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1. Multiband k.p model for D4h group semicon-

ductors

We present the 16-band k.p Hamiltonian which allows us to calculate the
band diagram of bulk materials for D4h group semiconductors. The character
table and the basis functions for each irreducible representation for the tetra-
gonal group D4h are given in Table (S1). The tetragonal group D4h consists of
20 symmetry operations divided into ten classes and hence ten real irreducible
representations.

1.1. Symmetry considerations

The present model deals with the mixing of states with atomic like s and
p characters. Without spin, all states transform according to the single-group
representations of D4h, as given in Table (S1). In particular,8<:

sV � �+1 , sC � ��3
pV (XV ; YV ) � �+5 , pC (XC ; YC) � ��5

pV (ZV ) � �+4 , pC (ZC) � ��2
(S1)

where the underscript C(V) denotes the conduction band (CB) (valence band
(VB)) case. The symbol " � " tells us how these orbital wave functions (WFs)
transform under D4h operations. The 16-band k.p model involves matrix ele-
ments between the six (�+4 +�

+
5 ), two (�

+
1 ), six (�

�
2 +�

�
5 ), and two

�
��3
�
WFs.

This model is schematically represented in Fig. (S1), where the WFs correspon-
ding to the bands are indicated. Under D4h operations, we have jZV i � �+4 ,
(jXV i ; jYV i) � �+5 , jSV i � �+1 , jZCi � ��2 , (jXCi ; jYCi) � ��5 and jSCi � ��3 .
Note that contrary to the s-like atomic functions, the p-like atomic functions no
longer belongs to the same irreducible representation
The Hamiltonian H representing the BS of hybrid halide perovskites with

D4h as the point group is given by

H = H0 +Hk:p +HSO +HCF (S2)

where 8>><>>:
H0 =

P 2

2m0
+ U + }2k2

2m0

Hk:p =
}
m0
k:p

HSO = �G:�
HCF = T

�
J2z � 2=3

� (S3)

Here m0 is the free electron mass, U is a potential having the periodicity of
the lattice, G = (rU � p) is the spin-orbit operator, � = (�x; �y; �z) are the
Pauli spin matrices and � = }=4m2

0c
2. T is the crystal �eld splitting and Jz the

z component of the angular momentum j = 1.
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Table S 1 �Character table and bases for the tetragonal group D4h. Here (x,y,z)
is the three Cartesian components of an ordinary vector and (Rx; Ry; Rz) are
the three Cartesian components of an axial vector.

D4h E C2 = C
2
4 2C4 2C

0

2 2C
00

2 i S2 2S4 2�v 2�0v Basis
�+1 1 1 1 1 1 1 1 1 1 1

�
x2 + y2

�
; z2

�+2 1 1 1 -1 -1 1 1 1 -1 -1 Rz
�+3 1 1 -1 1 -1 1 1 -1 1 -1 (x2 � y2)
�+4 1 1 -1 -1 1 1 1 -1 -1 1 xy
�+5 2 -2 0 0 0 2 -2 0 0 0 (Rx; Ry) or (yz; zx)
��1 1 1 1 1 1 -1 -1 -1 -1 -1 (x2 � y2)xyz
��2 1 1 1 -1 -1 -1 -1 -1 1 1 z
��3 1 1 -1 1 -1 -1 -1 1 -1 1 xyz
��4 1 1 -1 -1 1 -1 -1 1 1 -1 (x2 � y2)z
��5 2 -2 0 0 0 -2 2 0 0 0 (x; y)

The operatorH0 transforms as �
+
1 in the D4h symmetry group. The coupling

occurs inside the same level only. The matrix blocks of the operator H0 are
proportional to the identity matrix of the representation dimension with the

coe¢ cient
�
E��m +

}2k2
2m0

�
. In order to derive the nonzero matrix elements of

Hk:p and Hso, it is helpful to use the following group theoretical selection rules :
matrix elements of the type h��nj O"m

����p�, where j��ni (respectively O"m and����p�) is of ��n symmetry (respectively �"m and ��p) (� = �; " = �; � = �), will
vanish unless the direct product ��n
�"m
��p contains the unit representation,
namely �+1 in the case of D4h point group.

