale profiles for these two reactions with two different concentrations of $\mathbf{1 b}$ shows an order of 0.7 . This suggests that $\mathrm{C}-\mathrm{H}$ activation of $\mathbf{1 b}$ is kinetically relevant.

Determination of order in 2b

Figure S11: (a) Temporal reaction profiles of reactions carried out with 0.6-1.0 mmol of 2b; (b)
Normalized time scale profiles for order 0.5 in $\mathbf{2 b}$.

The overlay between the temporal concentration curves for these two reactions with two different concentrations of bromoarene indicates an order of zero for bromoarene $\mathbf{2 b}$. This rules out that the oxidative addition is kinetically relevant.

Kinetic Profiles with different loadings of $\mathrm{NMe}_{4} \mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}$ salt

Figure S12: Temporal reaction profiles of reactions carried out with $\mathbf{0 . 4 - 0 . 6 - 1 . 0 ~ m m o l ~ o f ~} \mathrm{NMe}_{4} \mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}$ The order in $\mathrm{NMe}_{4} \mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}$ is apparently zero due to poor solubility in PhCH_{3}. Additionally, reactions ran at different stirring rates gave same temporal concentration profiles suggesting its independence in the rate-limiting step.

IV-6. Copasi Modelling ${ }^{7}$

To investigate the plausibility of our proposed mechanism given the observed reaction orders, we simulated a simplified model system (Figure S13). We found that the observed orders were compatible with this model when the rates of transmetallation and $\mathrm{C}-\mathrm{H}$ activation were comparable, and the rate of 'retro $\mathrm{C}-\mathrm{H}$ activation' (corresponding to k_{-3}) is relatively slow. The result demonstrates that our data are compatible with this mechanism with at least one set of relative rate constants. Note that the rate constants obtained here are not obtained by fitting to our kinetic data and have no physical relevance - they are included for illustrative purposes only.

S.No.	Catalyst/ Substrate	Orders
1	Ar-H (1)	0.7
2	$[\mathrm{Pd}]$	0.3
3	$[\mathrm{Ag}]$	0.5

Figure S13: Temporal reaction profiles with different component loadings computed using COPASI modelling.

Table S7. Simulated rate constants for the simplified model above.

Rate constant	Rate constant
k_{1}	$10^{5} \mathrm{mLmmol}^{-1} \mathrm{~s}^{-1}$
k_{2}	$100 \mathrm{~s}^{-1}$
k_{-2}	$10^{6} \mathrm{mLmmol}^{-1} \mathrm{~s}^{-1}$
k_{3}	$2.54 \mathrm{mLmmol}^{-1} \mathrm{~s}^{-1}$
k_{3}	$0.115 \mathrm{mLmmol}^{-1} \mathrm{~s}^{-1}$
k_{4}	$10^{5} \mathrm{~s}^{-1}$
k_{5}	$10^{4} \mathrm{~mL}^{2} \mathrm{mmol}^{-2} \mathrm{~s}^{-1}$
k_{6}	$28.3 \mathrm{mLmmol}^{-1} \mathrm{~s}^{-1}$
k_{7}	$447 \mathrm{~s}^{-1}$

