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DrDiff approach

The idea of study protein folding using diffusive coordinates in rough energy landscape was

started by Bryngelson-Wolynes in the late 80’s1,2. The diffusion equation was derived under

the assumption that an arbitrary reaction coordinate Q can only be changed by gradual

relatively small steps, which is a general hypothesis. The diffusive dynamics can be described

by the Fokker-Planck equation, which is the probability flow in time (P (Q, t)) of stochastic

motion superimposed with deterministic drift-velocity (v(Q)), and is given by3

∂P (Q, t)

∂t
=

[
− ∂

∂Q
v(Q) +

∂2

∂Q2
D(Q)

]
P (Q, t). (S1)

v(Q) and D(Q) are the coordinate-dependent drift-velocity and diffusion coefficients, respec-

tively.

The solution of equation S1 for short-time dynamics is given by

P (Q, t) = − 1√
4πD(Qc)t

exp

[
−(Q−Qc − v(Qc)t)

2

4D(Qc)t

]
(S2)

with the initial condition at P (Q, t = 0) = δ(Qc). This solution represents a Gaussian

distribution centered at Qc, moving with a velocity of v(Qc) and widening as a function of

the square root of t (σ(t) =
√

2D(Qc)t). The drift-velocity (v(Q)) and the diffusion (D(Q))

coefficients can be calculated from Gaussian distributions with the shift of centers (Qc(t))

and growths of widths (σ2(t)) by the expressions

v(Q) =
Qc(t2)−Qc(t1)

∆t
(S3)

and

D(Q) =
σ2(t2)− σ2(t1)

2∆t
. (S4)

with ∆t = t2 − t1. Therefore, v and D should be taken in the limit of ∆t→ 0.
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The stochastic diffusion-drift (DrDiff) approach is an updated Python script implemented

accordingly to the theory described in the previous work4,5. This updated version of the

algorithm has implemented the folding time (τf ) and transition path time (τTP ) by using

the D and v obtained by the stochastic approach. The DrDiff algorithm was implemented

in the Python Programming Language (https://python.org) using the NumPy and SciPy

native libraries, which makes it faster and automated. The code is freely available to be

downloaded at https://github.com/ronaldolab/DrDiff.

The only input required by DrDiff is the trajectory (Q(t)) file and the required param-

eters are the number of equilibration steps (number of data values to be ignored from the

beginning), the size of Qbins read from the trajectory, the time step and the snapshot used

to save Q(t), tmin and tmax. The key point for the DrDiff approach is to wisely collect

histograms by only reading one-dimensional trajectory as a function of time (Q(t)). The

algorithm that collects histograms from Q(t) and calculates D(Q) and v(Q) is the following:

1. The full one-dimensional trajectory data Q(t) is read with the Q boundaries identi-

fied (Qmin and Qmax). Equilibration steps are discarded from the beginning of the

trajectory due to thermal equilibrium.

2. Each Q in the range [Qmin, Qmax] within a bin size (Qbin) is indexed from the trajectory.

3. From each of these Q’s, histogram distributions (P (Q, t)) are collected at elapsed times

in the range [tinitial, tfinal].

4. The histograms collected are then fitted to Gaussian distributions given by equation

S2. Standard deviations (σ(t)) and distribution centers (Qc(t)) are recorded for the

shooting times in the range [tinitial, tfinal].

5. In sequence, it is performed linear regressions in the variance σ2(t) and centers Qc(t)

data-points. D is the slope divided by 2 of the σ2(t) fitting and v is exactly the slope

of Qc(t) fitting.
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6. This process is iterated in Q within the range [Qmin, Qmax] in order to obtain D(Q)

and v(Q) along with the reaction coordinate.

Time steps in the range [tinitial, tfinal] of the data points are chosen small enough in order to

be valid the short-time approximation.

Figure S1 shows an illustration of the algorithm for Q = 0.1 applied in a Q(t) trajectory.

Q(t) was read and all Q = 0.1 were indexed in Figure S1A. Figure S1B shows the Qs landed

in the range tinitial = 0.01 and tfinal = 0.06 for six time windows. In Figure S1C, the

histograms collected starting from Q = 0.1 were fitted with Gaussian functions. σ2(t) and

Qc(t) parameters were recorded from each Gaussian in the time range and linear regressions

were performed to obtain v and D at Q = 0.1 as in the equations S3 and S4.
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Figure S1: A) One-dimensional trajectory as a function of time (Q(t)) is read for Q = 0.1.
B) Q’s landed in the range tinitial = 0.01 and tfinal = 0.06 for six time windows. C) Gaussian
functions fitting the histograms collected for the reached Q’s starting from Q = 0.1. D)
Standard deviations σ2(t) and E) centers Qc(t) extracted from each of the Gaussian fitting
in C. Diffusion (D(Q = 0.1)) and drift (v(Q = 0.1)) coefficients are obtained by the slope of
the linear regression of σ2(t) divided by 2 in D and Qc(t) in E, respectively.
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1D Numerical Langevin Dynamics of a Single Particle

The Langevin equation of the stochastic process was chosen to computationally generate

long time trace trajectories with given free-energy (F (x)) and diffusion coefficient (D(x))3,6

and recover them with the diffusive models.