Fig .S1 : (a) Schematic representation of 16-band (considering spin) k.p model
representing involved bands and non-zero momentum matrix elements. (b)

E¤ect of spin-orbit interaction in 16-band k.p model.
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1.2. Hk:p Hamiltonian

We outline the matrix elements associated to the operator Hk:p =
}
m0
k:p.

With the help of Table (S1) and knowing that the momentum p is an or-
dinary vector, the three cartesian components (px; py; pz) � (x; y; z). Under
D4h operations, the two transverse components (px; py) transform like ��5 ,
while pz transforms such as �

�
2 . Based on the group theory and via k.p ar-

guments, 7 k.p matrix elements are nonzero (see Fig. (S1a)) and will be clas-
si�ed as follows : two coupling terms appear between the s-like VB and p-like
CBs, namely PS;� = (}=m0) hSV j px jiXCi = (}=m0) hSV j py jiYCi and PS;z =
(}=m0) hSV j pz jiZCi ; two coupling terms appear between the s-like CB and p-
like VBs denoted by P� = (}=m0) hSC j px jiXV i = �(}=m0) hSC j py jiYV i and
Pz = (}=m0) hSC j pz jiZV i ; three k.p matrix elements resulting from the cou-
pling between the p-like VBs and p-like CBs : PX;1 = (}=m0) hXV j pz jiYCi =
�(}=m0) hYV j pz jiXCi, PX;2 = (}=m0) hZV j px jiYCi = (}=m0) hZV j py jiXCi
and PX;3 = (}=m0) hZC j px jiYV i = �(}=m0) hZC j py jiXV i. We de�ne the ener-
gies related to the interband momentummatrix elements Pj by EPj =

�
2m0=}2

�
P 2j .

All the matrix elements are considered as real-valued, adjustable parameters.
In our approach, we have also considered the second-order terms in k which are
derived from the interaction between the p-like CBs with other, energetically
distant bands beyond the p-like VB. For this purpose, we use a method similar to
that of the Luttinger-Kohn1 paper to de�ne a few fundamental band-structure
parameters (Li, Mi, Ni), whose expressions are given explicitly in Section 2.

1.3. Spin-orbit coupling

Let us now consider the e¤ect of spin-orbit interaction in the present k.p
calculation. Neglecting the k-dependent spin-orbit term, namely }2=4m2

0c
2

(rU � k) :�, we can write the spin-dependent k-independent Hamiltonian as
HSO = �G:�. Since G is an axial vector, we have (Gx;Gy;Gz) � (Rx;Ry;Rz),
and we can deduce that under D4h operations (Gx;Gy) � �+5 and Gz � �+2 (see
Table (S1)). Six spin-orbit interaction terms are nonzero. They can be divided
in four types associated with the symmetry of the WFs :
- Two coupling terms appear inside the p-like CBs :�C;� = � hZC j Gx jiYCi =

�� hZC j Gy jiXCi and �C;z = � hXC j Gz jiYCi = �� hYC j Gz jiXCi.
Note that �C;� and �C;z are chosen equal in our calculations.
- Two other coupling terms appear inside the p-like VBs denoted by �� =

� hZV j Gy jiXV i = � hZV j Gx jiYV i and�Z = � hXV j Gz jiYV i = �� hYV j Gz jiXV i.
- One coupling term appears between ��5 levels and ��3 (the s-like CB),

�sC = � hSC j Gx jiXCi = �� hSC j Gy jiYCi.
- One coupling term appears between �+5 levels and �+1 (the s-like VB),

namely �sV = � hSV j Gx jiXV i = � hSV j Gy jiYV i.
We summarize in Fig. (S1b), all the spin-orbit coupling terms involved in

our model.
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Table S 2 �Basis functions near the zone center used in the16-band k.p model.
jC+i = jSC "i jV1i = jSV "i�� 3
2 ;

3
2

�
C
= i

h����1p
2
(XC + iYC) "

Ei �� 3
2 ;

3
2

�
V
= i

h����1p
2
(XV + iYV ) "

