SUPPORTING INFORMATION: Accurate water properties from an efficient ab-initio method

Subrata Jana,*,[†] Lucian A. Constantin,^{*,‡} and Prasanjit Samal^{*,†}

†School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India

‡Center for Biomolecular Nanotechnologies @UNILE, Istituto Italiano di Tecnologia, Via Barsanti, I-73010 Arnesano, Italy

E-mail: subrata.jana@niser.ac.in; lucian.constantin@iit.it; psamal@niser.ac.in

List of Tables

3

S2	Relative binding energies (with respect to the prism structure) for differ-	
	ent low-lying energy isomer of the water hexamer. The reference values	
	are from high-level wavefunction calculations (CCSD(T)/CBS of Ref. ³). The	
	MP2/aug-cc-pVTZ level geometries, ^4 and the jun-cc-pV(T+d)Z basis of Pa-	
	pajak/Truhlar ² are used. All results are in kcal/mol. Best calculated values	
	are in bold style. Only TM and revTM functionals are considered	4
S3	Details of the harmonic vibrational frequencies of the water monomer using	
	different methods. All values are in $\rm cm^{-1}$ and calculated with an aug-cc-pVTZ	
	basis set. The CCSD(T)/ha5Z reference values are taken from. 5 \ldots	4
S4	Details of the harmonic vibrational frequencies of the water dimer using dif-	
	ferent methods. All values are in cm^{-1} and calculated with an aug-cc-pVTZ	
	basis set. The CCSD(T)/ha5Z reference values are taken from. 5 \ldots	4
S5	Details of the harmonic vibrational frequencies of the water trimer using dif-	
	ferent methods. All values are in cm^{-1} and calculated with an aug-cc-pVTZ	
	basis set. The CCSD(T)/haTZ reference values are taken from. 6 $~$	4
S6	Details of the harmonic vibrational frequencies of the water tetramer using	
	different methods. All values are in $\rm cm^{-1}$ and calculated with an aug-cc-pVTZ	
	basis set. The CCSD(T)/haTZ reference values are taken from. 6 $~$	5
S7	Details of the harmonic vibrational frequencies of the water pentamer using	
	different methods. All values are in $\rm cm^{-1}$ and calculated with an aug-cc-pVTZ	
	basis set. The CCSD(T):MP2/haQZ values are taken from ref. 6 $~\ldots~\ldots~\ldots$	5
$\mathbf{S8}$	Details of the harmonic vibrational frequencies of the water hexamer (book)	
	using different methods. All values are in cm^{-1} and calculated with an aug-	
	cc-pVTZ basis set. The CCSD(T):MP2/haQZ values are taken from ref. 6	
		6

- S9 Details of the harmonic vibrational frequencies of the water hexamer (cage) using different methods. All values are in cm⁻¹ and calculated with an augcc-pVTZ basis set. The CCSD(T):MP2/haQZ values are taken from ref.⁶
 7
- S10 Details of the harmonic vibrational frequencies of the water hexamer (prism) using different methods. All values are in cm⁻¹ and calculated with an augcc-pVTZ basis set. The CCSD(T):MP2/haQZ values are taken from ref.⁶

8

9

9

- S11 Details of the harmonic vibrational frequencies of the water hexamer (ring) using different methods. All values are in cm⁻¹ and calculated with an augcc-pVTZ basis set. The CCSD(T):MP2/haQZ values are taken from ref.⁶
- S12 Gas phase dipole moments (in Debye) of the water clusters as calculated by different methods. The available experimental references and MP2 values are also given. The dipole moment of the tetramer is zero by symmetry.

Table S1: Binding energies per monomer (in meV/H_2O) of four water hexamer obtained from different functionals. The reference MP2, CCSD(T) and DMC reference values are taken from Refs.¹ The MP2 optimized geometries¹ are considered for single-point energy calculations. The jun-cc-pV(T+d)Z basis of Papajak/Truhlar² are used. The most stable structure is in bold style. Only TM and revTM functionals are considered.

