Promoting Crystal Distribution Uniformity Based on the CVD Method with the Aid of Finite Element Methods

Feng Zhang,^a Zeping Wang,^a Kai Zheng,^a Caining Feng,^b Ran Yao,^c Luqi Tao,^c Jiabing Yu,^a and

Xianping Chen*,^a,^c

^a Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, Chongqing University, Chongqing 400044, China

^b The Faculty of Mechanical and Electrical Engineering, Guilin University of Electronic

Technology, Guilin 541004, China

^c The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, China

Table S1. Detailed parameters used in simulation and experiment

Variable name	Value (mm)
Length of quartz boat	100
outer diameter of quartz boat	15
The thickness of quartz boat wall	1
Length of silica/silicon substrate	20
Width of silica/silicon substrate	15
The thickness of silica/silicon substrate	1
Outer diameter of quartz tube	40
The thickness of quartz tube	3.5

Figure S2. The maximum crystal size difference under two methods