Ei
�� 3
2 ;�

3
2

�
C
= i

h��� 1p
2
(XC � iYC) #

Ei �� 3
2 ;�

3
2

�
V
= i

h��� 1p
2
(XV � iYV ) #

Ei
�� 3
2 ;

1
2

�
C
= i

h���� sin �p
2
(XC + iYC) # +cos �ZC "

Ei �� 3
2 ;

1
2

�
V
= i

h���� sin �p
2
(XV + iYV ) # +cos �ZV "

Ei
�� 3
2 ;�

1
2

�
C
= i

h��� sin �p
2
(XC � iYC) " +cos �ZC #

Ei �� 3
2 ;�

1
2

�
V
= i

h��� sin �p
2
(XV � iYV ) " +cos �ZV #

Ei
�� 1
2 ;

1
2

�
C
= i

h���� cos �p
2
(XC + iYC) # � sin �ZC "

Ei �� 1
2 ;

1
2

�
V
= i

h���� cos �p
2
(XV + iYV ) # � sin �ZV "

Ei
�� 1
2 ;�

1
2

�
C
= i

h��� cos �p
2
(XC � iYC) " � sin �ZC #

Ei �� 1
2 ;�

1
2

�
V
= i

h��� cos �p
2
(XV � iYV ) " � sin �ZV #

Ei
jC�i = jSC #i jV2i = jSV #i

1.4. Crystal �eld term

For completeness, the contributions of the crystal �eld in the D4h symmetry
have also been considered in our calculations, namely the crystal-�eld splitting
between ZC and XC (YC) metallic p-orbitals : hXC j P

2

2m0
+U jXCi = hYC j P

2

2m0
+

U jYCi = �hZC j P
2

2m0
+ U jZCi =2 = T=3.

1.5. k.p parameter optimization strategy

The k.p Hamiltonian matrix is constructed by projecting the operator H
on a �nite dimension basis, which is given explicitly in Table (S2). Once the
Hamiltonian matrix is built, it is then possible to apply the present multiband
k.p model to calculate the BS of several bulk hybrid perovskites considered in
this work (see main text).
The k.p parameter optimization strategy is based on a �tting procedure.

Note that very few of them are known while many vary greatly from one re-
ference to another. In general, we optimize these parameters in order to best
reproduce the band diagram predicted by the DFT calculations. In particular,
when �sC , �sV , �� and �Z are taken null, the band-gap energy, Eg, resulting
from the diagonalization of the whole k.p Hamiltonian is given by the following
relationship Eg = EG � T=6��C;z=2� (1=2)

q
8�2C;� +�

2
C;z + T

2 � 2T�C;z,
in which EG is the input parameter (see Fig. S1). The best set of parameters
involved in this expression is obtained when Eg and the electronic band struc-
ture match at best the experimental data and signi�cant theoretical works such
as DFT/GW results used as a reference.

2. The (Li, Mi, Ni) parameters

The band-structure parameters (Li;Mi; Ni), which are analogous to the
Luttinger-Kohn parameters

�


1
; 


2
; 
3
�
for zinc-blende structures, are due to
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the interactions between the p-like conduction bands with all the far-removed
bands apart from the p-like valence bands. Their explicit form is given as fol-
lows :

8>><>>:
L1 =

2
m0

X
(n;�) 6=(5;�)

hXC jpxj�n�(`)ih�n�(`)jpxjXCi�
E
�
�
5
�E��n

� = 2
m0

X
(n;�) 6=(5;�)

hYC jpyj�n�(`)ih�n�(`)jpyjYCi�
E
�
�
5
�E��n

�
L2 =

2
m0

X
(n;�) 6=(2;�)

hZC jpzj�n�(`)ih�n�(`)jpzjZCi�
E
�
�
2
�E��n

�
(S4)

8>>>>>><>>>>>>:

M1 =
2
m0

X
(n;�) 6=(5;�)

hXC jpyj�n�(`)ih�n�(`)jpyjXCi�
E
�
�
5
�E��n

� = 2
m0

X
(n;�) 6=(5;�)

hYC jpxj�n�(`)ih�n�(`)jpxjYCi�
E
�
�
5
�E��n

�
M2 =

2
m0

X
(n;�) 6=(5;�)

hXC jpzj�n�(`)ih�n�(`)jpzjXCi�
E
�
�
5
�E��n

� = 2
m0

X
(n;�) 6=(5;�)

hYC jpzj�n�(`)ih�n�(`)jpzjYCi�
E
�
�
5
�E��n

�
M3 =

2
m0

X
(n;�) 6=(2;�)

hZC jpxj�n�(`)ih�n�(`)jpxjZCi�
E
�
�
2
�E��n

� = 2
m0

X
(n;�) 6=(2;�)

hZC jpyj�n�(`)ih�n�(`)jpyjZCi�
E
�
�
2
�E��n

�
(S5)

8>>>>>><>>>>>>:

N1 =
2
m0

X
(n;�) 6=(5;�)

hXC jpxj�n�(`)ih�n�(`)jpyjYCi+hXC jpyj�n�(`)ih�n�(`)jpxjYCi�
E
�
�
5
�E��n

�
N2 =

2
m0

X
(n;�) 6=((2;5);�)

hXC jpxj�n�(`)ih�n�(`)jpzjZCi+hXC jpzj�n�(`)ih�n�(`)jpxjZCi
(EpC�E��n)

N3 =
2
m0

X
(n;�) 6=((2;5);�)

hYC jpyj�n�(`)ih�n�(`)jpzjZCi+hYC jpzj�n�(`)ih�n�(`)jpyjZCi
(EpC�E��n)

(S6)
where j�n�(`)i denotes the state ` belonging to the representation ��n (� = �)

of energy E��n , and the energy denominator of (N2; N3) parameters is de�ned
as

1�
Epc � E��n

� = 1

2

24 1�
E��5

� E��n
� + 1�

E��2
� E��n

�
35 (S7)

With the basis fjXCi ; jYCi ; jZCig, the corresponding block-matrix inside
p-like CBs can be written in the following form :

24 L1k
2
x +M1k

2
y +M2k

2
z N1kxky N2kxkz

N1kxky M1k
2
x + L1k

2
y +M2k

2
z N3kykz

N2kxkz N3kykz M3(k
2
x + k

2
y) + L2k

2
z

35
(S8)
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3. Electron and hole e¤ective masses

Due to the anisotropic character of the hybrid perovskites considered in this
work, we have assumed the following dispersion relations for electrons and holes
near the �-point : 8<: Ec(k) = Eg +

}2k2z
2mek

+
}2k2�
2me?

Ev(k) =
}2k2z
2mhk

+
}2k2�
2mh?

(S9)

where k2� = k2x + k
2
y, mek and me? denote the e¤ective masses of the lowest

conduction band along and perpendicular to the c-axis, respectively (symmetry
axis of the tetragonal structure). In the same way, we denote by mhk and mh?
the e¤ective masses of the upper VB along and perpendicular to the c-axis.
Using the second-order Löwdin perturbation theory, the electron e¤ective

masses are given by :

8><>:
m0

mek
= 1 + 2m0

}2
�
M2 cos

2 � + L2 sin
2 �
�
+ sin2 �

EPS;z

(Ej1=2;�1=2iC�EjV1i)

+ cos2 �

�
cos2 �

EPX;1

(Ej1=2;�1=2iC�Ej1=2;1=2iV )
+ sin2 �

EPX;1

(Ej1=2;�1=2iC�Ej3=2;1=2iV )

�
(S10)

8>>>>>>><>>>>>>>:

m0

me?
= 1 + 2m0

}2
��
L1+M1

2

�
cos2 � +M3 sin

2 �
�
+ cos2 �

2

EPS;�

(Ej1=2;�1=2iC�EjV2i)

+ cos2 �
2

�
sin2 �

EPX;2

(Ej1=2;�1=2iC�Ej1=2;�1=2iV )
+ cos2 �

EPX;2

(Ej1=2;�1=2iC�Ej3=2;�1=2iV )

�
+ sin2 �

2

24 EPX;3

(Ej1=2;�1=2iC�Ej3=2;3=2iV )
+ sin2 �

EPX;3

(Ej1=2;�1=2iC�Ej1=2;�1=2iV )

+ cos2 �
EPX;3

(Ej1=2;�1=2iC�Ej1=2;�1=2iV )