Methods	Prism	Cage	Book	Cycle
MP2	332.3	331.9	330.2	324.1
DMC	331.9	329.5	327.8	320.1
CCSD(T)	347.6	345.5	338.9	332.5
TM	355.8	337.1	324.6	310.8
E_{TM} - E_{MP2}	23.5	5.2	-5.6	-13.3
E_{TM} - E_{DMC}	23.9	7.6	-3.2	-9.3
E_{TM} - $E_{CCSD(T)}$	8.2	-8.4	-14.3	-21.7
revTM	334.8	326.3	322.5	314.4
E_{revTM} - E_{MP2}	2.5	-5.6	-7.7	-9.7
E_{revTM} - E_{DMC}	2.9	-3.2	-5.3	-5.7
E_{revTM} - $E_{CCSD(T)}$	-12.8	-19.2	-16.4	-18.1

Table S2: Relative binding energies (with respect to the prism structure) for different lowlying energy isomer of the water hexamer. The reference values are from high-level wavefunction calculations (CCSD(T)/CBS of Ref.³). The MP2/aug-cc-pVTZ level geometries,⁴ and the jun-cc-pV(T+d)Z basis of Papajak/Truhlar² are used. All results are in kcal/mol. Best calculated values are in bold style. Only TM and revTM functionals are considered.

Methods	Cage	Book1	Book2	Bag	Chair	Boat1	Boat2	ME	MAE
Ref.	0.25	0.72	1.02	1.62	1.80	2.79	2.85	-	-
TM revTM	0.67 0.27	2.39 0.79	2.66 1.06	3.15 1.76	4.30 1.91	5.28 2.92	5.37 3.04	$1.82 \\ 0.10$	1.82 0.10

Table S3: Details of the harmonic vibrational frequencies of the water monomer using different methods. All values are in $\rm cm^{-1}$ and calculated with an aug-cc-pVTZ basis set. The CCSD(T)/ha5Z reference values are taken from.⁵

	CCSD(T)	PBE	SCAN	TM	revTM
ν_1	1650	1592	1641	1628	1626
ν_2	3835	3697	3805	3704	3707
ν_1	3945	3802	3911	3804	3808

Table S4: Details of the harmonic vibrational frequencies of the water dimer using different methods. All values are in $\rm cm^{-1}$ and calculated with an aug-cc-pVTZ basis set. The CCSD(T)/ha5Z reference values are taken from.⁵

	CCSD(T)	PBE	SCAN	TM	revTM
ν_1	125	128	73	111	120
ν_2	142	161	135	131	139
ν_3	148	1637	146	135	146
ν_4	185	195	198	187	188
ν_5	351	387	380	353	363
ν_6	614	646	670	599	615
ν_7	1650	1592	1645	1627	1625
ν_8	1670	1609	1655	1640	1639
ν_9	3754	3527	3649	3585	3575
ν_{10}	3830	3690	3782	3700	3703
ν_{11}	3917	3770	3870	3775	3778
ν_{12}	3936	3791	3886	3797	3801

Table S5: Details of the harmonic vibrational frequencies of the water trimer using different methods. All values are in $\rm cm^{-1}$ and calculated with an aug-cc-pVTZ basis set. The CCSD(T)/haTZ reference values are taken from.⁶

	CCSD(T)	PBE	SCAN	TM	revTM
ν_1	125	128	73	111	120
ν_2	142	161	135	131	139
ν_3	148	1637	146	135	146
ν_4	185	195	198	187	188
ν_5	351	387	380	353	363
ν_6	614	646	670	599	615
ν_7	1650	1592	1645	1627	1625
ν_8	1670	1609	1655	1640	1639
ν_9	3754	3527	3649	3585	3575
ν_{10}	3830	3690	3782	3700	3703
ν_{11}	3917	3770	3870	3775	3778
ν_{12}	3936	3791	3886	3797	3801

Table S6: Details of the harmonic vibrational frequencies of the water tetramer using different methods. All values are in $\rm cm^{-1}$ and calculated with an aug-cc-pVTZ basis set. The CCSD(T)/haTZ reference values are taken from.⁶