Differential equations for model depicted above

$$
\begin{aligned}
& \frac{d[\mathbf{I}]}{d t}=-2 k_{1}[\mathbf{I}]^{2} \\
& \frac{d[\mathbf{I I}]}{d t}=k_{1}[\mathbf{I}]^{2}+k_{-2}[\mathbf{I I I}]^{2}-k_{2}[\mathbf{I I}] \\
& \frac{d[\mathbf{I I I}]}{d t}=-2 k_{-2}[\mathbf{I I I}]^{2}+2 k_{2}[\mathbf{I I}]+k_{-3}[\mathbf{I V}]\left[\left(\mathbf{C F}_{3}\right)_{3} \mathbf{C O H}\right]-k_{3}[\mathbf{1}][\mathbf{I I I}]+k_{6}[\mathbf{I V}][\mathbf{V I}] \\
& \frac{d[\mathbf{I V}]}{d t}=-k_{-3}[\mathbf{I V}]\left[\left(\mathbf{C F}_{3}\right)_{3} \mathbf{C O H}\right]+k_{3}[\mathbf{1}][\mathbf{I I I}]-k_{6}[\mathbf{I V}][\mathbf{V I}] \\
& \frac{d[\mathbf{V I}]}{d t}=-k_{6}[\mathbf{I V}][\mathbf{V I}]+k_{5}[\mathbf{V I I I}][2]\left[\mathbf{T M A O C}\left(\mathbf{C F}_{3}\right)_{3}\right] \\
& \frac{d[\mathbf{V I I}]}{d t}=k_{6}[\mathbf{I V}][\mathbf{V I}] \\
& \frac{d[\mathbf{V I I I}]}{d t}=-k_{5}[\mathbf{V I I I}][\mathbf{2}]\left[\mathbf{T M A O C}\left(\mathbf{C F}_{3}\right)_{3}\right]+k_{7}[\mathbf{V I I}][\mathbf{3}]+k_{4}[\mathbf{P d G 4}]
\end{aligned}
$$

V. Arene-Exchange

$1 i$

All the above arenes were synthesised using reported procedures. ${ }^{7}$
General procedure for the optimization of arene-exchange reaction of (polyarene) $\mathrm{Cr}(\mathrm{CO})_{3}$ complexes with 2-flurotoluene.
(Polyarene) chromium-tricarbonyl complex 1i-11 ($0.1 \mathrm{mmol}, 1.0$ equiv) and 2-fluorotoluene $\mathbf{5 b}$ in ethereal solvent $(0.1 \mathrm{~mL}, 1.0 \mathrm{M})$ were set up in flame-dried reaction vial inside the glove box and was stirred at $90^{\circ} \mathrm{C}$ for 16 h . The reaction set-up was covered with aluminium foil to avoid decomposition of starting material and product. After this time, the reaction crude was analysed by ${ }^{1} \mathrm{H}$ NMR to calculate the yield of $\mathbf{1 b}$ compared to 4 -nitrotoluene as internal standard

V-1. Solvent-Screening

π-bounded polyarene complexes are known to carry out arene-exchange phenomena. ${ }^{8}$ (Naphthalene) $\mathrm{Cr}(\mathrm{CO})_{3}$ was chosen as model substrate for the arene-exchange.

Table S8. Screening of solvent and equivalents of 5 for arene-exchange ${ }^{\text {a }}$

Entry	\mathbf{x}	Solvent	1b (\%)
1.	4	Diethyl ether	54
2.	4	Di-n-butyl ether	60
3.	4	Dioxane	84
4.	4	2-Methyltetrahydrofuran	83
5.	4	Methoxycyclopentane	45
6.	5	Dioxane	90
7.	6	Dioxane (no THF)	99

[a] Reaction conditions: $\mathbf{1 i}(26.4 \mathrm{mg}, 1.0$ equiv, 0.1 mmol$)$, Solvent $(1.0 \mathrm{M})$; the yields are determined by ${ }^{1} \mathrm{H}$ NMR analysis using 1,3-dinitrobenzene as internal standard.

V-2. Polyarene-Screening

The suitability of different chromium complexes for arene-exchange reaction was tested and the results are shown below. It was seen that pyrene chromium complex was highly labile as compared to other substrates.

Scheme S10. Polyarene screening for arene-exchange
Table S9. Polyarene screening for arene-exchange ${ }^{\text {a }}$

[a] Reaction conditions: $\mathbf{1}$ (1.0 equiv, 0.1 mmol), $\mathbf{5 a}$ (1.2 equiv, 0.12 mmol); the yields are determined by ${ }^{1} \mathrm{H}$ NMR analysis using 1,3-dinitrobenzene as internal standard; [b] Reaction carried out at $60^{\circ} \mathrm{C}$.