35
(S11)

where Ejn;mi denotes the energy at k = 0 of the state labeled by jn;mi (see
Table (S2)). Similarly, employing the Löwdin method for degenerate perturba-
tion theory, we obtain the following relationships for the hole e¤ective masses :

8>><>>:
m0

mhk
= �1 + sin2 � EPS;z�

EjV1;2i�Ej1=2;1=2iC
� + cos2 � EPS;z�

EjV1;2i�Ej3=2;1=2iC
�

m0

mh?
= �1 + 1

2

"
EPS;��

EjV1;2i�Ej3=2;3=2iC
� + sin2 � EPS;��

EjV1;2i�Ej3=2;�1=2iC
� + cos2 � EPS;��

EjV1;2i�Ej1=2;�1=2iC
�
#

(S12)

4. Cubic four-band k.p model

To estimate the magnitude order of the energy, EPS , related to the interband
momentum matrix element, PS , we consider the four-band k.p model which
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involves p CBs, fjXCi ; jYCi ; jZCig, and s VB, jSV i. Due to the large spin-orbit
coupling in the hybrid perovskites (see Table 1 in the main text), we estimate
that the dispersion of electrons and holes can be well described following this
model. Using the following Bloch wave functions corresponding to the upper
valence bands (J = 1=2, V1 and V2) and lower conduction bands (J = 1=2, C1
and C2) :

�
V1 = jSV "i ; V2 = jSV #i

C1 = � ip
3
[j(XC + iYC) #i+ jZC "i] ; C2 =

ip
3
[j(XC � iYC) "i � jZC #i]

(S13)

the Hamiltonian
h
H0 +

}
m0
k:p

i
in our basis, namely fV1; C1; V2; C2g, is0BBBB@

Ev + ek2 �P z
Sp
3

0
P�
Sp
3

c:c: Ec + ek2 �P�
Sp
3

0

0 c:c: Ev + ek2 �P z
Sp
3

c:c: 0 c:c: Ec + ek2

1CCCCA (S14)

where c.c. denotes the complex conjugate, PS = ~
m0
hSV j px jiXCi = ~

m0
hSV j py jiYCi =

~
m0
hSV j pz jiZCi is the interband momentum matrix element, ek2 = }2k2

2m0
, P zS =

PSkz, P
�
S = PS (kx � iky), and Ec;v the band-edge energies.

Using the second-order Löwdin perturbation theory, we derive the following
expressions of the electron and hole e¤ective masses, me and mh :(

m0

me
= (1 + EPS

3EG
)

m0

mh
= (�1 + EPS

3EG
)

(S15)

where EPS =
�
2m0=}2

�
P 2S is the energy related to the interband momentum

matrix PS . As a result, EPS is connected to the reduced mass of the exciton,
�, by the relationship EPS = (3=2) (m0=�)Eg, where Eg = (Ec � Ev) is the
energy gap.
Taking the � experimental values (see Table 1 in the main text and Ref.

[34] of the main text), we obtain 23-28 eV in quite good agreement with the
EPS value obtained with the 16-band k.p model developped in this work. In
Ref. [34] of the main text, EPS was estimated at 8.3 eV by using a more simple
k:p model, a 2-band model which is less appropriated to describe the electronic
properties of band-edge excitons of perovskite materials.

5. Band-edge exciton wave function in NCs

The exciton WF, �(re; rh), in NCs is the product of the electron and hole
Bloch functions with an exciton envelope WF, 	(re; rh). re and rh are the
electron and hole position vectors ; Lx, Ly and Lz are the edge lengths of the
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parallelepiped-shape nanocrystal (NC). One distinguishes here three distinct re-
gimes of exciton in a NC : the strong con�nement (SC) regime (Lx; Ly; Lz <<
aX , aX is the Bohr radius), the weak-con�nement (WC) regime (Lx; Ly; Lz >> aX)
and the intermediate con�nement (IC) regime (Lx; Ly; Lz � aX).
In the SC regime, the dimensions of NCs are smaller than the exciton Bohr

radius aX , the envelope WF of the lowest energy exciton state is written as
	(re; rh) = ' (re)' (rh) with