	CCSD(T)	PBE	SCAN	TM	revTM
ν_1	49	55	63	46	48
ν_2	79	96	85	72	81
ν_3	208	218	217	206	218
ν_4	211	248	261	215	218
ν_5	237	263	261	241	249
ν_6	237	263	272	241	249
ν_7	253	283	289	258	264
ν_8	253	289	295	258	264
ν_9	256	289	305	262	267
ν_{10}	288	326	305	282	296
ν_{11}	400	445	472	389	404
ν_{12}	428	485	474	420	439
ν_{13}	443	494	491	432	449
ν_{14}	443	494	491	432	449
ν_{15}	736	803	798	712	735
ν_{16}	802	896	888	795	819
ν_{17}	802	896	888	795	819
ν_{18}	967	1069	1065	968	991
ν_{19}	1666	1599	1646	1629	1630
ν_{20}	1678	1617	1663	1643	1644
ν_{21}	1678	1617	1663	1643	1644
ν_{22}	1703	1649	1696	1669	1671
ν_{23}	3456	3035	3143	3243	3215
ν_{24}	3541	3177	3285	3342	3319
ν_{25}	3541	3177	3285	3342	3319
ν_{26}	3576	3230	3340	3381	3360
ν_{27}	3882	3757	3851	3765	3767
ν_{28}	3882	3758	3852	3765	3768
ν_{29}	3882	3758	3852	3765	3768
ν_{30}	3882	3758	3852	3765	3768

Table S7: Details of the harmonic vibrational frequencies of the water pentamer using different methods. All values are in $\rm cm^{-1}$ and calculated with an aug-cc-pVTZ basis set. The CCSD(T):MP2/haQZ values are taken from ref.⁶

	CCSD(T)	PBE	SCAN	TM	revTM
ν_1	18	26	45	21	23
ν_2	40	45	50	39	41
ν_3	61	76	69	59	66
ν_4	64	79	72	62	68
ν_5	178	189	193	183	186
ν_6	179	231	243	191	202
ν_7	190	239	260	201	212
ν_8	218	256	266	230	238
ν_9	231	259	279	240	244
ν_{10}	235	271	304	243	248
ν_{11}	255	304	328	265	275
ν_{12}	284	328	335	292	303
ν_{13}	293	331	339	301	307
ν_{14}	296	334	366	304	310
ν_{15}	400	456	449	389	408
ν_{16}	417	472	487	409	426
ν_{17}	438	500	507	431	450
ν_{18}	452	511	520	442	461
ν_{19}	509	567	551	495	515
ν_{20}	695	778	771	681	705
ν_{21}	764	849	842	747	772
ν_{22}	833	938	933	832	855
ν_{23}	852	957	956	846	871
ν_{24}	950	1062	1058	950	975
ν_{25}	1669	1599	1647	1630	1630
ν_{26}	1678	1613	1661	1642	1642
ν_{27}	1688	1625	1669	1650	1651
ν_{28}	1704	1649	1694	1671	1673
ν_{29}	1711	1659	1704	1677	1680
ν_{30}	3441	2967	3083	3211	3180
ν_{31}	3514	3099	3214	3298	3272
ν_{32}	3522	3108	3222	3305	3279
ν_{33}	3562	3174	3288	3353	3329
ν_{34}	3569	3184	3306	3358	3336
ν_{35}	3898	3758	3857	3764	3767
ν_{36}	3900	3759	3857	3766	3768
ν_{37}	3902	3760	3862	3767	3770
ν_{38}	3903	3762	3865	3767	3770
ν_{39}	3904	3764	3868	3769	3772