V-3. One-pot Complexation-Arylation Reaction

Pyrene chromium-tricarbonyl complex 11 ($169.0 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv) and 2fluorotoluene $\mathbf{5 b}$ ($0.6 \mathrm{mmol}, 1.2$ equiv) in dioxane ($0.5 \mathrm{~mL}, 1.0 \mathrm{M}$) were taken in a flamedried reaction vial inside the glove box and was stirred at $90^{\circ} \mathrm{C}$ for 16 h for $\mathbf{1 b}$ formation. The vial was covered with aluminium foil to avoid decomposition of starting material and product. After this time, the reaction was cooled and the solvent was removed in vacuo. After the removal of dioxane, a mixture of Pd-G4 ($18.6 \mathrm{mg}, 0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%$), $\mathrm{AgBr}(18.8$ $\mathrm{mg}, 0.1 \mathrm{mmol}, 20 \mathrm{~mol} \%$), $\mathrm{PBuAd}_{2}\left(37.7 \mathrm{mg}, 0.1 \mathrm{mmol}, 20 \mathrm{~mol} \%\right.$), $\mathrm{K}_{2} \mathrm{CO}_{3}(276.4 \mathrm{mg}, 4.0$ equiv, 2.0 mmol), $\mathrm{NMe}_{4} \mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}(232.6 \mathrm{mg}, 1.5$ equiv, 0.75 mmol), and bromobenzene 2a (1.5 equiv, 0.75 mmol) in $\mathrm{PhCH}_{3}(0.5 \mathrm{~mL}, 1.0 \mathrm{M})$ were added to the same reaction vial inside the glove box. The vial was capped and stirred at $75^{\circ} \mathrm{C}$ for 17 h . The reaction set-up was covered with aluminium foil to avoid any decomposition of starting material and product. After this time, the reaction mixture was subjected to decomplexation of the chromium moiety using $\mathrm{MnO}_{2}(130.4 \mathrm{mg}, 1.5 \mathrm{mmol}, 3$ equiv) $/ \mathrm{AcOH}(3.0 \mathrm{~mL})$ and purified by column chromatography to afford the desired coupling products 3ba.

Scheme S11. One-pot Complexation-Arylation

VI. References

(1) (a) Ricci, P.; Kraemer, K.; Cambeiro, X. C.; Larrosa, I. Arene-Metal π-Complexation as a Traceless Reactivity Enhancer for C-H Arylation J. Am. Chem. Soc. 2013, 135, 13258-13261; (b) Ricci, P.; Krämer, K.; Larrosa, I. Tuning Reactivity and Site Selectivity of Simple Arenes in C-H Activation: Ortho-Arylation of Anisoles via Arene-Metal π-Complexation J. Am. Chem. Soc. 2014, 136, 18082-18086.
(2) Simonetti, M.; Perry, G. J. P.; Cambeiro, X. C.; Juliá-Hernández, F.; Arokianathar, J. N.; Larrosa, I. Ru-Catalyzed C-H Arylation of Fluoroarenes with Aryl Halides J. Am. Chem. Soc. 2016, 138, 3596-3606.
(3) Whitaker, D.; Batuecas, M.; Ricci, P.; Larrosa, I. A Direct Arylation-Cyclisation Reaction for the Construction of Medium - Sized Rings Chem. Eur. J. 2017, 23, 12763-12766.
(4) Roesner, S; Buchwald, S. L. Continuous - Flow Synthesis of Biaryls by Negishi Cross - Coupling of Fuoro - and Trifluoromethyl-Substituted (Hetero)Arenes Angew. Chem. Int. Ed. 2016, 55, 10463-10467.
(5) Blackmond, D. G. Reaction Progress Kinetic Analysis: a Powerful Methodology for Mechanistic Studies of Complex Catalytic Reactions Angew. Chem. Int. Ed. 2005, 44, 4302-4320.
(6) Burés, J. Variable Time Normalization Analysis: General Graphical Elucidation of Reaction Orders from Concentration Profiles Angew. Chem. Int. Ed. 2016, 55, 1608416087.
(7) Hoops, S.; Sahle, S.; Gauges, R.; Lee, C.; Pahle, J.; Simus, N.; Singhal, M.; Xu, L.; Mendes, P.; Kummer, U. COPASI-a COmplex PAthway SImulator Bioinformatics 2006, 22, 3067-3074.
(8) (a) Kündig, E. P.; Perret, C.; Spichiger, S.; Bernardinelli, G. Naphthalene Complexes: V. Arene Exchange Reactions in Naphthalenechromium Complexes J. Organomet. Chem. 1985, 286, 183-200; (b) Howell,J. A. S.; Ashford, N. F.; Dixon, D. T.; Kola, J. C.; Albright, T. A.; Kang, S. K. The Arene-Exchange Reaction in Naphthalene- and Pyrene Chromium Tricarbonyl Organometallics 1991, 10, 1852-1864.
VII. ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}$-NMR and ${ }^{19} \mathrm{~F}$ NMR spectra
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19} \mathbf{F}$ NMR (376 MHz, CDCl_{3})