The Langevin equation that corresponds to the stochastic process of the Fokker-Planck

equation S1) is given by
dQ(t)

dt
= v(Q) + η(Q, t) (S5)

where v(Q) is the drift-velocity and η(Q, t) is a Gaussian white noise, related to stochastic

processes following a normal distribution with zero mean, and with variance related to the

fluctuation-dissipation theorem

〈η(Q, 0)η(Q, t)〉 = 2D(Q)δ(t) (S6)

where D given by D = kbT/γ (γ is the damping coefficient) if one uses the Itô interpre-

tation of the Langevin equation7. The Gaussian-type white noise distribution of η can be

approximated to

P [η] ∝ exp

(
−
∫ δt η2(t)

4D
dt

)
δt→0
≈ exp

(
−η

2δt

4D

)
. (S7)

By defining η̃ = η
√
δt, the Langevin equation can be numerically solved by

x(t+ δt) = x(t) + v(x)δt+ η̃(x)
√
δt (S8)

with η̃ being the redefined Gaussian random number distribution with zero mean and

standard deviation ση̃ =
√

2D. Equation S8 can be numerically solved to generate dy-

namical trajectories x(t) with D(x) and v(x) (or F(x)) plugged in. The numerical algo-

rithm that integrates equation S8 was implemented with the Perl Programming Language

(https://perl.org) with native libraries in a in-house script.
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Figure S2 shows numerical simulations of the Langevin equation of a particle diffusing in

double-well free-energy profiles (F (x)) with sinusoidal D(x) (left panels) and constant D = 2

(right panels).
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Figure S2: A single particle diffusing in numerical Langevin simulations. A) One-
dimensional time-serie trajectory (x(t)) generated by numerical integration of the Langevin
equation S8 with inputted F (x) (continuous curves in D) and D(x) (continuous curve in
B), the termed correct functions. Right panel in A) contains two trajectories (blue and red
curves) generated with the same D = 2, yet with two different F s shown in the right panel
in B) and D), respectively. B) Diffusion (D(x)), C) drift-velocity (v(x)) and D) free-energy
profile (F (x)) as a function of the position x. The inputted F and D were accurately re-
covered by the DrDiff approach (circles), and also by the Bayesian analysis8 (squares), used
here for comparison. The recovered v(x) in C) by DrDiff (in blue circles) is superposed with
minus the gradient of the inputted free-energy profile F (x) from D). Energy is in arbitrary
units of kBT so that kBT = 1. Dashed vertical lines delimitate defined transition states
(TS). The Bayesian analysis was performed with the same previous protocol4,5.
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2D Numerical Brownian Dynamics of a Single Particle

The anisotropic 2-dimensional (2D) Brownian dynamics simulations were performed by Cos-

sio and collaborators9,10 and analyzed here with the DrDiff methodology. The 2D numerical

simulation is presented for the sake of completion. In this 2D system, x is the molecular

(hidden) extension and q is the total (observable) extension. Trajectories were generated

along q (probe coordinate) and x (molecule coordinate) by numerical integration of9

q(t+ ∆t) = −β∂qG(q, x)Dq∆t+
√

2Dq∆tRq(t)

x(t+ ∆t) = −β∂xG(q, x)Dx∆t+
√

2Dx∆tRx(t)

(S9)

with R{q,x} being the independent Gaussian random numbers with zero mean and unit vari-

ance, ∆t the time step, G(x, q) the free-energy profile, β = 1/kBT with kB being the

Boltzmann constant and T is the simulation temperature. The time step is such that

Dx∆t = 5 × 10−4. The diffusion coefficient of the molecule was kept constant (Dx = 0.1),

while the diffusion coefficient of the pulling device (molecule + linker + apparatus) Dq were

varied in decades from 10−4 to 1. q(t) for different Dq were recorded for analysis.