	CCSD(T)	PBE	SCAN	TM	revTM
		(H_2O)	6-book		
	27	20	17	25	27
ν_1	37	45	38	20	40
ν_2	52	40	50	51	40
ν_3	00	02	39	60	55
ν_4	95	102	13	70	09
ν_5	150	105	93	162	150
ν_6	150	143	103	105	109
ν_7	179	189	193	100	100
ν_8	105	212	198	194	203
ν_9	195	227	210	202	208
ν_{10}	220	250	244	230	237
ν_{11}	233	275	255	240	249
ν_{12}	245	279	279	200	263
ν_{13}	250	289	287	200	200
ν_{14}	271	302	300	266	279
ν_{15}	282	319	328	293	299
ν_{16}	291	329	336	298	304
ν_{17}	302	345	370	310	317
ν_{18}	377	422	405	363	381
ν_{19}	393	444	434	384	404
ν_{20}	432	482	472	416	434
ν_{21}	443	505	499	435	455
ν_{22}	467	528	524	460	478
ν_{23}	533	585	573	519	541
ν_{24}	601	649	651	594	610
ν_{25}	708	778	765	692	715
ν_{26}	735	818	812	726	755
ν_{27}	811	904	893	807	833
ν_{28}	829	927	925	822	849
ν_{29}	874	982	987	869	895
ν_{30}	989	1106	1117	997	1020
ν_{31}	1661	1592	1634	1623	1624
ν_{32}	10/3	1612	1001	1030	1037
ν_{33}	1675	1613	1655	1640	1642
ν_{34}	1691	1631	1672	1664	1657
ν_{35}	1720	1676	1087	1602	1606
ν_{36}	1/30	1070	1/1/	1092	1090
ν_{37}	3380	28/3	2904	3133	3102
ν_{38}	3455	3003	3091	3221	3193
ν_{39}	3503	3067	3159	3270	3246
ν_{40}	3087	3228	3339	3381	3330
ν_{41}	3637	3314	3441	3444	3424
ν_{42}	3031	3332	3462	3438	3438
ν_{43}	3768	3544	3670	3592	3583
ν_{44}	3893	3758	3848	3763	3767
ν_{45}	3898	3759	3851	3764	3767
ν_{46}	3900	3759	3853	3765	3767
ν_{47}	3900	3759	3855	3765	3768
ν_{48}	3903	3763	3859	3768	3772

Table S8: Details of the harmonic vibrational frequencies of the water hexamer (book) using different methods. All values are in $\rm cm^{-1}$ and calculated with an aug-cc-pVTZ basis set. The CCSD(T):MP2/haQZ values are taken from ref.⁶

	CCSD(T)	PBE	SCAN	TM	revTM
		$(H_2 O)$	6-cage		
1/4	42	51	40	31	42
ν ₁ ν ₂	56	66	58	50	58
V2 V0	74	85	79	68	76
23	100	101	107	94	102
V4 1/r	127	115	123	135	128
10	153	135	154	164	157
20	185	184	201	197	195
10	194	218	210	208	218
10	210	210	210	200	210
<i>v</i> 9	210	233	240	210	220
V10	223	241	240	210	223
ν ₁₁	234	252	250	240	245
V12	234	264	270	240	240
V13	242	204	201	243	200
V14	200	311	291	203	296
V15	201	324	300	200	300
V16	290	410	380	255	384
V17	305	413	406	381	401
V18	427	441	400	424	401
ν ₁₉	457	412	474	424	445
V20	455	517	511	433	457
V21	534	567	575	522	536
V22	552	614	610	544	572
V23	620	667	660	614	624
V24	682	735	743	678	600
V25	717	784	740	706	727
V26	774	259	971	700	708
V27	700	868	871	796	198
V28	250	020	041	956	808
V29	075	1070	1000	077	1000
V30	1666	1602	1641	1625	1620
V31	1673	1617	1654	1640	1643
V32	1684	1626	1671	1644	1648
V33	1608	1630	1670	1660	1663
V34	1707	1651	1691	1671	1675
V35	1722	1666	1711	1685	1688
V36	3324	2820	2012	3057	3032
V37	3517	3128	3220	3284	3264
V38	3556	3107	3307	32/7	3219
V39	3604	3256	3378	3404	3381
V40	3650	3314	3452	3446	3422
V41	3718	3400	3625	3552	3542
V42	3757	3538	3654	3570	3571
V43	3702	3574	3685	3611	3603
V44	3895	3755	3838	3750	3763
V45	3806	3758	3848	3767	3767
V46	3890	3763	3850	3760	3770
V47	3008	3765	3870	3779	3774
ν_{48}	3900	3703	3010	5112	0114

Table S9: Details of the harmonic vibrational frequencies of the water hexamer (cage) using different methods. All values are in cm⁻¹ and calculated with an aug-cc-pVTZ basis set. The CCSD(T):MP2/haQZ values are taken from ref.⁶