${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3})

${ }^{19}$ F NMR (471 MHz, CDCl_{3})

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19} \mathbf{F}$ NMR (471 MHz, CDCl_{3})

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3})

${ }^{19}$ F NMR (471 MHz, CDCl_{3})

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19} \mathbf{F}$ NMR (471 MHz, CDCl_{3})

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$

${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19} \mathbf{F}$ NMR (471 MHz, CDCl_{3})

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	$\begin{aligned} & -100 \\ & \mathrm{ppm} \end{aligned}$	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3})

${ }^{19}$ F NMR (471 MHz, CDCl_{3})

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19} \mathbf{F}$ NMR (376 MHz, CDCl_{3})
Me_
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{\mathbf{1 3}} \mathbf{C}$ NMR (101 MHz, CDCl_{3})

${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3})

${ }^{19}$ F NMR (471 MHz, CDCl_{3})

${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19} \mathbf{F}$ NMR (376 MHz, CDCl_{3})

${ }^{1} \mathbf{H ~ N M R ~ (4 0 0 ~ M H z , ~} \mathrm{CDCl}_{3}$)

${ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19} \mathbf{F}$ NMR (471 MHz, CDCl_{3})

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19} \mathbf{F}$ NMR (471 MHz, CDCl_{3})

${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19} \mathbf{F}$ NMR (471 MHz, CDCl_{3})

${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl_{3})

${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{\mathbf{1 3}} \mathbf{C}$ NMR (101 MHz, CDCl_{3})

${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19} \mathbf{F}$ NMR (471 MHz, CDCl_{3})

VIII. Crystallographic information

(PBuAd2)AgBr: Crystals suitable for X-ray diffraction were grown from $\mathrm{CHCl}_{3} /$ pentane at $25{ }^{\circ} \mathrm{C}$

The crystal structure was deposit at the Cambridge Crystallographic Data Centre.
CCDC Deposition number: 1958860

A clear colourless block-shaped crystal with dimensions $0.11 \times 0.08 \times 0.06 \mathrm{~mm}^{3}$ was mounted on a suitable support. Data were collected using an XtaLAB AFC11 (RINC): Kappa single diffractometer operating at $T=100.00(10) \mathrm{K}$. Data were measured using w scans using CuK_{a} radiation. The total number of runs and images was based on the strategy calculation from the program CrysAlisPro (Rigaku, V1.171.40.54a, 2019) The maximum resolution that was achieved was $Q=76.158^{\circ}(0.83 \AA)$. The diffraction pattern was indexed The total number of runs and images was based on the strategy calculation from the program CrysAlisPro (Rigaku, V1.171.40.54a, 2019) and the unit cell was refined using CrysAlisPro (Rigaku, V1.171.40.54a, 2019) on 12735 reflections, 48% of the observed reflections. Data reduction, scaling and absorption corrections were performed using CrysAlisPro (Rigaku,