The 2D free-energy surface for a constant force exerted on the system was given by

G(q, x) = Go(x) +
κl
2

(x− q)2 (S10)

with Go(x) been the molecule free-energy subjected to the force and the second term been

the coupling due to a harmonic linker with spring constant κl. Five trajectories along

the measured extension q of the 2D Brownian dynamics simulations were generated with

similar surface parameters extracted from the 20TS06/T4 DNA hairpin11, ∆G‡0 = 8.1kBT ,

∆x‡ = 1.5[x], and κl = 2.6kBT/[q]
2, where [q] = [x] denotes units of length for the extension.
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Intrinsic dynamical property of force spectroscopy

The measured dynamics of molecular folding transitions in single-molecule force spectroscopy

assays are affected by the hydrodynamic drag on the pulling instrument. The intrinsic

molecular diffusion coefficient (D) is then affected by this hydrodynamic drag of the pulling

setup (tip/cantilever plus the DNA linker in the case of AFM experiments) resulting in

a relatively lower apparent diffusion coefficient (Dapp). The ratio between the apparent

measured and the intrinsic diffusion coefficients is given by12

α =
Dapp

D
. (S11)

The scaling factor α is calculated by

α =
−(τ + k − 1) +

√
(τ + k − 1)2 + 4τ

2
(S12)

with τ = τi/τs and k = ks/ki. Here, τi and τs are the intrinsic molecular and pulling setup

relaxation times, respectively. ki and ks are related to the intrinsic molecular and pulling

setup spring constant stiffness, respectively. τi and ki are associated with the molecular fric-

tion coefficient γi, τi = γi/ki, where γi is connected to D through the Einstein-Smoluchowski

relationship γiD = kBT . A more detailed description of the theory was given by Makarov12.

Estimations of the apparent scaling factor (α) were conducted for the RNA hairpin and

the 3-aa BR protein with the parameters presented in table S1.
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Table S1: Parameters of the two systems used to estimate α in equation S12.

RNA hairpin13 3-aa of BR14

τi (ms) 6.3 0.14
τs (µs) 41 1
ki (pN/nm)a 1 – 5 1 – 5
ks (pN/nm) 4 58

α 0.98 – 0.99 0.70 – 0.93

The parameters were obtained from the original works in each case, except for ki.
aki was estimated for protein and nucleic acid unfolding and refolding experiments in

optical tweezers studies (references in Makarov12), which resulted in the lower and upper
values of the estimated α.
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Memory effects in the single-molecule time-series trajec-

tory

In general, the folding process is modeled as a Markov process, without memory, along

one-dimensional (1D) reaction coordinates. However, if the molecule is probed in a single-

molecule force spectroscopy experiment, theory predicts that memory can be induced by the

probe and, in this case, dynamics along the 1D coordinate becomes a non-Markovian pro-

cess15. Using the generalized Langevin equation (GLE), the memory signal can be extracted

from an experimental signal (q(t))16,17. The dynamics of both, the probe (q coordinate) and

the molecule (x coordinate), is described with a two-dimensional (2D) overdamped Langevin

equation and the x coordinate is eliminated to obtain a GLE in terms of the measured q

coordinate. The memory effects induced by the apparatus are extracted from a normalized

autocorrelation function (ACF), which results as a solution of the GLE15. The autocorrela-

tion function (χq(t)) is given by

χq(t) = C exp(−t/τ1) + (1− C) exp(−t/τ2). (S13)

The memory induced by linking the molecule to a probe is given by the relaxation time

(τmem) obtained after fitting equation S13 to the computed ACF from the trajectory and it

is given by

τmem =
C(s2 − s1)− s2

s1s2
(S14)

and the probe relaxation time (τp) is obtained by

τp =
1

C(s2 − s1)− s2
. (S15)

Both parameters S14 and S15 are evaluated with the characteristic times found in the fitting:

τ1 = −s−11 and τ2 = −s−22 .
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In practice, the ACF is calculated directly from the observed time-series trajectory of

the probe position (q(t)), then it is fitted to equation S13 to extract the fitting parameters

C, τ1 and τ2. According to the theory, the condition τmem/τp > 1 indicates that the probe

responds faster than the molecule and then its motion reflects the dynamics of the molecule.

A more detailed description of the theory is given by Pyo and Woodside15.

Figure S3 shows the autocorrelation functions from pulling measurements of the HIV

RNA hairpin and the 3-aa segment of the bacteriorhodopsin (BR) membrane protein.

Estimations of the memory effects induced by the apparatus given by equations S14 and

S15 for the RNA hairpin and the 3-aa BR protein are in table S1.

Table S2: Memory and probe relaxation times of the two molecules.

RNA hairpin 3-aa of BR

τmem (µs) U 20 87
F 20 127

τp (µs)
U 3 8
F 0.4 7

τmem

τp

U 7 10
F 43 16
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Figure S3: Autocorrelation function (ACF) analyses from measurements of the RNA hairpin
(top panels) and the partial membrane protein (bottom panels) of this study. A) and D) are
the time-series (q(t)) analysed by separating the unfolded (blue) and folded (red) sampling
states. B) and E) represent the histograms of each populated state. C) and F) show the
computed ACF from the trajectories (continues lines) and the χq(t) function after fitting to
equation S13 (dotted lines).
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