Table S10: Details of the harmonic vibrational frequencies of the water hexamer (prism) using different methods. All values are in $\rm cm^{-1}$ and calculated with an aug-cc-pVTZ basis set. The CCSD(T):MP2/haQZ values are taken from ref.⁶

	CCSD(T)	PBE	SCAN	TM	revTM
		$(H_2O)_6$	3-prism		
ν_1	61	44	61	57	64
ν_{2}	70	66	69	65	72
ν_3	74	75	77	67	77
ν_{Λ}	98	83	83	113	98
ν_5	112	92	130	128	112
Ve	149	140	156	157	152
ν-7	173	171	186	183	180
ν_{φ}	178	178	195	187	182
20	212	220	231	198	211
V10	217	235	248	223	223
v 10	238	253	262	246	249
V10	246	255	266	252	252
v 12 V10	275	279	277	267	269
V13	284	208	206	278	285
V14	287	230	325	210	205
V15	357	386	303	356	360
V16	367	406	408	364	378
V17	420	400	408	409	426
V18	420	400	451	408	420
ν_{19}	427	403	400	417	433
ν_{20}	402	500	493	400	409
ν_{21}	491	522	523	483	501
ν_{22}	530	502	570	510	551
ν_{23}	547	590	592	542	558
ν_{24}	612	660	650	599	621
ν_{25}	638	691	703	639	654
ν_{26}	675	730	724	664	687
ν_{27}	711	775	784	700	723
ν_{28}	823	890	894	812	831
ν_{29}	868	923	940	859	878
ν_{30}	1001	1095	1110	992	1014
ν_{31}	1663	1599	1642	1625	1626
ν_{32}	1674	1611	1654	1634	1637
ν_{33}	1683	1614	1657	1636	1639
ν_{34}	1699	1641	1681	1661	1666
ν_{35}	1716	1655	1709	1684	1683
ν_{36}	1733	1679	1723	1698	1699
ν_{37}	3301	2804	2872	3049	3019
ν_{38}	3509	3175	3263	3292	3271
ν_{39}	3601	3222	3369	3387	3372
ν_{40}	3620	3315	3434	3423	3405
ν_{41}	3717	3490	3601	3554	3545
ν_{42}	3735	3499	3641	3571	3561
ν_{43}	3784	3561	3676	3613	3602
ν_{44}	3799	3615	3728	3630	3622
ν_{45}	3821	3648	3769	3653	3648
ν_{46}	3898	3761	3858	3766	3769
ν_{47}	3899	3762	3859	3768	3770
1/10	3901	3764	3861	3769	3772

Table S11: Details of the harmonic vibrational frequencies of the water hexamer (ring) using different methods. All values are in $\rm cm^{-1}$ and calculated with an aug-cc-pVTZ basis set. The CCSD(T):MP2/haQZ values are taken from ref.⁶

	CCSD(T)	PBE	SCAN	TM	revTM
		$(H_2 O)$	6-ring		
ν_1	28	31	23	28	29
ν_2	28	34	32	30	29
ν_3	45	55	50	45	49
ν_{4}	45	55	52	45	49
ν_5	50	56	53	50	50
ν_6	82	98	93	83	88
ν_7	156	165	166	158	162
ν_8	172	213	227	178	187
ν_{9}	195	233	236	201	215
ν_{10}	195	235	238	210	215
ν_{11}	211	235	239	216	221
ν_{12}	211	241	270	216	221
ν_{13}	254	293	302	263	274
ν_{14}	254	299	332	268	275
ν_{15}	282	326	334	291	302
ν_{16}	292	331	334	299	306
ν_{17}	292	331	346	299	306
ν_{18}	323	367	369	331	340
ν_{19}	407	461	441	395	414
ν_{20}	426	484	456	414	434
ν_{21}	426	485	466	414	435
ν_{22}	441	507	488	432	450
ν_{23}	450	514	494	442	461
ν_{24}	450	514	504	442	461
ν_{25}	757	838	836	736	763
ν_{26}	776	865	861	758	786
ν_{27}	776	867	866	760	787
ν_{28}	867	972	969	859	888
ν_{29}	867	974	974	861	888
ν_{30}	941	1053	1053	938	966
ν_{31}	1665	1589	1635	1625	1625
ν_{32}	1676	1605	1649	1638	1638
ν_{33}	1676	1605	1652	1638	1638
ν_{34}	1701	1642	1686	1669	1670
ν_{35}	1701	1643	1689	1669	1670
ν_{36}	1716	1664	1709	1686	1688
ν_{37}	3440	2956	3073	3214	3178
ν_{38}	3505	3074	3179	3290	3260
ν_{39}	3505	3074	3200	3290	3260
ν_{40}	3554	3156	3265	3347	3321
ν_{41}	3554	3157	3284	3348	3321
ν_{42}	3570	3182	3302	3366	3340
ν_{43}	3901	3761	3864	3767	3770
ν_{44}	3901	3761	3864	3767	3770
ν_{45}	3901	3761	3864	3767	3770
ν_{46}	3901	3762	3865	3767	3770
ν_{47}	3901	3762	3870	3767	3770
ν_{48}	3901	3762	3870	3767	3770