V1.171.40.54a, 2019). The final completeness is 99.10% out to 76.158° in Q. A multi-scan absorption correction was performed using CrysAlisPro 1.171.40.54a (Rigaku Oxford Diffraction, 2019) using spherical harmonicsas implemented in SCALE3 ABSPACK.. The absorption coefficient m of this material is $9.995 \mathrm{~mm}^{-1}$ at this wavelength ($l=1.542 \AA$) and the minimum and maximum transmissions are 0.802 and 1.000 . The structure was solved and the space group C2/c (\# 15) determined by the ShelXT (Sheldrick, 2015) structure solution program using dual and refined by full matrix least squares on $\mathbf{F}^{\mathbf{2}}$ using version 2018/3 of ShelXL (Sheldrick, 2015). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model. Hydrogen atom positions were calculated geometrically and refined using the riding model.

Crystal Data. $\mathrm{C}_{104} \mathrm{H}_{172} \mathrm{Ag}_{4} \mathrm{Br}_{4} \mathrm{Cl}_{6} \mathrm{P}_{4}, \quad M_{r}=2510.0$, monoclinic, $C 2 / c$ (No. 15), $\mathrm{a}=$ $27.5364(5) \AA, \mathrm{b}=15.9525(2) \AA, \mathrm{c}=25.9141(5) \AA, b=112.975(2)^{\circ}, a=g=90^{\circ}, V=$ 10480.4(3) $\AA^{3}, T=100.00(10) \mathrm{K}, Z=4, Z^{\prime}=0.5, m\left(\mathrm{CuK}_{a}\right)=9.995,26578$ reflections measured, 10462 unique ($R_{\text {int }}=0.0295$) which were used in all calculations. The final $w R_{2}$ was 0.0859 (all data) and R_{l} was 0.0332 (I > 2(I)).

Compound

Formula	$\mathrm{C}_{104} \mathrm{H}_{172} \mathrm{Ag}_{4} \mathrm{Br}_{4} \mathrm{Cl}_{6} \mathrm{P}_{4}$
$D_{\text {calc. }} / \mathrm{g} \mathrm{cm}{ }^{-3}$	1.591
$\mathrm{m} / \mathrm{mm}^{-1}$	9.995
Formula Weight	2510.0
Colour	clear colourless
Shape	block
Size/mm ${ }^{3}$	$0.11 \times 0.08 \times 0.06$
T/K	100.00(10)
Crystal System	monoclinic
Space Group	C2/c
$a / A ̊$	27.5364(5)
b/Å	15.9525(2)
clA	25.9141(5)
$a 1^{\circ}$	90
$b 1^{\circ}$	112.975(2)
gl ${ }^{\circ}$	90
V/A ${ }^{3}$	10480.4(3)
Z	4
Z^{\prime}	0.5
Wavelength/Å	1.54184
Radiation type	CuK_{a}
$Q_{\text {min }}{ }^{\circ}$	3.273
$Q_{\text {max }}{ }^{\circ}$	76.158
Measured Refl.	26578
Independent Refl.	10462
Reflections with I > 2(I)	9344
$R_{\text {int }}$	0.0295
Parameters	525
Restraints	0
Largest Peak	1.142
Deepest Hole	-1.130
GooF	1.055
$w R_{2}$ (all data)	0.0859
$w R_{2}$	0.0840
R_{l} (all data)	0.0374
R_{1}	0.0332

$\left(\mathbf{P B u A d}_{2}\right) \mathbf{A g O C}\left(\mathbf{C F}_{3}\right)_{3}$: Crystals suitable for X-ray diffraction were grown from $\mathrm{CHCl}_{3} /$ pentane at $25^{\circ} \mathrm{C}$

The crystal structure was deposit at the Cambridge Crystallographic Data Centre.
CCDC Deposition number: 1958871

