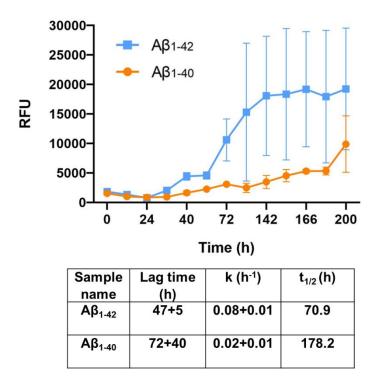
Supplementary Information

Human Plasma Protein Corona of Aβ Amyloid and Its Impact on IAPP Cross-Seeding

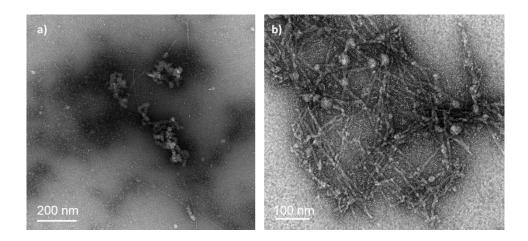
Aparna Nandakumar,¹ Yanting Xing,² Ritchlynn R. Aranha,³ Ava Faridi,¹ Aleksandr Kakinen,¹ Ibrahim Javed,¹ Kairi Koppel,¹ Emily H. Pilkington,¹ Anthony Wayne Purcell,³ Thomas P. Davis,^{1,4} Pouya Faridi,³ Feng Ding,³ and Pu Chun Ke^{1*}

¹ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia

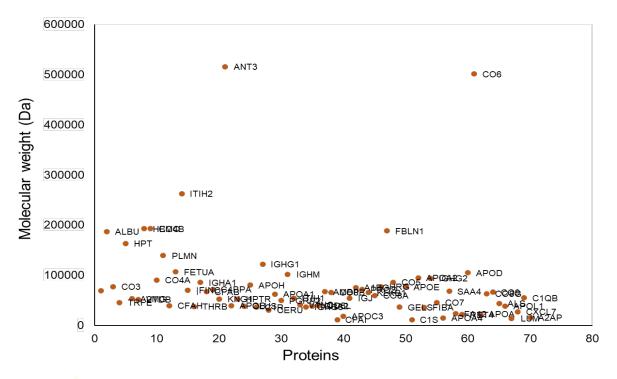
 ²Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
³Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
⁴Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia

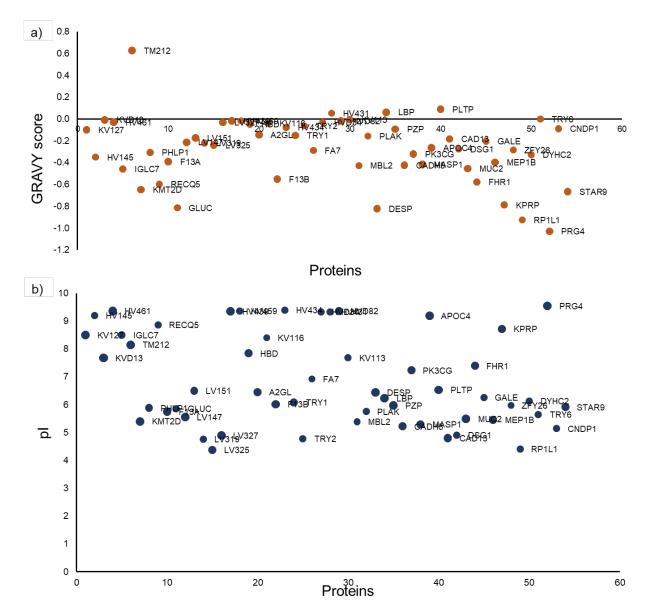

E-mail: pu-chun.ke@monash.edu

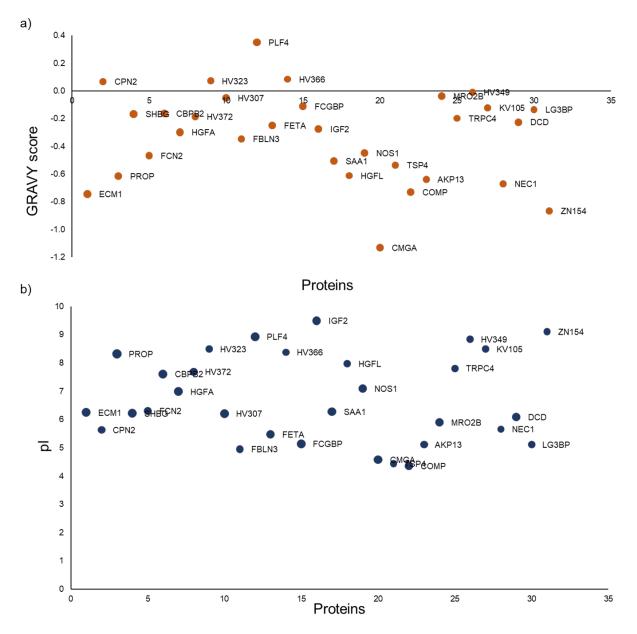
Uniport	Aβ ₁₋₄₂ unique	Protein
accession		
Q02413	Desmoglein-1	DSG1
Q8NHM4	Putative trypsin 6	TRY6
P01275	Glucagon	GLUC
P14923	Epiplakin	PLAK
A0A075B6S5	Immunoglobulin kappa variable 1-27	KV127
P11226	Mannose-binding protein C	MBL2
P08709	Coagulation factor VII	FA7
O60346	PH domain leucine-rich repeat-containing protein	PHLP1
	phosphatase 1	
Q16820	Meprin A subunit beta	MEP1B


Table S1. Unique proteins identified in the $A\beta$ fibrillar coronae.

Uniport	Aβ ₁₋₄₀ unique	Protein
accession		
P27918	Properdin	PROP
P01764	Immunoglobulin heavy variable 3	HV323
P0DJI8	Serum amyloid A-1	SAA1
P29475	Nitric oxide synthase brain	NOS1
P10645	Chromogranin	CMGA
Q7Z745	Maestro heat-like repeat-containing protein family member	MRO2B
	2B	
P81605	Dermcidin	DCD
P29120	Neuroendocrine convertase	NEC1
Q13106	Zinc finger protein 154	ZN154




Figure S1. ThT fibrillization kinetics of $A\beta_{1-42}$ and $A\beta_{1-40}$ (50 µM). Formation of amyloid fibrils was detected by the increase in the relative fluorescence unit (RFU) upon binding of the ThT dye to the hydrophobic grooves of the amyloids. $A\beta_{1-42}$ has a significantly lower fibrillization half time and a 4-fold faster fibril growth rate than $A\beta_{1-40}$. k: fibrillization rate constant. $t_{1/2}$: reaction half-time.


Figure S2. Distinct patterns observed on fibrillar-corona isolates for a) $A\beta_{1-42}$ and b) $A\beta_{1-40}$ fibrils.

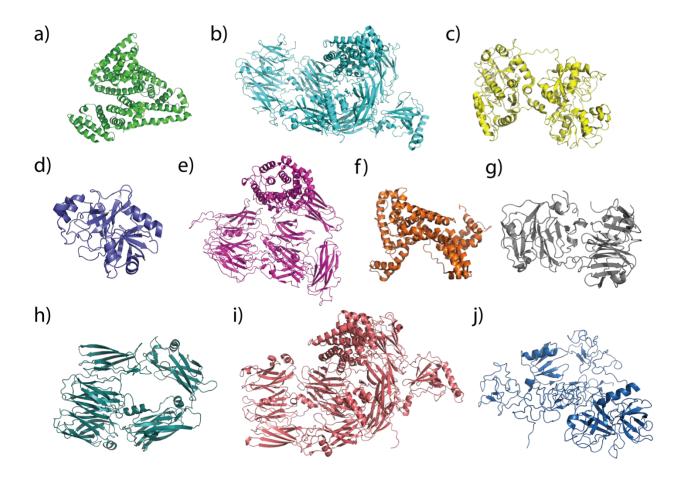

Figure S3. Most abundant coronal proteins as a function of molecular weight (in Da), with the point size indicating the ratio of coronal protein abundance of $A\beta_{1-40}/A\beta_{1-42}$. Most of the coronal proteins tend to have an average mass below 100 kDa.

Figure S4. Physicochemical properties of the unique proteins identified in the $A\beta_{1-42}$ corona, showing a) GRAVY Score and b) pI values of the coronal proteins.

Figure S5. Physicochemical properties of the unique proteins identified in the $A\beta_{1-40}$ corona, showing a) GRAVY Score and b) pI values of the coronal proteins.

Figure S6. Structures of top-10 abundant coronal proteins of a) serum albumin, b) complement C3, c) serotransferrin, d) haptoglobin, e) alpha-2-macroglobulin, f) vitamin D-binding protein, g) hemopexin, h) complement C4-B, i) complement C4-A, and j) plasminogen, shown in cartoon representations.