' (r) =

s
8

LxLyLz
cos(�x=Lx) cos(�y=Ly) cos(�z=Lz) (S16)

for both electron (r = re) and hole (r = rh).
In the WC regime, when the NC size is much larger than compared to the

exciton Bohr radius aX , this envelope WF takes the following form,

	(re; rh) = ' (R)� (re � rh) (S17)

with R the exciton mass center vector, and � the hydrogenoid function (� (0) =

1=
p
�a3X). In the bulk regime, ' (R) is replaced by a wave plane,

�
1=
p
V
�
exp iK:R,

withK the exciton momentum and V = LxLyLz, the NC volume. We have then
considered cubic-shape NC, Lx = Ly = Lz.
To model the IC regime, in which the crystal size is comparable to the exciton

Bohr radius, we use the following trial function3 :

	(re; rh) = N [exp�b jre � rhj]' (re)' (rh) (S18)

in which b is the variational parameter, andN a normalization factor determined
by the condition

R
dredrh j	(re; rh)j2 = 1, where the integration is performed

over the NC volume.
The best trial WF is obtained by minimizing hHXi with respect to b. HX

denotes the e¤ective mass Hamiltonian for the exciton and it is given by

HX =
P 2e
2me

+
P 2h
2mh

� e2

4��0�X

1

jre � rhj
(S19)

where me (mh) is the electron (hole) e¤ective mass and
�
� e2

4��0�X
1

jre�rhj

�
is the

Coulomb interaction between the electron and the hole .
The Bloch WF part is associate to the lowest CB and the upper VB. For the

hole, as given in Table (S2), the Bloch WFs are jV1i = jSV "i and jV2i = jSV #i
where " (#) denotes the spin-up (spin-down) state, and SV , the s valence state.
For the electron, in D2h symmetry, the Bloch WFs are :�

jC1i = i [�� jXC #i � i� jYC #i+ 
 jZC "i]
jC2i = i [� jXC "i � i� jYC "i+ 
 jZC #i]

(S20)

The coe¢ cients �, � and 
 are de�ned in Ref..2 In D4h symmetry, � = � =
cos �=

p
2 and 
 = � sin �, while in D2h symmetry �, � and 
 are functions of

the angle � and the orthorhombic crystal �eld parameter ".
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From the electron-hole pair basis jCmVni (m = 1; 2;n = 1; 2), it is then pos-
sible to de�ne the exciton bright triplet states (j = je + jh = 1) fj+1i ; j�1i ; j0Big
and the exciton dark singlet state j0Di and their Bloch functions.4

6. Dependence of the SR parameter with the ex-
citon Bohr radius

From the general expression of the SR Hamiltonian, given by Rössler and
Trebin,5 one can show that the bulk SR splitting�SR is related to the parameter
D = C=�a3X . For the hybrid perovskites studied in this paper, D = 3

2�SR ;
while, for common II-VI and III-V semiconductors, in the Zinc Blende (ZB) or
Wurtzite (WZ) phase, one has D = �SR. The coe¢ cients 3

2 and 1 are directly
related to the symmetry of the band edge Bloch functions.
From the literature,5�23 we have reviewed the experimental values for both

the exciton Bohr radius aX and the parameter D, for 12 compounds. Figure
(S2) shows the dependence of D versus aX . Black and blue symbols are for
ZB and WZ semiconductors, respectively. The solid line is a a�3X law. A very
good agreement is obtained over three decades, showing an universal behaviour
for the 12 compounds (with C = 107:6 meVnm3). We have also plotted (red
symbol) the experimental value for FAPbBr3, deduced from the analysis of the
bright-dark splitting measured in Ref..24 A very good agreement is obtained
with the previous universal law. We have then deduced the SR parameters of
the compounds FAPbI3, MAPbI3 and MAPbBr3 from FAPbBr3, by assuming
a a�3X dependence (see main text).

Fig .S2 : Short-Range parameter D versus exciton Bohr radius aX for Zinc
Blende (black symbol) and Wurtzite (blue symbol) semiconductors [5-23]. The
solid line is a C=(�a3X) �t with C = 107.6 meV.nm

3. The red symbol is
associate to the experimental value deduced for FAPbBr3.
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