A clear light colourless block-shaped crystal with dimensions $0.30 \times 0.26 \times 0.22 \mathrm{~mm}^{3}$ was mounted on a suitable support. Data were collected using an XtaLAB AFC11 (RINC): Kappa single diffractometer operating at $T=100.00(10) \mathrm{K}$. Data were measured using w scans using CuK_{a} radiation. The total number of runs and images was based on the strategy calculation from the program CrysAlisPro (Rigaku, V1.171.40.58a, 2019) The maximum resolution that was achieved was $Q=76.246^{\circ}(0.83 \AA)$. The diffraction pattern was indexed The total number of runs and images was based on the strategy calculation from the program CrysAlisPro (Rigaku, V1.171.40.58a, 2019) and the unit cell was refined using CrysAlisPro (Rigaku, V1.171.40.58a, 2019) on 26289 reflections, 83% of the observed reflections. Data reduction, scaling and absorption corrections were performed using CrysAlisPro (Rigaku, V1.171.40.58a, 2019). The final completeness is 98.60% out to 76.246° in Q. A multi-scan
absorption correction was performed using CrysAlisPro 1.171.40.58a (Rigaku Oxford Diffraction, 2019) using spherical harmonicsas implemented in SCALE3 ABSPACK.. The absorption coefficient m of this material is $7.028 \mathrm{~mm}^{-1}$ at this wavelength ($l=1.542 \AA$) and the minimum and maximum transmissions are 0.722 and 1.000 . The structure was solved and the space group $P 2_{1} / c$ (\# 14) determined by the ShelXT (Sheldrick, 2015) structure solution program and refined by full matrix least squares on $\mathbf{F}^{\mathbf{2}}$ using version of ShelXL (Sheldrick, 2015). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model. Hydrogen atom positions were calculated geometrically and refined using the riding model.

Crystal Data. $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{AgF}_{9} \mathrm{OP}, M_{r}=701.43$, monoclinic, $P 2{ }_{1} / c$ (No. 14), $\mathrm{a}=9.81790(10) \AA$, $\mathrm{b}=14.10410(10) \AA, \mathrm{c}=20.6209(2) \AA, b=99.9780(10)^{\circ}, a=g=90^{\circ}, V=2812.24(5) \AA^{3}, T=$ $100.00(10) \mathrm{K}, Z=4, Z^{\prime}=1, m\left(\mathrm{CuK}_{a}\right)=7.028,31665$ reflections measured, 5724 unique $\left(R_{\text {int }}=0.0281\right)$ which were used in all calculations. The final $w R_{2}$ was 0.0727 (all data) and R_{1} was 0.0290 ($\mathrm{I}>2(\mathrm{I})$).

Compound

Formula	$\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{AgFF}_{9} \mathrm{OP}$
$D_{\text {calc. }} / \mathrm{g} \mathrm{cm}^{-3}$	1.657
$\mathrm{m} / \mathrm{mm}^{-1}$	7.028
Formula Weight	701.43
Colour	clear light colourless
Shape	block
Size/mm ${ }^{3}$	$0.30 \times 0.26 \times 0.22$
T/K	100.00(10)
Crystal System	monoclinic
Space Group	$P 2.1 / c$
a / \AA	9.81790(10)
b/Å	14.10410(10)
clA	20.6209(2)
$a 1^{\circ}$	90
$b l^{\circ}$	99.9780(10)
g/ ${ }^{\circ}$	90
V/ ${ }^{3}$	2812.24(5)
Z	4
Z^{\prime}	1
Wavelength/Å	1.54184
Radiation type	CuK_{a}
$Q_{\text {min }}{ }^{\circ}$	4.354
$Q_{\text {max }}{ }^{\circ}$	76.246
Measured Refl.	31665
Independent Refl.	5724
Reflections with I > 2(I)	5704
$R_{\text {int }}$	0.0281
Parameters	470
Restraints	280
Largest Peak	0.826
Deepest Hole	-0.828
GooF	1.091
$w R_{2}$ (all data)	0.0727
$w R_{2}$	0.0727
R_{l} (all data)	0.0291
R_{1}	0.0290

[^0]: [a] Yield determined by quantitative ${ }^{1} \mathrm{H}-\mathrm{NMR}$ using 4-nitrotoluene as internal standard. Reactions carried out at 0.1 mmol scale of $\mathbf{1 b}$.