Table S12: Gas phase dipole moments (in Debye) of the water clusters as calculated by different methods. The available experimental references and MP2 values are also given. The dipole moment of the tetramer is zero by symmetry.

Basis	Methods	Monomer	Dimer	Trimer	Tetramer	Pentamer
	Expt. ⁷	1.855	2.643	-	0.000	-
	$MP2^{8}$	1.859	2.638	1.080	0.000	0.989
aug-cc-pVTZ	PBE	1.8044	2.5107	1.1662	0.0001	1.0486
	SCAN	1.8431	2.4751	1.1463	0.0001	1.0535
	TM	1.7940	2.4083	1.1121	0.0001	1.0221
	revTM	1.7985	2.4536	1.1424	0.0001	1.0319
6-311++G(3df,3pd)	PBE	1.8515	2.5167	1.2013	0.0001	1.0803
	SCAN	1.8866	2.4397	1.1848	0.0001	1.0858
	TM	1.8380	2.4236	1.1524	0.0001	1.0581
	revTM	1.8461	2.4536	1.1781	0.0001	1.0592

References

- Santra, B.; Michaelides, A.; Fuchs, M.; Tkatchenko, A.; Filippi, C.; Scheffler, M. On the accuracy of density-functional theory exchange-correlation functionals for H bonds in small water clusters. II. The water hexamer and van der Waals interactions. J. Chem. Phys. 2008, 129, 194111.
- (2) Papajak, E.; Truhlar, D. G. Convergent Partially Augmented Basis Sets for Post-Hartree-Fock Calculations of Molecular Properties and Reaction Barrier Heights. J. Chem. Theory Comput. 2011, 7, 10–18, PMID: 26606214.
- (3) Bates, D. M.; Tschumper, G. S. CCSD(T) Complete Basis Set Limit Relative Energies for Low-Lying Water Hexamer Structures. J. Phys. Chem. A 2009, 113, 3555–3559.
- (4) Chen, Y.; Li, H. Intermolecular Interaction in Water Hexamer. J. Phys. Chem. A 2010, 114, 11719–11724.
- (5) Howard, J. C.; Gray, J. L.; Hardwick, A. J.; Nguyen, L. T.; Tschumper, G. S. Getting down to the Fundamentals of Hydrogen Bonding: Anharmonic Vibrational Frequencies of (HF)₂ and (H₂O)₂ from Ab Initio Electronic Structure Computations. J. Chem. Theory Comput. 2014, 10, 5426–5435.
- (6) Howard, J. C.; Tschumper, G. S. Benchmark Structures and Harmonic Vibrational Frequencies Near the CCSD(T) Complete Basis Set Limit for Small Water Clusters: (H₂O)_n = 2, 3, 4, 5, 6. J. Chem. Theory Comput. 2015, 11, 2126–2136.
- (7) Gregory, J. K.; Clary, D. C.; Liu, K.; Brown, M. G.; Saykally, R. J. The Water Dipole Moment in Water Clusters. *Science* **1997**, *275*, 814–817.
- (8) Kolb, B.; Thonhauser, T. van der Waals density functional study of energetic, structural, and vibrational properties of small water clusters and ice I_h. Phys. Rev. B 2011, 84, 045116.